2008年青海省初中毕业生学业考试数学试题(含答案)
更新时间:2024-04-20 14:05:01 阅读量: 综合文库 文档下载
- 2008年初中毕业时间推荐度:
- 相关推荐
青海省2008年初中毕业升学考试
数 学 试 卷
(本试卷满分120分,考试时间120分钟)
考生注意: 1.答卷前将密封线以内的项目填写清楚. 2.用钢笔或圆珠笔将答案写在相应题号的表格内、横线上或空白处. 一、填空题(本大题共12小题15空,每空2分,共30分) 1.?21的绝对值是 ;?的立方根是 . 327?2?1?2.计算:???(2?1)0? ;分解因式:3x2y?6xy?3y? .
?2?3.北京奥运会主体育场——鸟巢,建筑面积为25.8万平方米,设计坐席数91000个.数据25.8万平方米用科学记数法表示为 平方米. 4.对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释: . 5.若角?的余角与角?的补角的和是平角,则角?? .
26.已知菱形ABCD的面积是12cm,对角线AC?4cm,则菱形的边长是 cm;
?等腰梯形ABCD中,AD∥BC,AD?5cm,BC?9cm,?C?60,则梯形的腰长是
cm.
7.如图,?O的直径CD过弦AB的中点M,?ACD?25, 则?BOD? 度.
8.若关于x的方程x?5x?k?0的一个根是0, 则另一个根是 .
2?A
C
O M B 第7题图
y D
?2),将它先向左平移4个单位,再向上平移3个单位9.已知点M(3,后得到点N,则点N的坐标是 .
b?)在10.二次函数y?ax?bx?c图象如图所示,则点A(b?4ac,a22O x 第 象限.
11.观察下列图形的排列规律(其中☆,□,●分别表示五角星、正方形、圆).●□☆●●□☆●□☆●●□☆●??若第一个图形是圆,则第2008个图形是 (填名称).
12.如图,有一圆柱体,它的高为20cm,底面半径为7cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是 cm(结果用带根号和π的式子表示).
第10题图
B
A 第12题图
二、选择题(本大题共8小题,每小题3分,共24分,每小题给出的四个选项中,只有一个选项符合要求,请把你认为正确的选项序号填入下面相应题号的表格内) 题号 选项 13 14 15 16 17 18 19 20 13.下列计算中正确的是( ) A.x?x?x C.(x2)3?x5
336B.x?x?x
339
D.(?3x3)?(?x)?3x2
14.反比例函数y??A.第一、二象限 C.第一、三象限
2的图象位于( ) x
B.第三、四象限 D.第二、四象限
?15.一个多边形内角和是1080,则这个多边形是( ) A.六边形
B.七边形
C.八边形
D.九边形
16.若x?2y?y?2?0,则(?xy)2的值为( )
A.64 B.?64 C.16 D.?16
17.某校八年级(2)班的10名团员在“情系灾区献爱心”捐款活动中,捐款情况如下(单位:元):10 8 12 15 10 12 11 9 10 13.则这组数据的( ) A.众数是10.5 B.中位数是10
A C.平均数是11 D.方差是3.9
18.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,DD,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比O是( )
EFBC A.1:6 B.1:5 C.1:4 D.1:2
第18题图 19.若干桶方便面摆放在桌子上,如图所示是它的三视图,
则这一堆方便面共有( ) 俯视图 主视图 左视图
第19题图
A.6桶 B.7桶 C.8桶 D.9桶
20.为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是( )
30020300?? x601.2x30030020??C. xx?1.2x60A.300300??20 x1.2x30030020??D. x1.2x60B.
三、(本大题共3小题,每小题7分,共21分) 21.化简:?
22.解不等式组??1?3?x ?1??2?x?2?x?4?2x?7≥1?x, ①?6?3(1?x)?5x,②并求出所有整数解的和.
23.2007年以来,全国肉类价格持续上涨,针对这种现象,红星中学数学课外兴趣小组的同学对当地下半年牛肉价格和小华一家对肉类食品的消费情况进行了调查,并将收集的数据进行分析整理,绘制了如下统计图,请结合统计图,解答下列问题:
价格(元/千克) 30 29 28
27 26
24
22
20
0 七 八 九 十 十一 十二 时间(月)
2007年下半年牛肉价格折线图
其他肉类 牛肉 牛肉 其他肉类 40%牛肉 其他肉类 食品28% 25%
21%食品 食品15% 鱼鱼15% 猪肉 鱼 猪肉25% 20% 猪肉30% 22% 25%
小华一家2007年 小华一家2007年 小华一家2007年
七月份肉类食品 十月份肉类食品 十二月份肉类食
消费扇形统计图 消费扇形统计图 品消费扇形统计
图
(1)求2007年七月份至十二月份牛肉价格的极差;
(2)若小华一家每月肉类食品的消费金额为180元,则小华一家七月份、十月份、十二月份的牛肉消费金额分别为多少元?
