医疗器械电路维修的基础知识和维修思路 - 图文

更新时间:2023-09-25 16:14:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

写这篇基础性的东西5年前就有这个想法了,感觉基础性的东西应该都学过,总觉得没有必要,也就迟迟没有动手,近来询问基础性的东西的人太多了,感觉很多同行此类基础太差,大多不是电子专业的,属于半路出家。其实单纯的维修只要能判断出那一块电路板有问题基本上就可以了,机械液路气路能够处理好也就可以了,电路问题一般也就是换板,这是以往和目前所有的代理商的通用做法也是维修费用最高的一种。

俗话有好铁不打钉好男不当兵的说法,在电子类专业毕业的人里面,以做研发经理项目经理设计工程师为最高目标,而无法上升到这个高度的则以进入销售领域进行专业销售支持和客户支持为底线,也许二者都攀不上才不得不当打钉的铁。其实大学或者中专里的电子学课程足以承担电子类维修工作了,用来进行医疗器械的电路维修那就更不值一提。毕竟维修不是设计,它们之间的区别还是相当大的。但为什么电子类毕业的人士进行电路维修的时候并没有感觉到明显的优势所在呢?一是实践太少,二是无法灵活掌握学到的知识,形成死读书读死书,三恐怕就是心态了,浮躁的心态对于维修人员来说是致命的。

在这篇文章里面我打算从三个部分进行阐述,第一是基础部分,介绍一下各个电路组成元器件的作用和识别,第二进行进行电路的分析和检查方法的介绍,第三,进行个别电路的例题分析。

在开始之前要说明的是这里只讲述如何进行检修,如何判断元器件的好坏,甚至如何判断板子的好坏,但不讲解电路组成和结构,因为这些牵扯到设计和理论上的深层东西,对维修来说没有必要。

先来说一下电阻,电阻电容电感组成了最基本的电路元件,俗称RCL电路,其中电阻用R表示,为了表示区分,一般将普通电阻标定为R,可调电阻用VR表示,热敏电阻用TR表示,等等,也有统一都用R表示的,这是各个国家的习惯或者有些国家有电路规范的。电阻在电路中的作用无非是分压(降压或限压),限流,也有在数字电路中作为提拉(上拉)电阻使用的。

电阻分类很多,我们常见的有:

固定电阻,就是我们常见的,一般用色环标注阻值。有人说我知道色标如何识别,但我无法断定从电阻的那一端开始读,其实这个很好办,色标分为5色标和4色标2种,但他们都有规律,就是有4个(4色标为3个)色环是均匀分布的,另外一个是间隔较远分布的,读取色标应该从均匀分布的那一端开始,最后一位也就是分布较远的那个色标是精度等级,这样就好判断和读取了。电阻的功率很重要,替换的时候只要大小相同功率就相同,我们一般常见的有1/4W,个别数字电路会用到1/8W,电源电路或大功率驱动会用到1/2W,甚至更大。如何判断电阻是否正常呢,答案只有一个,也是最

方便的办法就是使用万用表,用万用表的两个表笔直接测量电阻的两端就可以了,阻值应该与色标相差不多,一般在5%--10%之间,注意阻值量程的切换。一般的电阻在线测量就可以了,在线阻值和标称阻值差别不大,但有些电路设计电阻的两端连接其他的电路形成并联,这样阻值就会降低,有些甚至降低一半还要多,那么就要用电烙铁焊起电阻的一端进行测量。大部分情况下在线测量的阻值是低于标称阻值的,因为属于并联,如果你测量出电阻高于标称阻值那么有几点可能,一是电阻断路,二是色标看错,三是万用表错误(使用错误或者电池低)。并联电阻的阻值公式相信大家都记得,1/总电阻=1/R1+1/R2+1/R3+...。有些电阻的色标脱落或者模糊不清,可以通过万用表测量(脱线测量更准确一些)和色标比对验证的方法确认阻值。电阻都有不同的底色,这些颜色常见的蓝,绿,红,黄等等都是温度范围的不同,但那一种温度范围都可以满足我们的要求的。我们常用的电阻绝大多数为金属膜电阻,过去的炭膜电阻已经很少能见到了,这种电阻有个特殊的用法就是将炭膜适当的刮磨可以得到非标准的阻值用于特殊电路中,过去的指针式万用表很多电阻都是这么制作的。

