03第三章 极限与函数的连续性
更新时间:2024-04-21 20:10:01 阅读量: 综合文库 文档下载
- 03第三章 名词解析推荐度:
- 相关推荐
第三章 极限与函数的连续性
§1 极限问题的提出
§2 数列的极限
1. 用定义证明下列数列的极限为零: (1) ?lim?(2) ?lim?n?1?;
n???n2???1??sin?n??;
n???n?(3) ?lim?n????n??;
?n???(?1)n(4) ?lim?2?;
n??n?????(5) ?lim?(n???1???n?)?;
n??10n(6) ?lim??;
n???n!?(7) ?lim?n????a???1??; n???an?n!?; n???nn?(8) ?lim?1???2??3???????n(9) ?lim??;
n???n2?(10) ?lim??n??1???a?n????a??1?. ?n?2.用定义证明: 3n2?n?(1) ?lim?2????;
n???2n???1???n2???n??????; (2) ?lim?n???n???n???1??,??????n?为偶数,??n(3) ?lim?xn?????,其中 ?xn?????
n???n???1???,??????n?为奇数;??n???????????????????????????????n???3k,???n???1???,??????????n????k??1??(k???1,?2,??)?,? (4) ?lim?xn?????,其中 ?xn???????????n??n??????n???2????,??????n????k???2.?3???n???n?3.用定义证明:
(1) 若?lim?an???a?,则对任一正整数?k?,有?lim?an?k???a?;
n??n??(2) 若?lim?an???a?,则?lim??an?????a|?.反之是否成立?
n??n??(3) 若?lim?an???a?,且?a???b?,则存在?N?,当?n???N?时,有?an???b?;
n??(4) 若?lim?an???a?,且?an???0?,则?lim?an???a?.
n??n?? 4.极限的定义改成下面形式是否可以?(其中“???”是逻辑符号,表示“存在”.)
|xn?-?a??|??; (1) ?????????,???N???0?,当?n???N?时,有?|xn?-?a????|??; (2) ?????????,???N???0?,当?n???N?时,有?|xn?-?a????|M??(M为常数). (2) ?????????,???N???0?,当?n???N?时,有? 5.若 ???xnyn???收敛,能否断定???xn??、??yn???也收敛? 6.设 ?xn???a??yn?(?n???1,?????),且?lim?(yn???xn)???0,求证:
n???lim?xn???a?,?lim?yn???a?.
n??n?? 7.利用极限的四则运算法则求极限: 3n3???2n2???n???1 (1) ?lim??; 32n???n???3n?2(?2)n???3n?; (2) ?lim?n??(?2)n?1???3n?11?1??????????n??; (3) ?lim?2n??1?1??????????n44 (4) ?lim?(n?1????n??????????n????)?.
n??8.求下列极限: (1) ?lim?(n??111??????????)?; 1???2?????n(n???1)111??????????)?; n2(n???1)2(2n)2 (2) ?lim?(n?? (3) ?lim?(n??1n??12???1n??22???????1n??n2)?;
132n?1 (4) ?lim?(???2???????n)?;
n??222 (5) ?lim?(1???nn??1?2?)?cos?n;
(6) ?lim????????;
n???n(7) ?lim?????????????????????????;
n??n (8) ?lim[(?n???1)n???nn]?,?0???a???1;
n?????n?? (9) ?lim?????????????;
n????2n (10) ?lim?nn??1?????????????????n?1??;
2??????????????n? (11) ?lim?nn???; ?n!?1 (12) ?lim?n?n?lnn??.
n?? 9.证明:若???an??,??bn???中一个是收敛数列,另一个是发散数列,则???an???bn??是发散数列;又问???anbn??和???n????(?bn???0)?是否也是发散数列?为什么? 10.设?xn???(?1)n?,证明???xn??发散. 11.若?a1,?a2,???,?am?为?m?个正数,证明:
n??nnlim?n?a1n???a2?????am???max(a1,?a2,???,?am).
