浅谈变电站继电保护设计

更新时间:2024-06-03 01:09:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

毕业设计(论文)

中文题目:浅谈变电站继电保护设计

学 院: 北京交通大学 专 业: 电气工程及其自动化 姓 名: 学 号: 指导教师:

2012年10月10日

1

中 文 摘 要

摘要:论述变压器的差动保护、标积制动差动保护、零序差动保护等主保护在使用中应注意的技术问题,指出差动保护灵敏度和快速性的提高必须建立在安全可靠的基础之上。

关键词:变压器 保护配置 主保护 后备保护

英 文 摘 要

Abstract: The transformer differential protection, standard integrated brake differential protection, fault protection and other protection in the use of the main technical issues should be noted that differential protection sensitivity and rapidity of the increase must be based on safe and reliable basis.

Key words: transformer protection backup protection for the main protection

2

目 录

一、 绪论〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 12 二、变压器保护的配置〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 14 三、主变、线路保护的选型及装置介绍〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃(一)主变保护的选型及装置介绍〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 (二)线路保护的选型及装置介绍〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 四、主变和线路主保护、后备保护的整定计算原则〃〃〃〃〃〃〃

(一)主变整定计算原则〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃1.差动速断保护的定值整定〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃2.比率制动式纵差保护的整定原则〃〃〃〃〃〃〃〃〃〃〃〃〃〃3.相间短路后备保护 4.接地短路后备保护 5.过负荷保护 6.非电量保护

(二)线路主保护、后备保护整定原则

1.瞬时(无时限)电流速断保护

2.限时电流速断保护 3.定时限过电流保护

五、参考文献

3

14

一、绪论

电力系统在运行中,可能发生各种故障和不正常运行状态,最常见同时也是最危险的故障是发生各种型式的短路。在发生短路时可能产生以下的后果:

(一) 通过故障点的很大的短路电流和所燃起的电弧,使故障元件损坏;

(二) 短路电流通过非故障元件,由于发热和电动力的作用,引起它们的损坏或缩短它们的使用寿命;

(三) 电力系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响工厂产品质量;

(四) 破坏电力系统并列运行的稳定性,引起系统振动,甚至使整个系统瓦解;

电气元件的正常工作遭到破坏,但没有发生故障,这种情况属于不正常运行状态。例如,因负荷超过电气设备的额定值而引起的电流升高(一般又称过负荷),就是一种最常见的不正常运行状态。由于过负荷,使元件载流部分和绝缘材料的温度不断升高,加速绝缘的老化和损坏,就可能发展成故障。此外,系统中出现功率缺额而引起的频率降低,发电机突然甩负荷而产生的过电压,以及电力系统发生振荡等,都属于不正常运行状态。

故障和不正常运行状态,都可能在电力系统中引起事故。事故,就是指系统或其中一部分的正常工作遭到破坏,并造成对用户少送电或电能质量变坏到不能容许的地步,甚至造成人身伤亡和电气设备的损坏。

4

系统事故的发生,除了由于自然条件的因素(如遭受雷击等)以外,一般者是由于设备制造上的缺陷、设计和安装的错误、检修质量不高或运行维护不当而引起的。因此,只要充分发挥人的主观能动性,正确地掌握客观规律,加强对设备的维护和检修,就可能大大减少事故发生的机率,把事故消灭在发生之前。

在电力系统中,除应采取各项积极措施消除或减少发生故障的可能性以外,故障一旦发生,必须迅速而有选择性地切除故障元件,这是保证电力系统安全运行的最有效方法之一。切除故障的时间常常要求小到十分之几甚至百分之几秒,实践证明只有装设在每个电气元件上的保护装置才有可能满足这个要求。这种保护装置直到目前为止,大多是由单个继电器或继电器与其附属设备的组合构成的,故称为继电保护装置。在电力式静态保护装置和数字式保护装置出现以后,虽然继电器已被电力元件计算机所代替,但仍沿用此名称。在电业部门常用继电保护一词泛指继电保护技术式由各种继电保护装置组成的继电保护系统。继电保护装置一词则指各种具体的装置。

继电保护装置,就是指能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。它的基本任务是:

(一) 自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其它无故障部分迅速恢复正常运行;