可调电位器,相比 这个东西大家也不陌生,它与下面的多圈可调电位器的区别就是这种电位器调整幅度不超过360度,所以只能进行粗略的调整。 多圈可调精密电位器,18年前刚出现这种精密多圈电位器的时候,模样跟现在差不多,最多为10圈,价格极其昂贵,当初由于产品需要,每个电位器为了节省1元钱几乎跑遍了天津北京的电子市场。现在的多圈电位器可以达到50圈左右,更有百圈电位器,价格也没有贵多少可见大工业化的生产成本的低廉。这两种电位器的标称一般采用3位数字标注,前两位是有效数值,后一位是10的幂数,例如1k的电位器标注成102,10是有效数字,2表示10的2次方,这样组合起来就是1000也就是1k,同样103表示10k,223表示22k,202表示2k,大家可以看看前面的链接加深了解一下。这种电位器本身很少损坏,连接方式一般是一端固定端与可调端短路,所以在测量的时候测量这个短路端与另一端的电阻就可以了,粗略的判断一般是转动可调点,这两端的阻值发生变化,那么基本上可以断定没有问题。由于灰尘和使用的问题(大部分是旋转到尽头继续旋转造成的可调端断开)会造成没有电阻变化,这种情况一般直接更换就可以了。可调电位器的三端分别连接的电路,可以将可调端与任一端测量即可。电路中存在电位器就说明此电路可调,至于监测点和调整参数需要有技术说明的,在未知具体参数的情况下不要进行调整,不管三七二十一先调整了在观察仪器的反应是愚蠢和无知的,可能造成的后果也是很严重的。有些电路设定的范围很宽,你在不知情的情况下调整范围很小对电路的影响不大,也就看不出什么问题。有些电路设定范围很小,稍微调整就会看到效果。举个很常见的例子,激光头在医疗设备上经常见到,血球的五分类,激光相机激光头的应用不少,但一般都作为降低功率使用,例如5mw的激光头一般降低到3mw左右使用,这样可以延长使用寿命。但在光路系统被污染,电路监测这个功率就会降低到无法使用的程度,常规思路是清洁光路,那么直接调整激光功率是否可行呢,答案是可以的,但做事情要凭良心要守规矩,为什么会造成功率下降,最直接的原因

是脏,首先要彻底清理光路发射,接受,中间的检测体等等,外界的干扰也要考虑。实在不行了只能调整功率的情况下,下手要轻,一点一点地提高,提高到可以满足工作要求就可以了,但有些工程师下手太狠,一下子到头,几乎达到激光功率的100%甚至105%以上,这样做当时会看到明显的效果,但往往不长时间就会使激光头报废只能更换。这是在知道明确参数的情况下,那么在不知道参数的情况下随意调整又看不出什么效果,应该调整回去,但往往不予恢复,造成设备的隐患这一点需要切忌的。在做电位器调整前,一定设法记住初始位置初始参数,哪怕你记住往什么方向调整了几圈这样的笨办法都可以,在无效后一定恢复过去。

水泥电阻,这在电视机和开关电源里面经常看到,巨大的白色电阻,电阻值很低,一般在几欧姆甚至几十欧姆,开路是最常见的故障,这个电阻一般用在假负载上,所以手触摸烫手是正常的。阻值一般直接标注在上面。

线绕电阻,在现在的医疗器械里面很少见了,体积功率都很大,阻值不大,一般在负载和高功率驱动中采用,色环标注阻值。

热敏电阻,对温度敏感,根据温度的变化改变阻值,作为不精确温度测量使用。也用作电源电路的过流保护,根据不同的用途体积也不同,但温度范围都很宽可以在很高或者很低的温度下工作,有些可以直接浸入在液体内工作,F820的温度传感器就是这种电阻,直接工作在液体环境下。在电源中起保护作用的这种电阻一般串联在电路输入端,由于过流产生过热从而断路保护电路。用于电路保护的热敏电阻有些在保护发生后一段时间内可以自行恢复,有些一旦发生保护就废掉了,通过测量电阻可以判断好坏,正常情况下这个电阻是很小的,发生保护的电阻很大几乎是开路。用于温度测量的热敏电阻在常温下一般有2-10k的阻值,如果这个阻值差别太大那么就需要更换了。

湿敏电阻,对潮湿敏感,可以根据湿度的不同改变自己的阻值,后续电路根据这个特性来判断湿度的变化,国产的湿敏电阻不能沾水否则失去效用,进口的可以浸水使用。一般用在电源电路和主板的监控,也用在对湿度要求严格的环境中。

压敏电阻,对电压敏感,一般用于电源过压保护,并联在电源输入端,电压高于标称范围即刻短路烧毁上一级保险,从而保护后极电路。这个电阻的阻值正常情况下很大几乎开路,发生保护时很小接近短路,也有一次性和自恢复型的。