?a??bn? 12.设?lim?an???a?,证明:
n??[n?a] (1) ?lim?n???a?;
n??n (2) 若?a???0,?an???0?,则?lim?n?an???1?.
n?? 13.利用单调有界原理,证明?lim?xn?存在,并求出它:
n?? (1) ?x1????2??,??x2????2xn?1??,???n???2,?????; (2) ?x1????c?????,??xn????c???xn?1??,???n???2,?????; cn (3) ?xn??????(c>0)??;
n!x,xn???1???n?1?,???n???1,?????. (4) ?x0??????1???xn?1 14.若?x1???a????,??y1???b???0?(a???b)?,
?xn?1????xnyn??,??yn?1???xn???yn?,? 2证明:?lim?xn????lim?yn?.
n??n?? 15.证明:若?an???0?,且?lim?n??an???l???1,?lim?an????.
n??an?1 16.设?lim?an???a,证明:
n?? (1) ?lim?a1???a2???????an(又问,它的逆命题成立否?) ??a?;
n??nn?? (2) 若?an???0,则?lim?n?a1?a2???an????a?. 17.应用上题的结果证明下列各题:
?1?1???????????n?????; (1) ?lim??3n??n (2) ?lim?n?a?????1??(a???0);
n??(3) ?lim?n?n?????1?;
n??(4) ?lim?nn??????0;
?n!?11?????????????????nn??????; (5) ?lim?n??n(6) 若?lim?bn?1???a??(bn???),则?lim?n?bn???a?. n??bn??n18.用定义证明下列数列为无穷大量: (1) ???n?; !??; (2) ???n??? (3) ???ln?n??; ?1? (4) ?1????????????.
?3n 19.证明:若???xn??为无穷大量,???yn??为有界变量,则???xn???yn?为无穷大量. 20.(1) 两个无穷大量的和的极限如何?试讨论各种可能性?
(2)讨论无穷大量和无穷小量的和、差、商的极限的情形; (3)讨论无穷大量和无穷小量的乘积可能发生的各种情形.
1?? 21.利用?lim??1???????e?,求下列极限:
n??n???1? (1) ?lim??1?????;
n???n?1?? (2) ?lim??1?????; n??n?1??nnn1?? (3) ?lim??1?????;
n??2n??1?? (4) ?lim??1???2??.
n??n??nn
§3 函数的极限
1.用极限定义证明下列极限: (1) ?lim?(2) ?lim?x?3x???31???;
x??1x2???92x???31???; x2???96(3) ?lim?x?1x???1???2; ?x????1(4) ?lim?x?1(x?2)(x?1)???0;
x???3(5) ?lim?x2?5???3;
x?2(6) ?lim?x?1x(x?1)1???; x2???12x????; 2x???9x???1???1; x???2(7) ?lim?x?3(8) ?lim?x??x2???x(9) ?lim??????;
x??x???1x2???5(10) ?lim?2???1.
x??x???12.用极限的四则运算法则求下列极限: x2???1(1) ?lim?2??;
x?02x???x???1x2???1(2) ?lim?2??;
x?12x???x???1(x???1)3???(1???3x)(3) ?lim???;
x?0x2???2x3(4) ?lim?x?1x2????x??x??;
(5) ?lim?x?31?x??2??; x???3x2???5x???6(6) ?lim?2?;
x?3x????x?????xn???1(7) ?lim?m?(?n?,?m?为正整数);
x?1x???1
(8) ?lim?x?41?2x???3?x????2?.
3.设?f(x)???0?,证明:若?lim?f(x)???A?,则?lim?nf(x)???nA?,其中正整数?n????.
x?x0x?x04.证明:若?lim?f(x)???A?,则?lim?|f(x)|???|A|,但反之不真.
x?x0x?x05.求下列函数字所示点的左右极限:
???????????????????x???1,?(1) f(x)???????????????????????x???1,? 在?x?=1??;
???x2???2?,???????x???1,?(2) f(x)??????x?sin?1x??????????x????,? ?????x2????????????x????,(3) f(x)???|x|1x1?x2?,? (4) f(x)???1x???[1x],? ???????x??????????x????,(5) f(x)???????????????????????x???0,? ?????x2?,???????x???0,6.求下列极限: (1) ?lim?x2???12???x???1??;
x??2x(2) ?5x???7xlim????2x????x???;
(3) ?xlim????(x2???1??x????;
(4) ?xlim????(x2???1??x????;
(5) ?limx2??x???3xx2??;
(6) ?x?sin?xxlim????x2???4??; (7) ?x??cos?xxlim????x??; (8) ?xlim?x????x????x?????x?1??.