(二) 反应电气元件的不正常运行状态,并根据运行维护的条件(例如有无经常值班人员),而动作于发出信号、减负荷或跳闸。此时一般不

5

要求保护迅速动作,而是根据对电力系统及其元件的危害程度规定一定的延时,以免不必要的动作和由于干扰而引起的误动作。

二、变压器保护的配置

变压器是电力系统普遍使用的重要电气设备。它的安全运行直接关系到电力系统供电和稳定运行,特别是大容量变压器,一旦因故障而损坏造成的损失就更大。因此必须针对变压器的故障和异常工作情况,根据其容量和重要程度,装设动作可靠,性能良好的继电保护装置。一般包括: (一) 反映内部短路和油面降低的非电量(气体)保护,又称瓦斯保护。

(二) 反映变压器绕组和引出线的多相短路及绕组匝间短路的纵联差动保护,或电流速断保护。

(三) 作为变压器外部相间短路和内部短路的后备保护的过电流保护(或带有复合电压起动的过电流保护或负序电流保护或阻抗保护)。 (四) 反映中性点直接接地系统中外部接地短路的变压器零序电流保护。

(五) 反映大型变压器过励磁的变压器过励磁保护及过电压保护。 (六) 反映变压器过负荷的变压器过负荷(信号)保护。 (七) 反映变压器非全相运行的非全相保护。

三、主变、线路保护的选型及装置介绍

(一)主变保护的选型及装置介绍

1.本变电站主变主保护采用带加强型速饱和变流器的差动继电器BCH-2型差动继电器构成变压器纵联差动保护。

6

2.本变电站主变的相间短路后备保护采用过电流保护和复合电压起动的过电流保护。

3.本变电站主变的电源侧采用过负荷保护。

4.本变电站主变非电量保护采用瓦斯保护和温度、压力保护。 (二)线路保护的选型及装置介绍

1.本变电站线路的主保护采用瞬时电流速断保护

瞬时电流速断保护动作特性分析图和瞬时电流速断保护原理接线图分别如图1、2所示。

2.本变电站线路的后备保护采用定时限过电流保护

定时限过电流保护单相原理接线图和定时限过电流保护工作原理图分别如图3、4所示。

图3-1 瞬时电流速断保护动作特性分析图

图3-2 瞬时电流速断保护原理接线图

7

图3-3 定时限过电流保护单相原理接线图

图3-4 定时限过电流保护工作原理图

四、主变和线路主保护、后备保护的整定计算原则

(一)主变整定计算原则[2][3][4][5][6] 1.差动速断保护的定值整定

为了加速切除变压器严重的内部故障,常常增设差动速断保护,其动作电流按照避越励磁涌流来整定。即按躲过变压器空载合闸最大励磁涌流来整定,一般取6~8倍的一次侧额定电流。

IK.op?KrelIe.max 式(1)

式中 Ie.max——变压器实际的最大励磁涌流(二次值); Krel——可靠系统,可取为1.15~1.30。 2.比率制动式纵差保护的整定原则

(1)按平均电压(变压器额定电压及变压器最大额定容量)计算各侧二次额定电流,完成主变电流互感器参数、额定电流、平衡系数的计算。

8

1)一次侧额定电流IN1?SN3UN式中 SN——变压器额定容量。

由设计任务书知为40MVA; UN——变压器各侧额定电压;

2)选择电流互感器变比为nTACal?KjxIN5式中 Kjx——为电流

互感器接线系数。当三角形接线时,当为星形接线时, Kjx?1。Kjx?3;选择标准变比nTA?nTACal

3)二次侧额定电流IN2?KjxIN1nTA式中Kjx——为电流互感器接线系

数。当三角形接线时,Kjx?3;当为星形接线时,Kjx?1。 (2)计算各侧外部短路时的短路电流值

按短路电流计算方法进行各侧短路电流值的计算 (3)计算差动保护的动作电流

按下述条件计算差动保护的动作电流,并选取最大者。 1)按躲过变压器空投时和外部故障切除后电压恢复时变压器产生的励磁涌流计算,即

Idz?KkIeb 式(2)

式中 Idz——保护动作电流; ; Ieb——变压器额定电流(折算至基本侧)

Kk——可靠系数,取1.3。

2)按躲过外部短路时的最大不平衡电流计算,即

Idz?KkIbp

式中 Ibp——不平衡电流;