光敏电阻,对光敏感,目前很少采用了,一般都使用光电管替代了。 对电阻的标准方法美英两国也有独特的方式。

电容的使用在电路中与电阻相比恐怕是有过之而无不及。电容最基本的特性是通交隔直,也就是说交流电可以通过 ,但直流电无法通过。我们常用到是

聚酯涤纶电容,这种电容一般用在去藕电路中,也就是说并联在集成电路的电源输入,这样可以防止电源中的交流成分对集成电路产生的耦合干扰。还有就是用在电路的匹配中。在前面的帖子中我们已经知道了电容的标注,那么如何判断此类电容的好坏呢?有些万用表是可以测量20uf一下电容的,但只能离线测量,此类电容的充放电效应不是很明显,因此用电阻档测量不是很清晰,不过,此类电容出现问题最多的是开路或者短路,那么电阻档测量将会很容易。此类电容一般在电路中会有很多,可以测量其它地方的同标称电容的离线阻值来判断此电容是否正常。

校正电容,一般用在放大电路中,作为信号取得和电路匹配用,精度较高,标称值一般是nf级。例如在血球中小孔电极接入第一级放大器的前端就是一个这类电容,电极无论电压是60v还是100v对后面的放大器都没有影响,以为这个电容的存在对直流没有通过效应,当计数开始,细胞通过小孔就会产生一个脉冲,实际上脉冲就是交流信号,那么这个电容就将这个微弱的脉冲信号通过并进入后面的放大器进行处理。

瓷片电容,这是最常见的电容,都是用数字pf级标注的,很少损坏,一般故障都是短路或者开路。

独石电容,电源中应用较多,耐压也很高,以前的充电刮胡刀就是靠独石电容直接接220v交流电,在后面连接一个整流二极管形成半波整流进行充电和工作的,但这种效果很差,电池损伤也很大。大型的医疗设备电源中独石电容应用也是非常多的。开路是最常见的故障。这种电容的发热往往预示着电路问题。

电解电容:常见的有铝电解和钽电解两种,铝电解有铝制外壳,钽电解没用,钽电解体积小价格昂贵。它们大多用于电源电路中,对电源进行滤波,也用在不严格的延时电路当中,通过电解电容的充放电特性进行延时。铝电解采用负极标注,就是在负极端进行明显的标注,一般是从上到下的黑或者白条,条上印有-标记。新购买的铝电解正极的引脚要长于负极引脚。钽电解采用正标记,在正极上有一条黑线注明+。利用电解电容的充放电新能来粗略测量其好坏最为直接,将万用表的两个表笔接到电解电容的两端,万用表电阻20k或者200k档读数会从很低的数值上升到很高的数值,这个时间很短,然后交换表笔就会重复这个现象,基本上可以断定这个电解没有问题。当然短路和断路情况就不应说了。这里要提一句的是,铝电解由于其引脚的结构,一般这类电解无法完全与线路板紧密结合,铝电解与线路板之间有一定的空隙,那么,不经意的扭曲会造成两个引脚的短路,从而造成这组电源的短路,

这种问题已经出现过多次,根本原因就是维修或者保养得时候动作过大电解电容被缠绕上电线,由于拖拽电线造成的电解扭曲,所以维修习惯和规矩还是要掌握和遵守的。

医疗设备用的电感有单层线圈固定电感,振荡线圈(电源中使用),偏转线圈(液晶的高压板)等,普通的单层线圈固定电感大小跟1/4w电阻差不多,在电源输出电路中起隔交通直的作用,就是将电源中滤波不干净的交流信号阻挡,将直流通过。开路是最常见的故障,紧急修复可以直接短路,但不能长时间短路,否则会影响下面的电路。此类电感的阻值都非常小,只有几欧姆几十欧姆。有很多万用表可以测量mh级的电感,但在维修中电感的标称一般不是很重要。电感的标成有色标也有色点,这些都跟电阻的色标识别类似,还有直接标注的。

上面就是RCL三大基本元件。下面休息一下换换脑子,介绍一下常用的电子维修工具和使用方法。 1、万用表

万用表是最常用的电子维修工具了,经常有人不惜长途电话询问如何判断XXX电路好坏,回答肯定是万用表如何如何测量,但往往得道的回答是没带表,无话可说了,难道带个万用表就这么沉重么?