7.用变量替换求下列极限: (1) ?xlim1?0??x[x]?;
(2) ?xlim?0??xa?ln?x???(a???0); 在?x?=?0?;在?x?=?0?;在?x?=?1n?,在?x?=???.
n?是正整数;
? (3) ?lim?ln?x?????a???0???;
x???xa1xx???(4) ?lim?x?.
8.设?f(x)?在?(?a,???)?上单调上升,?lim?xn?????,若?m求证:?lim?f(x)???A? il(?f)xn???A,
n??n??x???(?A?可以为无穷).
9.设?f(x)?在集合?X?上定义,则?f(x)?在?X?上无界的充要条件是:存在?xn???X?,
?n???1,?2,??,使?lim??f(x)|??????.
n??10.利用重要极限求极限: (1) ?lim?sin?2x??;
x?0xsin?x2??; (2) ?lim?x?0(sin?x)2(3) ?lim?x?0tan?3x??; sin?5x2sin?x???sin??x??;
x3(4) ?lim?x?0(5) ?lim?(6) ?lim?x?0cos?5x???cos?3x??;
x?0x2tan?x???sin?x??; x3(7) ?lim?(8) ?lim?x?0arctan?x??;
x?0x??;
?x???1???1sin?4x?1??cos?x2??; (9) ?lim?x?01???cos?x(10) ?lim?cos(n?arccos?x)??????n?为奇数?;
x?0xtan?x???1??; ?x???4?(11) ?lim?x?4(12) ?lim?x??sin?mx; ????(m,?n?为整数)sin?nxcos?xx????(13) ?lim?x?2?2??;
1(14) ?lim?x?sin???;
x???x(15) ?lim?[cos??n???????cos??n?]?;
x???(16) ?lim?sin?(???n2???1)????n?为整数?;
x??????(17) ?lim???-???;
x???x????x(18) ?lim?(1?nx)?????n?为整数?;
x?01x(19) ?lim?(1?tan?x)cot?x?;
x?01?x?1(20) ?lim?()x??;
x?01?x(21) ?lim?(x???3x?22x?1)?; 3x?1(22) ?lim?(sin?x)tan?x?;
?x?2?x2???1?(23) ?lim??2??;
x??x???1???n?x???. (24) ?lim??x???n?1??nx2111.证明limcos不存在 .
x?0x12.证明?lim?D?(x)?不存在,其中
x?x0???????x?为有理数,??1,D?(x)????
???,??????x?为无理数.?13.求极限
xxx?lim?cos??cos????cosn?. n???24214.用定义证明:
(1) 若?lim?f(x)??????,?lim?g(x)???A?,则?lim??f(x)?g(x)]??????;
x?ax?ax?a(2) 若?lim?f(x)??????,?lim?g(x)???A???????,则?lim??f(x)g(x)]??????.
x?ax?ax?a15.若?lim?f(x)???A??,?lim?g(x)???B??,证明:?lim??f(x)g(x)]???AB?.
x???x???x???16.证明?lim?f(x)???A??的充要条件是:对任何数列?xn??????(n??)?,有
x????f(xn????A?(n??)??.
17.证明?lim?f(x)???????的充要条件是:对任何数列?xn???x0?(n??)?,有 ?x?x0?f(xn????A?(n??)??.
18.设函数?f(x)?在?(0,???)?上满足方程?f(2x)???f(x)?,且?lim?f(x)???A,证明:
x????f(x)???A?,??x????(0,???)?.