Kk——可靠系数,取1.3。

9

对于三绕组变压器两侧均有电源时

??Ibp???Ibp???) 式(3) Idz?KkIbp?Kk(Ibp??KfzqKtxfiId.max 其中 Ibp????U?Id(?).max??U?Id(?).max Ibp?????fzdⅠIdⅠ,max??fzdⅡIdⅡ,max Ibp?——由于电流互感器误差引起的不平衡电流; 式中 Ibp??——由变压器分接头改变引起的不平衡电流; Ibp???——由于在平衡线圈实用值不能完全平衡引起的不 Ibp平衡电流;

fi——电流互感器最大相对误差,取0.1;

Ktx——电流互感器同型系数。同型号时,Ktx=0.5;不同型号时,Ktx=1;

?U?,?U?——在变压器两侧(?,及?侧)因有调压分接头引起的相对误差,一般可取调整范围之半;

Id.max——最大外部短路电流;

Id(?),Id(?)——在所计算的外部短路时,流过调压侧相应电流互感器的短路电流周期分量值;

IdⅠ,max,IdⅡ,max——在所计算的外部短路时,流过所计算的Ⅰ、Ⅱ侧

相应电流互感器的短路电流;

?fzdⅠ,?fzdⅡ——继电器整定匝数与计算匝数不等所引起的相对误

差。

相对误差计算公式为

10

?f?Wph.js?Wph.syWph.js?Wcd.sy

式中 Wph.js——平衡线圈计算匝数;

Wph.sy——平衡线圈实用匝数;

Wcd.sy——差动线圈实用匝数。

因为在开始计算动作电流时,?fⅠ,?fⅡ是未知的,故可先采用中间值(0.05,最大值为0.09),并取?fⅠIdⅠ,max及?fⅡIdⅡ,max两项均为正值进行计算。

当三绕组变压器仅一侧有电源时,式(3)中的各短路电流为同一值Id.max。若外部短路电流不流过某一侧,则式中相应项为零。

3)按躲过电流互感器二次回路断线时计算,即 Idz?1.3Ifh.max

式中 Ifh.max——正常运行时变压器的最大负荷电流。当不能确定时,采用变压器额定电流。

计算中,各侧所有的短路电流均应归算到基本侧。这样求出的是基本侧的动作电流计算值(Idz.jb.js)。

选用上述三条件算得的保护动作电流的最大值作为计算值。 (4)基本侧继电器线圈匝数计算

三绕组变压器基本侧直接接差动线圈,其余两侧接相应的平衡绕圈。

基本侧继电器动作电流计算为

Idzj.jb.js?(Idzj.bh.jb.js?Kjx)/nLH.jb

11

式中 Idzj.jb.js——基本侧继电器动作电流计算值; Idz.jb.js——基本侧保护动作计算值; nLH.jb——基本侧电流互感器变比; Kjx——电流互感器的接线系数。 基本侧继电器线圈匝数(差动线圈匝数)计算为 Wg.jb.js?Wcd.js?AW0Idzj.jb.js?60Idzj.jb.js

式中 AW0——继电器的动作安匝,一般可用实测值。若无此值,可采用额定值,即AW0?60;

。Wcd.js——差动线圈匝数计算值(直接接基本侧)接继电器线圈实有抽头,选用较计算值小而相近的抽头匝数,作为差动线圈的整定匝数(Wcd.z)。

基本侧实际的继电器动作电流计算为 Idzj.jb?AW0 Wcd.z 保护的实际动作电流计算 Idz.jb?Idzj.jbnLH Kjx 式中 nLH——电流互感器变比;

Kjx——为电流互感器接线系数。当三角形接线时,

Kjx?3;当为星形接线时,Kjx?1。

(5)非基本侧工作线圈匝数和平衡线圈匝数计算 A.平衡线圈匝数计算 对于三绕组变压器为

12

Wph.fj.js?Ie2.jb?Ie2.fjIe2.fjWcd.z

非基本侧的平衡线圈按四舍五入进行。 B.非基本侧工作线圈匝数

Wg.fj.z?Wph.fj.z?Wcd.z (6)确定相对误差,即 ?f?Wph.js?Wph.syWph.js?Wcd.sy 式(4)

若?f?0.05则以上计算有效(按绝对值进行比较);若?f?0.05,则应根据?f的实际值代入重新计算动作电流。

(7)保护灵敏度计算,即

Klm?KconIk?.min?2 Iop.b式中 Ik?.min——变压器内部故障时,归算至基本侧总的最小短路电流;若为单电源变压器,应为归算至电源侧的最小短路电流;

Kcon——接线系数;