(3)根据所求数据并结合统计图,请你写出两条信息.
四、(本大题共3小题,每小题8分,共24分) 24.《中华人民共和国道路交通管理条理》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时.”如图所示,已知测速站M到公路l的距离MN为30米,一辆小汽车在公路l上由东向西行驶,测得此车从点A行驶到点B所用的时间为2秒,并测得?AMN?60,
??BMN?30?.计算此车从A到B的平均速度为每秒多少米(结果保留两个有效数字),
并判断此车是否超过限速.(参考数据:3?1.732,2?1.414)
M
l N B A
第24题图
25.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF?DC,连接CF. (1)求证:D是BC的中点;
(2)如果AB?AC,试猜测四边形ADCF的形状,并证明你的结论. A F
E B C D 第25题图
26.端午节吃粽子是中华民族的传统习俗.五月初五早晨,妈妈为洋洋准备了四只粽子:一只香肠馅,一只红枣馅,两只什锦馅,四只粽子除内部馅料不同外,其他均一切相同.洋洋喜欢吃什锦馅的粽子.
(1)请你用树状图或列表法为洋洋预测一下吃两只粽子刚好都是什锦馅的概率;
(2)在吃粽子之前,洋洋准备用如图所示的转盘进行吃粽子的模拟试验(此转盘被等分成四个扇形区域,指针的位置是固定的,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置.若指针指向两个扇形的交线时,重新转动转盘),规定:连续转动两次转盘表示随机吃两只粽子,从而估计吃两只粽子刚好都是什锦馅的概率.你认为这样模拟正确吗?试说明理由.
香肠
什锦 什锦
红枣 第26题图
五、(本大题共2小题,第27题10分,第28题11分,共21分)
27.已知,如图,直线MN交?O于A,B两点,AC是直径,AD平分?CAM交?O于
D,过D作DE?MN于E. (1)求证:DE是?O的切线;
(2)若DE?6cm,AE?3cm,求?O的半径.
C
D
O
B N M E A
第27题图
28.王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间. (1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x的取值范围;
(2)求王亮回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式; (3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大? (学习收益总量?解题的学习收益量?回顾反思的学习收益量)
y y A 4 25 O O 2 x 5 15 x 图甲 图乙
第28题图
青海省2008年初中毕业升学考试数学试卷
参考答案及评分标准
一、填空题(本大题共12小题15空,每空2分,共30分) 1.
21;? 33?2.3;3y(x?1)2
3.2.58?10
54.某人以5千米/时的速度走了x小时,他走的路程是5x千米(答案不唯一) 5.45
6.13;4
7.50
8.5
9.(?11),
10.四
11.正方形
12.49π2?400
二、选择题(本大题共8小题,每小题3分,共24分) 题号 选项 13 D 14 D 15 C 16 A 17 C 18 C 19 B 20 A 三、(本大题共3小题,每小题7分,共21分)
1?(x?2)(x?2)(x?2)? ···································································· (5分)
x?23?x3?x(x?2)(x?2)? ? ············································································ (6分) x?23?x ?x?2. ································································································· (7分) 22.解:解不等式①,得x≥2, ················································································· (2分)
3解不等式②,得x?. ································································································ (4分)
23··········································································· (5分) ?原不等式组的解集是?2≤x?. 2?1,0,1. ·则原不等式组的整数解是?2,········································································ (6分)
21.解:原式?························································· (7分) ?所有整数解的和是:?2?(?1)?0?1??2. ·
23.解:(1)2007年七月份至十二月份牛肉价格的极差:29?20?9(元/千克),
········································································································································· (2分) (2)七月份牛肉消费金额:180?40%?72(元), ·················································· (3分) 十月份牛肉消费金额:180?(1?20%?25%?21%)?180?34%?61.2(元),······· (4分) 十二月份牛肉消费金额:180?25%?45(元). ························································ (5分) (3)合理即可(答案不唯一) ······················································································ (7分) 四、(本大题共3小题,每小题8分,共24分) 24.解:在Rt△AMN中,
································· (2分) AN?MN?tan?AMN?MN?tan60??30?3?303. ·
在Rt△BMN中,
BN?MN?tan?BMN?MN?tan30??30?3································· (4分) ?103. ·
3···························································· (5分) ?AB?AN?BN?303?103?203. ·则A到B的平均速度为:
AB203. ··········································································· (6分) ??103?17(米/秒)
22?70千米/时?175米/秒?19米/秒?17米/秒, ························································· (7分) 9·································································································· (8分) ?此车没有超过限速. ·
25.(1)证明:?AF∥BC, ??AFE??DBE. ···································································································· (1分) ?E是AD的中点, ?AE?DE.