§4 函数的连续性
1. 用定义证明下列函数在定义域内连续: (1) y????x?; 1; ?x?(3) y???|x|;
(2) y???1(4) y???sin?.
x2.指出下列函数的间断点并说明其类型: (1) f(x)???x???(2) f(x)???1; ?x?x; (1?x)21(3) f(x)???cos2?;
x(4) f(x)???[x]???[?x];
(5) f(x)???sinx; |x|(6) f(x)???sgn??x|; (7) f(x)???sgn(cos?x); ?; ln?x???x??,????????|x|???1,? (9) f(x)??????1???,?????????x|?1;?(8) f(x)?????x????cos??,????????|x|???1,(10) f(x)????? 2?????x??1????,?????????x|?1;(11) f(x)???????sin??x??,????????x?为有理数,?
??????0?????,????????x?为无理数;???????x??,????????x?为有理数,?
???x??,????????x?为无理数.?(12) f(x)????3.当?x???0?时下列函数无定义,试定义?f(0)?的值,使?f(x)?在?x???0?连续: (1) ?f(x)???3(2) ?f(x)????????x???1?1??x???1;
tan?2x; x1(3) ?f(x)???sinx?sin;
x(4) ?f(x)??????x?.
4.设?f(x)?是连续函数,证明对任何?c???0?,函数
?????c,???????f(x)?????c,??g(x)?????f(x),??????f(x)????c,
??????c,?????????f(x)???c??x是连续的.
5.若?f(x)?在?x0?点连续,那么??f(x)???和?f2(x)?是否也在?x0?点连续?反之如何? 6.若函数?f(x)?字?x???0?点连续,而?g(x)?在?x???0?点不连续,问此二函数的和、积在?x0?点是否连续?又若?f(x)?和?g(x)?在?x0?点都不连续,问此二函数的和、积在?x0?点是否必不连续?
7.证明若连续函数在有理点的函数值为0,则此函数恒为0. 8.若?f(x)?在?[a,?b]?连续,恒正,按定义证明?
1
?在??a,?b??连续. f(x)
9.若?f(x)?和?g(x)?都在?[a,?b]?连续,试证明?max(f(x)???g(x))?和?min(f(x)???g(x))?都在?[a,?b]?连续.
10.证明:设?f(x)?为区间?(a,?b)?上单调函数,若?x0????a,?b??为?f(x)?的间断点,则必是?f(x)?的第一类间断点.
11.若?f(x)?在?[a,?b]?,?a???x1???x2???????xn???b?,则在?[x1,?x2]?中必有???,使得 ??f(?)???[f(x1)???f(x2)???f(xn)]?.
n 12.研究复合函数?f??g?和?g??f?的连续性. 设
(1) ?f(x)???sgn?x,??g(x)???1?x2; (2) ?f(x)???sgn?x,??g(x)????1?x2)x.
13.证明:若?f(x)?在?[a,?b]?连续,且不存在?x????a,?b]?,使?f(x)?????,则?f(x)?在?[a,?b]?恒正或恒负.
14.设?f(x)?为?[a,?b]?上的递增函数,值域为?[f(a),?f(b)]?,证明?f(x)?在?[a,?b]?上连续. 15.设?f(x)?在?[a,???)?上连续,且?0????f(x)???x??(?x???0),若?a1?0??,??an?1???f(an)??(n???1,?2,??).求证:
(1) lim?an?存在;
n??(2) 设lim?an???l?,则?f(l)???l?;
n??(3) 如果将条件改为?0????f(x)???x??(?x???0),则?l???0?. 16.求下列极限: ?1?x?(1) lim???x?12?x??1??x?1?x;
1(2) lim??arctan?x?cos?;
x???x1(3) lim?(cos?x);
x?0x2excos?x??5?(4) lim?.
x?01???x2???ln(1?x)17.证明方程?x3???px???q???0???(p??0)?有且只有一个实根.