Iop.b——基本侧保护一次动作电流;若为单侧电源变压器,

应为电源侧保护一次动作电流。

如果灵敏度约为2,且算出的?f小于初算时采用的0.05,而动作电流又是按躲过外部短路时的不平衡电流决定,则可按灵敏度条件选择动作电流,检查此电流是否满足励磁涌流、电流互感器二次回路断线的要求。然后确定各线圈的计算匝数和整定匝数,按式(4)求出?f,再按式(3)作精确计算。在上述计算中若不满足选择性要求,则可改用其他特性的差

13

动继电器。

3.相间短路后备保护

为防止外部相间短路引起的变压器过电流及作为变压器保护的后备,变压器配置相间短路的后备保护。保护动作后,应带时限动作于跳闸。规程规定:过电流保护宜用于降压变压器;复合电压(包括负序电压及线电压)起动的过电流保护,宜用于升压变、系统联络变压器和过电流保护不符合灵敏性要求的降压变压器。

(1)过电流保护 1)动作电流的整定原则

A.按躲过变压器可能的最大负荷电流整定为 Ik.op?KrelIloa.max Kre式中 Krel——可靠系数,一般取1.2~1.3;

Kre——返回系数,取0.85~0.95(静态继电器取较大值);

Iloa.max——变压器最大负荷电流二次值。当为n台变压器并列运行时,应考虑其中一台大变压器 突然断开后,该整定变压器可能增加的负荷电流。当n台变压器同容量时,Iloa.max?定电流二次值)。

B.按躲过降压变压器低压侧电动机起动时的最大自起动电流(二次值)整定为

nIT.n(IT.n为变压器的额n?1 14

Ik.op?KrelKssIloa.max Kre式中 Kss——自起动系数,对36kV及以上电压等级负荷,取1.5~2;对6~10kV电压级负荷,取1.5~2.5.

C.按躲过变压器低压母线自动投入负荷时的总负荷整定。即 Ik.op?KrelIloa.max?KssIloa.a

式中 Krel——可靠系数,取1.2;

Iloa.max——正常运行时最大负荷电流(二次值);

Iloa.a——自动投入部分的负荷电流(二次值); Kss——自动投入负荷的自起动系数。

D.按与相邻保护相配合。其中: A)与分断断路器过电流保护配合时 Ik.op?1.1Ik.op.Q?Iloa

式中 Ik.op.Q——分段断路器过电流保护的动作电流(二次值); Iloa——变压器所在母线分段的正常负荷电流(二次值)。 B)与变压器低压侧出线保护配合时

Ik.op?KrelIk.op.n

式中 Krel——可靠系数,一般取1.2~1.5;

Ik.op.n——出线保护动作电流二次值,应取各出线中最大值。 选择以上诸Ik.op中最大者作为变压器过电流保护的动作电流。 2)灵敏度校验

按变压器低压母线故障时的最小短路电流二次值Ik(2).min计算

15

KsenIk(2)?.min Ik.op要求Ksen?2.0。

(2)复合电压起动的过电流保护 1)电流元件动作电流 按变压器额定电流整定 Iop?KrelIN Kre式中 IN——变压器的额定电流。 2)低电压继电器动作电压

按躲过正常运行时母线的最低工作电压(如电动机自起动时)整定,根据运行经验,可取

Uk.op?0.7UT?n/nTV

式中 UT?n——变压器额定线电压二次值; nTV——电压互感器变比; Uk.op——通常取70V。 3)负序电压继电器的动作电压

按躲过正常运行时的最大不平衡电压整定。

U2.op?0.06UT?n/nTV

式中 U2.op——通常取6V。 4)灵敏系数

Ksen?U2.min U2.op式中U2.min——相邻元件末端两相金属性短路时保护安装处最

16

小负序电压二次值。 要求Ksen?1.5。 5)动作时间

单侧电源的三绕组降压变压器,相间故障后备保护一般在低压侧和电源侧。其中低压侧保护设两段时限,以t1?t0??t断开低压母线分段断路器(t0为低压侧馈线配合段保护动作时间);以t2?t1??t断开变压器低压侧断路器。电源侧保护也设两段时限,以每一段时限t3?t2??t断开中压侧断路器;以第二段时限t4?t3??t断开变压器各侧断路器。

(3)变压器的零序电流保护

对降压变压器,如果中、低压侧没有电源(无发电机)时,即使中性点接地运行,其中性点的零序电流保护也没必要运行。

4.接地短路后备保护

在中性点直接接地系统中,接地短路是常见的故障形式,所以处于该系统中的变压器要装设接地(零序)保护,以反映变压器高压绕组、引出线上的接地短路,并作为变压器主保护和相邻母线、线路接地保护的后备保护。