下面就是常用的万用表,大部分是数字的,有3位半和4位半区分。高级的万用表量程是自动切换的。

建议经常维修电路的同行准备两块数字表,一块精度高的,例如fluke的,价格较高最便宜的也要400多,一块精度差一些但速度快的,例如3位半或者指针表。这两块表当中要包括电阻电容电感,二极管,三极管,交直流电流电压的测量和温度,频率,等等,这样可以互补,从而快速准确的判断问题所在。

有了万用表,还要有表笔,有人说表笔是人家配套的,是的,我说的表笔是指在标准配备之外的,例如挂钩和探针,挂钩可以很方便的将表笔挂接在测试点上,这样就可以很方便的腾出手来干其他的或者适合长期监测。就是下面这些挂钩。

2、逻辑笔

逻辑笔只可以简单的判断数字电路的高低准位。当被测电路的某一点为高准位时,逻辑笔上的红灯会亮。反之,当被测电路的某一点为低准位时,逻辑笔上的绿灯会亮。若是该测点有脉冲时,逻辑笔上的Plus灯会闪动。

逻辑笔反应速度高于万用表,但不能量化,根据个人的喜好,对于速度较快的电路或者大范围快速排查用出很大。 3、

示波器(Oscilloscopes),在电子仪器中占有极重要的地位,不管是观察各种波形之频率与振幅大小,或分析相位与失真等特性,均非常方便。 基本上,示波器是用来观察电压变化的一种装置。而在经过各种适当的换能装置之后,便可以用来观测电流、阻抗、速度、温度、照度以及时间等不同的物理量,而使得示波器可以用于不同的领域中,如:物理、化学、医学、航空或机械等,因此,熟悉示波器的各项功能,对于往后的实验有很大帮助。

示波器的主要构造是由阴极射线管(Cathod-Ray Tube),垂直放大(Vertical Amplifier),水平放大(Horizontal Amplifier)以及扫描产生器(Sweep Generator),这四大部分所构成的。

由于示波器是属于一种精密的仪器,我们在使用时应注意以下两点:

1.将示波器的电源开关拨到ON之前,先将电源插好,在Power ON了之后,检查电源指示灯亮了吗?若指示灯在闪动,则表示电源电压不符合示波器的规格。会损伤示波器。必须立即OFF Power并且拔去插头。

2.示波器在测量时,常须用到探棒笔亦即衰减棒(Probe),在衰减棒上有一个选择钮可拨到\或\两处。其中,\就是将待测讯号经由衰减网络衰减了10倍,然后再加入示波器的输入端。因此,我们在屏幕上看到的波形已经缩小了10倍,这也表示实际的波形振幅必须乘以10倍,但是频率和衰减量无关。另外,\就是不将待测讯号衰减。因此,在屏幕上看到的波形即为实际的波形。

示波器的旋钮介绍: 1.亮度旋钮(Intensity)

亮度控制可以改变CRT电子束的强度,进而控制屏幕上波形的亮度,平时不宜太亮,以免降低了屏幕的寿命,尤其在波形只有一点时。 2.聚焦旋钮(Focus)

聚焦旋钮可改变加速阳极电位,使得屏幕得到粗细不同的线条,通常和亮度控制钮配合使用,以便调整屏幕的清晰度及亮度。 3.轨迹旋转钮(Trace Rotation) 轨迹旋转钮是用来校正水平位准。 4.屏幕亮度钮(Scale Illum)

屏幕亮度钮可调整屏幕亮度,但是一般我们不会用到它。 5.垂直选择模式(Vertical Mode)

垂直选择模式共有三种Mode,一为CH1,一为Add,另一为CH2。当旋钮拨到CH1时,我们只能在屏幕上看到CH1之输入波形。当旋钮拨到CH2时,我们只能在屏幕上看到CH2之输入波形,当旋钮拨到Add时,我们可以在屏幕上看到CH1和CH2的波形相加。

6.垂直位置旋钮(Vertical Position)

垂直位置旋钮可改变垂直偏向位准,因此,波形可以在屏幕中上下改变位置。 7.水平位置旋钮(Horizontal Position)

水平位置旋钮可改变水平偏向位准,因此波形可以在屏幕中左右改变位置,水平位置旋钮常和垂直位置旋钮配合使用,若将此钮拉起时,水平周期可以扩展10倍,以利我们观察波形之某一部份。

8.交流/直流开关(AC/DC)

交流/直流开关是用以选择输入信号的交连方式,若置于AC位置,则输入信号串联一个隔直流电容,因此,没有直流位准。若置于DC位置,则电容短路,且输入信号将直接加到垂直放大器。若置于GND,则垂直放大输入接地,此时,屏幕只有水平基准线,可以供校正直流准位。

9.垂直衰减范围选择钮(Volts/Div)