§5 无穷小量与无穷大量的比较
1. 当?x???0时,以?x?为标准求下列无穷小量的阶: (1) sin??x????sin?x; (2) (3)
1???(1???x); 1?x3?|x|????x2;
(4) 1???tan?x???1???sin?x; (5) ln?(1???x)?; (6)
5x2???4x3;
(7) n1???x????; (8) ex???1.
2.当?x?????时,以?x?为标准求下列无穷大量的阶: (1) x2???x6;
(2) 4x2????x4???x5; (3)
31x2?sin?;
x|x|; (4) 1???1?????x3?1(5) 2;
x?2x???31(6) x2?arctan?.
x3.当?x??0?时,下列等式成立吗? (1) ?o?(?x2?)???o?(?x?)?; (2) ?O?(?x2?)????(?x?)?;
?o?(?x2?)???o?(?x3?)?; (3) ?x??o?(?x2?)(4) ????o?(?x?)?;
xo?(?x2?)???o?(?x?)?; (5) ?o?(?x)(6) ?o?(?x?)???O?(?x2?). 4.试证下列各题:
(1) x?sin??x????O?(?x?)???(?x??0?); (2) 2x3???2x2???O?(?x3?)?????(x??); (3) o?(g(x))???o?(g(x))???o?(g(x))?????x?x0?; (4) o?(xm)???o?(xn)???o?(xn)?????x?0????m???n???0?; (5) o?(xm)?o?(xn)???o?(xm?n)?????x?0????m???n???0?. 5.证明下列各式:
(1) tan?x???x?????(?x???0?)?; (2) arcsin?x???x?????(?x???0?)?; (3) arctan?x???x?????(?x???0?)?; ?(4) 1???cos?x???x2?????(?x???0?)?;
?32(5) ex???????x?????(?x???0?)?;
(6) (1?x)a???????x?????(?x???0?),?其中???????. 6.运用等价无穷小量求极限:
?x; (1) lim?x??x???cos?x2?arctan?1???x2???1(2) lim?;
x?01???cos?x?(3) lim?x?0x?ln(1?x);
sin?x22ex???1(4) lim?.
x?0x?sin?x7.设?f(x)???g(x)??(x?x0)?,证明:
?f(x)???g(x)????o?(?f(x)?)?或?f(x)???g(x)????o?(?g(x)?)?.
8.设?x???a?时,f1(x)?与?f2(x)?维等价无穷小,g1(x)?与?g2(x)?是等价无穷大,且 ?lim?f2(x)g2(x)?存在,求证
x?a?lim?f1(x)g1(x)???lim?f2(x)g2(x)?.
x?ax?a
正在阅读:
03第三章 极限与函数的连续性04-21
【推荐】公司离职证明03-31
厉害了我的国观后感精选11篇12-11
2017年最新人教版初中七年级下册英语说课稿(附全英文说课模板)06-22
地下室底板后浇带施工工艺及质量保证措施03-13
初中物理力学全能突破秘籍08-06
中学法制安全讲座主持稿02-16
信号与系统填空题12-05
水电安装定额说明 206-06
危险化学品卸车查验、核准登记表04-14
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 连续性
- 函数
- 极限
- 第三章
- 学校及周边环境综合治理的实施方案
- 流体力学文献综述
- 尺桡骨骨折患者围手术期舒适护理论文
- 《建筑构造》第05章在线测试
- 题库2012
- 铸轧板规程
- 过电缆封隔器培训手册
- 自20世纪90年代始文学作品略总
- 不需要审稿费和版面费的期刊汇总(转)
- 孟祥枫0905140116红外遥控智能小车的设计 - 图文
- 2014九年级Unit4学案
- 必修08-2017年版新课标高中语文72篇必背古诗文理解性默写之《答
- 关于我国幼小衔接研究的文献综述
- “红领巾”真好教学反思
- 参观沈阳九一八纪念馆的社会实践报告
- 牛津译林版2017届九年级上学期期末考试英语试题带答案
- 第3课 新民主主义向社会主义过渡 教案
- 关于编制牵引变压器项目可行性研究报告编制说明
- 学校三年发展规划实施工作总结报告
- 无砟轨道毕业论文施工组织与设计1 - 图文