对降压变压器,如果中、低压侧没有电源(无发电机)时,即使中性点接地运行,其中性点的零序电流保护也没必要运行。

5.过负荷保护

对于降压变压器,双绕组变压器的过负荷保护装在高压侧。单侧电源的三绕组降压变压器,过负荷保护装在电源侧和绕组容量较小的一侧;若三侧容量相同,过负荷保护仅在电源侧装设。两侧电源的三绕组变压器或

17

联络变压器,三侧均应装设过负荷保护。

6.非电量保护

变压器非电量保护主要包括瓦斯保护、温度及压力保护等。 由于非保护动作量不需电气量运算。通常根据运行经验、测试等方法获得。

(1)瓦斯保护

瓦斯保护是油浸式变压器的主保护之一。当变压器壳内故障产生轻微气体或油面下降时,轻瓦斯保护应瞬时动作于信号;当变压器壳内故障产生大量气体时,重瓦斯保护应动作于断开变压器各侧断路器。

带负荷调节器压的油浸式变压器的调压装置,也应装设瓦斯保护。轻瓦斯保护动作于信号,重瓦斯保护动作于断开变压器各侧断路器。

(2)变压器湿度及压力保护

对变压器温度及油箱内压力升高和冷却系统故障,应按现行电力变压器标准的要求,装设可作用于信号式动作于跳闸的装置。

(二)线路主保护、后备保护整定原则[2][3][4][5][6] 1.瞬时(无时限)电流速断保护 1)整定计算

瞬时电流速断保护(又称第Ⅰ段电流保护)它是反映电流升高,不带时限动作的一种电流保护。

在单侧电源辐射形电网各线路的始端装设有瞬时电流速断保护。当系统电源电势一定,线路上任一点发生短路故障时,短路电流的大小与短路点至电源之间的电抗(忽略电阻)及短路类型有关,三相短路和两相短路

18

时,流过保护安装地点的短路电流为

Ik?3??Es

Xs?X1lIk?2??Es3 ?2Xs?X1l式中 Es——系统等效电源相电势;

Xs——系统等效电源到保护安装处之间的电抗; X1——线路单位公里长度的正序电抗; l——短路点至保护安装处的距离,km。

电流速断保护的动作电流可按大于本线路末端短路时流过保护安装处的最大短路电流来整定,即

Ⅰ IⅠ?Kop1relIkB.max

式中 IⅠop1——保护装置Ⅰ段瞬时电流速断保护的动作电流,又称一次动作电流;

KⅠrel——可靠系数,考虑到继电器的整定误差、短路电流计

算误差和非周期分量的影响等而引入的大于1的系数,一般取1.2~1.3;

IkB.max——被保护线路末端B母线上三相短路时流过保护安

装处的最大短路电流,一般取次暂态短路电流周期分量的有效值。

2)灵敏系数的校验

瞬时电流速断保护的灵敏系数,是用其最小保护范围来衡量的,规程规定,最小保护范围lmin不应小于线路全长的15%~20%。

解式(1)得最小保护长度

19

lmin?13Es(?Ⅰ?Xs.max) X12Iop1式中 Xs.max——系统最小运行方式下,最大等值电抗,?; X1——输电线路单位公里正序电抗,?/km。 同理,解式(2)得最大保护区 lmax?1Es(Ⅰ?Xs.min) X1Iop1式中 Xs.min——系统最大运行方式下,最小等值电抗,?; 通常规定,最大保护范围lmax?50%l(l为被保护线路长度),最小保护范围lmin?(15%~20%)l时,才能装设瞬时电流速断保护。

2.限时电流速断保护

由于瞬时电流速断保护不能保护线路全长,因此可增加一段带时限的电流速断保护(又称第Ⅱ段电流保护)。用以保护瞬时电流速断保护保护不到的那段线路,因此,要求限时电流速断保护应能保护线路全长。

1)整定计算

限时电流速断保护的动作电流IⅡop1应大于相邻支路的瞬时电流速

ⅡⅠ断保护的动作电流IⅠop2,即Iop1?Iop2,写成等式为

ⅡⅠ IⅡop1?KrelIop2

式中 KⅡ因考虑短路电流非周期rel——配合系数,分量已经衰减,一般取1.1~1.2。

2)灵敏系数的校验 其计算公式为

20

Ksen?Ik.min ⅡIop式中 Ik.min——在被保护线路末端短路时,流过保护安装处的最小短路电流;