垂直衰减范围选择钮又称垂直增益选择钮,其约有十个粗调纽。平时皆将垂直衰减范围选择钮的中央微调钮右转至最底。 10.水平周期扫描开关(Time/Div)

水平周期扫描开关约有二十个粗调档。水平周期是指波形在水平线上每一格所占的周期数。其微调纽Variable可微调每一粗调的上限到下限,但平时右转至最底。

但示波器显然不方便携带,价值也高,拥有的人不多,目前有模拟示波器和数字示波器之分。在有明确检修资料的情况下,在给出示波器调整资料的情况下,利用示波器进行维修当然很方便。在没有示波器的情况下当然也是可以进行维修的。

几年前有个单位接了一个维修任务,把60M的模拟示波器抬到了现场,经过几天的检查不得要领,给我电话咨询的时候往往是示波器显示如何如何,反而把我说糊涂了。在周末的时候我开车过去看了一下,是个紫外可见光分光光度计。仪器屏幕显示定标曲线不好,无法通过自检。从曲线判断输入信号有问题。于是我用万用表在接受端的隔直电容后面测量电压的变化后问他们波形是不是方波上的锯齿?他们很吃惊,没有示波器怎么判断的,我说万用表已经显示出来了,基础电压是2.2v,万用表现在2.2v的后面不断的波动,方波结束后为0V,这已经告诉你方波上肯定会出现锯齿波的。出现这种情

况只能说明前级的信号输入本身不正确或者这个电容有问题,结果电容更换过,那么就只有一个可能,就是前级信号了,这个信号来自高压倍增管,PMT本身有寿命的,难道这么巧?于是下手拆下PMT,结果发现高压线破损裸露触碰了信号线造成严重的干扰,使信号无法拉开。经过处理当时就已经好转了,于是让他们继续处理我返回西安,在路上他们问我不用示波器真的可以判断波形?我只能说这是一个经验问题,示波器和万用表本质上没有区别,区别在速度和直观程度上,示波器和万用表有着对应关系,这个对应关系的理解往往是经验和反复试验得出的。在我从事18年的电子设计和维修工作中,绝少用到示波器。测量一个电位和电平,测量一个电压本不需要示波器,而电源杂波干扰对设备的影响也微乎其微,因为其开关电源会处理掉这些杂波的。但在有些情况下示波器不可缺少,例如CT,X光机,五分类血球的激光信号接受端调整都是以示波器信号为依据的,这也是没有办法替代的。

4、电烙铁,这里转发一份别人写的资料,我就不再复述了。

电烙铁是电子爱好者进行业余制作和维修的主要工具之一。它主要由铜制烙铁头和用电热丝绕城的烙铁芯两部分组成。烙铁芯直接接220V市电,用于加热烙铁头,烙铁头则沾上溶化的焊锡焊接电路板上的元件。

从构造上分,电烙铁有内热式和外热式两种。内热式电烙铁的烙铁芯安装在烙铁头的内部,因此体积小,热效率高,通电几十秒内即可化锡焊接。外热式电烙铁的烙铁头安装在烙铁芯内,因此体积比较大,热效率低通电以后烙铁头化锡时间长达几分钟。

从容量上分,电烙铁有20W、25 W、35 W、45 W、75 W、100 W以至500 W等多种规格。爱好者一般使用25 W的内热式电烙铁。

电烙铁初次使用时,首先应给电烙铁头挂锡,以便今后使用沾锡焊接。挂锡的方法很简单,通电之前,先用砂纸或小刀将烙铁头端面清理干净,通电以后,待烙铁头温度升到一定程度时,将焊锡放在烙铁头上溶化,使烙铁头端面挂上一层锡。挂锡后的烙铁头,随时都可以用来焊接。

用电烙铁焊接时,除了必须有焊锡条做焊料、直接用于焊接之外,还应该备有助焊剂。助焊剂顾名思义就是有助于焊接的,它可以清洁焊接物表面和清除溶锡中的杂质,提高焊接质量。常用的助焊剂有松香和焊锡膏(俗称焊油),其中松香时一种腐蚀性很小的天然树脂。焊锡条(又称焊锡丝)里就带有松香,故俗称松香芯焊锡条。焊锡膏也是一种很好的助焊剂,但是其腐蚀性比较强,本身又不是绝缘体,故不宜用于元件的焊接,大多用于面积较大的金属构件的焊接,使用量也不宜过多,焊接完成以后应使用酒精棉球将焊接部位擦干净,防止残留的焊锡膏腐蚀焊点和焊接件,影响产品的质量和寿命。