IⅡop——被保护线路的限时电流速断保护的动作电流。 规程规定,Ksen?1.3~1.5。 3)时限整定

Ⅱ为了保证选择性,保护1的限时电流速断保护的动作时限t1,还要与

保护2的瞬时电流速断保护、保护3的差动保护(或瞬时电流速断保护)

Ⅰ动作时限tⅠ2、t3相配合,即

Ⅱt1?tⅠ2??t

Ⅱt1?tⅠ3??t

式中 ?t——时限级差。

对于不同型式的断路器及保护装置,?t在0.3~0.6s范围内。 3.定时限过电流保护 1)整定计算

定时限过电流保护动作电流整定一般应按以下两个原则来确定: A.在被保护线路通过最大正常负荷电流时,保护装置不应动作,即

Ⅲ Iop1?IL.max

B.为保证在相邻线路上的短路故障切除后,保护能可靠地返回,保护装置的返回电流Ire应大于外部短路故障切除后流过保护装置的最大自起动电流Is.max,即Ire?Is.max

21

根据第B条件,过电流保护的整定式为 Iop1ⅢⅢKrelKss?IL.max KreⅢ式中 Krel——可靠系数,取1.15~1.25;

Kss——负荷自起动系数,由电网电压及负荷性质所决定,取2~5;

Kre——返回系数,与保护类型有关。电流继电器的返回系数一般取0.85~0.95; IL.max——最大负荷电流。 2)灵敏系数的校验 其计算公式为 Ksen?Ik.min ⅢIop当过电流保护作为本线路主保护的近后备保护时,Ik.min应采用最小运行方式下,本线路末端两相短路的短路电流来进行校验,要求

Ksen?1.3~1.5;当过电流保护作为相邻线路的远后备保护时,Ik.min应采用

最小运行方式下,相邻线路末端两相短路时的短路电流来进行校验,要求

Ksen?1.2;作为y,d连接的变压器远后备保护时,短路类型应根据过电流

保护接线而定。

3)时限整定

为了保证选择性,过电流保护的动作时限按阶梯原则进行整定,这个原则是从用户到电源的各保护装置的动作时限逐级增加一个?t。

在一般情况下,对于线路Ln的定时限过电流保护动作时限整定的

22

一般表达式为

tn?t(n?1).max??t

式中 tn——线路Ln过电流保护的动作时间,s;

t(n?1).max——由线路Ln供电的母线上所接的线路、变压器的过电流保护最长动作时间,s。

参考文献

[1] 韩笑.电气工程专业毕业设计指南——继电保护分册.北京:中国水利水电出版社,2003.P50-158

[2] 崔家佩,孟庆炎,陈永芳,熊炳耀.电力系统继电保护与安全自动装置整定计算.北京:水利电力出版社,2002年.P194-226,P548-589. [3] 许建安,连晶晶.继电保护技术.北京:中国水利水电出版社,2004.7.P8-20,P183-211.

[4] 李火元.电力系统继电保护与自动装置(第二版).北京:中国电力出版社,2006.P65-220.

[5] 尹项根,曾克娥.电力系统继电保护原理与应用(上册).武汉:华中科技大学出版社,2001年5月.P70-87,P278-294.

[6] 贺家李,宋从矩.电力系统继电保护原理.北京:水利电力出版社,1985年.P9-56,P170-188.

[7] 何仰赞,温增银,汪馥瑛,周勤慧.电力系统分析(上).华中理工大学出版社,1996年7月.P1-42.

西安交通大学 李光琦.电力系统暂态分析(第二版).

北京:中国电力出版社,1995.5(1998重印).P18-93.

23

致 谢

首先感谢北京交通大学多年来在工作、学习上给予的热情关怀、指导与帮助,在校期间,得到网络教育学院各级领导和辅导老师的亲切关怀和无私的培养,使我在学习的过程学到了许多做人的道理。在此向他们道声:您们辛苦了!

另外,一些朋友也给我完成设计提出了很多宝贵的意见和无私的帮助。这对于我以后的学习和工作都有很大的帮助,在此对他们表示由衷的感谢。

最后,祝北京交通大学的明天会更好. [8]

24

本文来源:https://www.bwwdw.com/article/gle6.html

Top