另外,使用电烙铁是属于强电操作,一定要注意安全用电。任何电烙铁都必须又三个接线端,其中两个与烙铁芯相接,用于连接220V交流电源,另一个与烙铁外壳相连是接地保护端子,用以连接地线,为了安全起见,使用前最好用万用表鉴别一下烙铁芯是否断线或者混线。一般20~30W的电烙铁的烙铁芯电阻为:1500~2500欧姆。

焊接是每个电子爱好者必须掌握的基本功,所以必须要下些功夫,好好练习。如何才能焊接好元器件那呢?简单的讲,应注意以下三点。 1.焊接前,应将元件的引线截去多余部分后挂锡。若元件表面被氧化不易挂锡,可以使用细砂纸或小刀将引线表面清理干净,用烙铁头沾适量松香芯焊锡给引线挂锡。如果还不能挂上锡,可将元件引线放在松香块上,再用烙铁头轻轻接触引线,同时转动引线,使引线表面都可以均匀挂锡。每根引线的挂锡时间不宜太长,一般以2~3秒为宜,以免烫坏元件内部,特别使给二极管、三极管引脚挂锡时,最好使用金属镊子夹住引线靠管壳的部分,借以传走一部分热量。另外,各种元件的引脚不要截得太短,否则既不利于散热,又不便于焊接。

2.焊接时,把挂好锡得元件引线置于待焊接位置,如印刷板得焊盘孔中或者各种接头、插座和开关得焊片小孔中,用沾有适量锡得烙铁头在焊接部位停留3秒钟左右,待电烙铁拿走后,焊接处形成一个光滑的焊点。为了保证焊接得质量,最好在焊接元件引线得位置事先也挂上锡。焊接时要确保引线位置不变动,否则极易产生虚焊。烙铁头停留得时间不宜过长,过长会烫坏元件,过短会因焊接溶化不充分而造成假焊。

3.焊接完后,要仔细观察焊点形状和外表。焊点应呈半球状且高度略小于半径,不应该太鼓或者太扁,外表应该光滑均匀,没有明显得气孔或凹陷,否则都容易造成虚焊或者假焊。在一个焊点同时焊接几个元件的引线时,更加要应该注意焊点的质量。

电烙铁有内热式外热式之分,有恒温非恒温之分,也有固定焊台或便携式之分。 5、热风枪

下面是一些热风枪的示意图,看到的都是风枪本身,后面还有一个大的基座。

下面这些都是风枪的各种风嘴,通过更换这些风嘴来适应不同的焊接

热风枪的使用 1、指导

热风枪是一种贴片元件和贴片集成电路的拆焊、焊接工具,热风枪主要由气泵、线性电路板、气流稳定器、外壳、手柄组件组成。性能较好的850热风枪采用850原装气泵。具有噪音小、气流稳定的特点,而且风流量较大一般为27L/mm;NEC组成的原装线性电路板,使调节符合标准温度(气流调整曲线),从而获得均匀稳定的热量、风量;手柄组件采用消除静电材料制造,可以有效的防止静电干扰。

由于手机广泛采用粘合的多层印制电路板,在焊接和拆卸时要特别注意通路孔,应避免印制电路与通路孔错开。更换元件时,应避免焊接温度过高。有些金属氧化物互补型半导体(CMOS)对静电或高压特别敏感而易受损。这种损伤可能是潜在的,在数周或数月后才会表现出来。在拆卸这类元件时,必须放在接地的台子上,接地最有效的办法是维修人员戴上导电的手套,不要穿尼龙衣服等易带静电的服装。

2、操作

(1)将热风枪电源插头插入电源插座,打开热风枪电源开关。

(2)在热风枪喷头前10cm处放置一纸条,调节热风枪风速开关,当热风枪的风速在1至8档变化时,观察热风枪的风力情况。

从上图中我们知道这个芯片的38和39脚分别接血氧探头的正负极,42脚是LIM控制信号,这位工程师测量的结果是38,39脚都为0,42脚是5V,而一块正常的板子的这个电压是38脚5v,39脚0v,42脚0v ,(医院有相同的机器)。那么这种检查对比是否就能判断出u9这个芯片坏了呢?不能,我们可以这么理解,由于控制端LIM也就是42脚的电平不同造成了输出38脚没有电压,也就无法点亮血氧探头,所以需要进一步检查,那就是切断42脚的连线 ,从图上看不需要切断,只需要把R37阻值是200欧姆的电阻引脚焊起来一个就可以了,当然首先要检查这个电阻是否断路,如果断路那么这个信号还是过不来也会造成错误。电阻去掉之后,我们把42脚接地,这时候通电测量38和39脚是电压是否是5v和0v ,如果是这个芯片就没有损坏,要查找下一级电路,如果42脚接地后,38脚依然是0v,那么我们才可能判断出这个芯片的损坏。遗憾的是,这位同行没有进行这步检查就直接把芯片从板子上焊了下来,我不知道怎么焊的,但这种表贴焊接的器件再想焊回去难度很大的,至于是否修好没有了下文,但这个我们不关心,这里只说明的是一个维修判断的思路。我们继续看,42脚的LIM信号去了哪里呢,u22的25脚,也就是PIC16c66的RB4端口,这个芯片是可编程的控制器,与25脚对应的是第6脚RA4 ,而这个RA4信号是MODE信号又送给了U9的30脚,PIC芯片很难损坏,难道还是u9损坏造成的?以我个人的经验来看,不大可能是这个芯片有问题,那么询问他到底有什么错误信息,结果告诉我说错误编号125,那么马上查询手册,得知这个错误代码的含义是Too many reset requests也就是说太多的复位请求,那么这个RESET信号是怎么来的呢,我们还要继续看图纸,CPU 型号是MPC823,编号是U12,这个CPU的R5脚输出这个血氧探头的RESET信号,也就是开机就会发送一个复位信号复位血氧探头的接收信号(注意,这个CPU MPC823是RAM内核的处理器),这个信号出来后交给Q12三极管,其实就是一个高电平导通这个三极管,而这个三极管推动的是U6 4N35光电耦合器的发射,通过这个耦合器发射给接收端信号,使接收端给血氧探头一个低电平的复位信号,如果这一路出现问题也许三极管,也许光电耦合器发生故障都会导致复位信号源源不断地发送,使处理器侦查到复位信号没完没了导致停止血氧探头的发射灯从而保护。下面是这段电路的示意图:

下面是4N35的资料

从上面来看,可以明确的判断u9这个芯片不可能存在问题的,问题在其他地方,所以,一个电路的维修,在没有充分的判断的情况下不要急于断定那一个芯片有问题,仅仅是怀疑,要确认就需要有充分的证据,否则只能停留到怀疑的地步,不要盲目动作,否则会酿成大患的。

通过上面的例子,我们接着来说一下光电耦合器的检测方法。上图中4N35是一个带有基极的固态光电耦合器,这样的器件在电源隔离,驱动隔离以及端口隔离上用途广泛,目的是为了保护器件不至于被大功率器件的反馈电流烧毁。在这里采用 4N35就是因为CPU价格昂贵且作为中央处理器要受到保护。值得一提的是,我们经常遇到的固态光电耦合器很少有基极的,在上面的例子中基极也没有被使用而是悬空。

下面看一下这个芯片的结构,我们做一下分析从而得出检测方法:

7、在现有的资料中,针对如何判断放大器的好坏没有很好的办法,大部分介绍的都是电阻法,被测放大器每个引脚的间的电阻与正常放大器的对比,或者在线测量两个相同放大器的对地电阻,这样做其实不是能很好的判断。在很多示波器应用的文章里,采用示波器测量放大器效果显著,前提是有脉冲信号发生,即将脉冲信号接到放大器输入端,在输出端测量放大效果。通过万用表测量输入端的微弱电压变化和输出端的交明显的电压变化也可以判断的,但频率很高的信号万用表反应就不是那么明显了。

8、放大器的输出在没有特殊电路的情况下,输出电压不可能超过供电电源的电压,例如双电源供电+-12v,输入一般是1v以下,那么输出不会超过或者接近+-12v。这仅仅是常规用法,医疗器械上绝大多数都是如此。

现在说一下什么是电平,电平信号运用到数字电路当中,区别于模拟电路的信号,有TTL电平和cmos电平之分。

什么是TTL电平呢,输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。这是TTL电平的概念。

CMOS电平是1逻辑电平电压接近于电源电压即高电平,0逻辑电平接近于0V即低电平。而且具有很宽的噪声容限。下面是有关电平的知识。 1、电平转换电路:

因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。哈哈

2、OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外接上拉电阻和电源才能将开关电平作为高低电平用。否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。 这也就是在数字电路中经常会见到电阻,而且会见到电阻排,只是就是为了上拉或者限流用的。 3,TTL和COMS电路比较:

1)TTL电路是电流控制器件,而coms电路是电压控制器件。

2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。 3)COMS电路的锁定效应:

COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。这种效应就是锁定效应。当产生锁定效应时,COMS的内部

电流能达到40mA以上,很容易烧毁芯片。

防御措施: 1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。 2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。 3)在VDD和外电源之间加线流电阻,即使有大的电流也不让它进去。

4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS电路得电源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS电路的电源。 4,COMS电路的使用注意事项

1)COMS电路时电压控制器件,它的输入总抗很大,对干扰信号的捕捉能力很强。所以,不用的管脚不要悬空,要接上拉电阻或者下拉电阻,给它一个恒定的电平。

2)输入端接低内组的信号源时,要在输入端和信号源之间要串联限流电阻,使输入的电流限制在1mA之内。 3)当接长信号传输线时,在COMS电路端接匹配电阻。

4)当输入端接大电容时,应该在输入端和电容间接保护电阻。电阻值为R=V0/1mA.V0是外界电容上的电压。 5)COMS的输入电流超过1mA,就有可能烧坏COMS。

5,TTL门电路中输入端负载特性(输入端带电阻特殊情况的处理):

1)悬空时相当于输入端接高电平。因为这时可以看作是输入端接一个无穷大的电阻。

2)在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平。因为由TTL门电路的输入端负载特性可知,只有在输入端接的串联电阻小于910欧时,它输入来的低电平信号才能被门电路识别出来,串联电阻再大的话输入端就一直呈现高电平。这个一定要注意。COMS门电路就不用考虑这些了。

6,TTL电路有集电极开路OC门,MOS管也有和集电极对应的漏极开路的OD门,它的输出就叫做开漏输出。OC门在截止时有漏电流输出,那就是漏电流,为什么有漏电流呢?那是因为当三机管截止的时候,它的基极电流约等于0,但是并不是真正的为0,经过三极管的集电极的电流也就不是真正的 0,而是约0。而这个就是漏电流。开漏输出:OC门的输出就是开漏输出;OD门的输出也是开漏输出。它可以吸收很大的电流,但是不能向外输出的电

流。所以,为了能输入和输出电流,它使用的时候要跟电源和上拉电阻一齐用。OD门一般作为输出缓冲/驱动器、电平转换器以及满足吸收大负载电流的需要。

接下来就是阐述一下集成电路了。

一、数字集成电路的分类

数字集成电路有多种分类方法,以下是几种常用的分类方法。 1.按结构工艺分

按结构工艺分类,数字集成电路可以分为厚膜集成电路、薄膜集成电路、混合集成电路、半导体集成电路四大类。如图0-1所示。

世界上生产最多、使用最多的为半导体集成电路。半导体数字集成电路(以下简称数字集成电路)主要分为TTL、CMOS、ECL三大类。

ECL、TTL为双极型集成电路,构成的基本元器件为双极型半导体器件,其主要特点是速度快、负载能力强,但功耗较大、集成度较低。双极型集成电路主要有

TTL(Transistor-Transistor Logic)电路、ECL(Emitter Coupled Logic)电路和I2L(Integrated Injection Logic)电路等类型。其中TTL电路的性能价格比最佳,故应用最广

CMOS电路大量应用到医疗器械当中,但以前的4000系列倒是不常见,74系列的高速CMOS电路,例如74HC系列或者74LS系列倒是很常见。 下面用实例讲述如何查询电路资料,如何通过资料判断此类电路的好坏。

我们经常见到74HC或者74HCT132---四双输入双稳态(施密特)触发器,当我们在电路当中遇到这个电路有可能出现问题的时候,首先要查找这个电路的资料,否则你无从下手,最起码要知道的是管脚定义,那么如何去查找呢?现在网络的发达解决了这个难题。上网在google或者百度等搜索引擎上输入这个芯片的全部型号,就会找到很多关于这个芯片的资料,但在搜索引擎上很难一下子找到芯片资料也就是我们常说的DATASHEET,因为搜索引擎是商业行为,往往商业广告占据前几页,网站上也有很多专门提供DATASHEET的网站,大家有兴趣可以到http://www.alldatasheet.com 上直接输入你的芯片型号,除了特殊芯片,常用的我们都能在这里找到。找到这个型号的DATASHEET就可以下载下来察看了,这里要说明的有两点,第一,这些资料都是英文的,绝少有中文的,很多人跟我说看不懂没法修,我就说那也只好不修了,没办法的事情,科技的发展不会因为你看不懂而停滞的。第二这些资料都是PDF格式的,需要专门的阅读器,我这里就不多说了。

我们下载下来打开看之后,就会发现,这个芯片的说明都在里面,这个型号的全称叫什么,做什么用的都在里面,但这些对我们维修来说用处不大。我们关心的有下面几张图:

本文来源:https://www.bwwdw.com/article/gvnd.html

Top