又??AEF??DEB, ?△AEF≌△DEB. ·································································································· (2分) ?AF?DB. ················································································································ (3分) ?AF?DC, ?DB?DC.
即D是BC的中点. ······································································································ (4分) (2)解:四边形ADCF是矩形, ················································································ (5分) 证明:?AF∥DC,AF?DC,
················································································ (6分) ?四边形ADCF是平行四边形. ·
?AB?AC,D是BC的中点, ?AD?BC.
即?ADC?90. ·········································································································· (7分) ···························································································· (8分) ?四边形ADCF是矩形. ·
26.解:(1)树状图如图:
开始
肠 枣 锦1 锦2
枣 锦1 锦2 肠 锦1 锦2 肠 枣 锦2 肠 枣 锦1
········································································································································· (2分)
??P(吃到两只粽子都是什锦馅)?21?. ···························································· (4分) 126(2)模拟试验的树状图为:
开始
肠 枣 锦1 锦2
肠 枣 锦1 锦2 肠 枣 锦1 锦2 肠 枣 锦1 锦2 肠 枣 锦1 锦2
········································································································································· (6分)
?P(吃到两只粽子都是什锦馅)?411?? ························································ (7分) 1646····································································································· (8分) ?这样模拟不正确. ·
五、(本大题共2小题,第27题10分,第28题11分,共21分) 27.(1)证明:连接OD. ?OA?OD,
??OAD??ODA. ·································· (1分) ??OAD??DAE, D ??ODA??DAE. ··································· (2分) ?DO∥MN.············································· (3分)
M E A ?DE?MN,
C O B N ??ODE??DEM?90?.
即OD?DE. ··············································································································· (4分)
?D在?O上,
?DC是?O的切线. ··································································································· (5分)
?(2)解:??AED?90,DE?6,AE?3,
······························································· (6分) ?AD?DE2?AE2?62?32?35. ·连接CD.
?AC是?O的直径,
??ADC??AED?90?. ·························································································· (7分) ??CAD??DAE, ?△ACD∽△ADE. ·································································································· (8分) ADAC??. AEAD?35AC. ?335则AC?15(cm). ······································································································· (9分)
······························································································ (10分) ??O的半径是7.5cm.
28.解:(1)设y?kx,
4)代入,得k?2. 把(2,?y?2x. ····················································································································· (1分)
自变量x的取值范围是:0≤x≤30.········································································ (2分) (2)当0≤x≤5时,
设y?a(x?5)2?25, ·································································································· (3分)
0)代入,得25a?25?0,a??1. 把(0,············································································ (5分) ?y??(x?5)2?25??x2?10x. ·当5≤x≤15时,
y?25 ····························································································································· (6分)
??x2?10x(0≤x≤5)即y??.
?25(5≤x≤15)(3)设王亮用于回顾反思的时间为x(0≤x≤15)分钟,学习效益总量为Z, 则他用于解题的时间为(30?x)分钟. 当0≤x≤5时,
································ (7分) Z??x2?10x?2(30?x)??x2?8x?60??(x?4)2?76. ·
························································································ (8分) ?当x?4时,Z最大?76. ·当5≤x≤15时,
Z?25?2(30?x)??2x?85. ·················································································· (9分) ?Z随x的增大而减小,
?当x?5时,Z最大?75.
综合所述,当x?4时,Z最大?76,此时30?x?26. ········································· (10分) 即王亮用于解题的时间为26分钟,用于回顾反思的时间为4分钟时,学习收益总量最大.
······································································································································· (11分) 注:以上各题用不同于本参考答案的解法做正确的相应给分.
正在阅读:
2008年青海省初中毕业生学业考试数学试题(含答案)04-20
小学六年级下学期班主任工作总结05-08
运筹学实验报告01-15
叶挺传读后感11-19
杭州市上城区2013学年第一学期七年级数学期中试卷及解析12-18
小品文02-17
Module 3 Unit 1 Robots will do everything 习题201-16
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 青海省
- 数学试题
- 学业
- 毕业生
- 初中
- 答案
- 考试
- 2008
- 浅谈“理实一体化”在中职语文课堂教学中的应用
- 复旦大学新闻传播学历年考研真题95-12
- 浅谈讽刺小说中的讽刺艺术
- 政治与公共管理学院关于在职研究生专业课学习的有关规定
- 灰骑士5版规则老湿腐版1.0
- 某地下室筏板大体积混凝土专项方案-secret
- 基于VHDL万年历的设计 - 图文
- 2015新人教版第二学期期末质量检测三年级数学试题
- 北山乡国民经济和社会发展第十二个五年发展规划纲要
- 不动产登记局工作总结与计划范文
- 执业医师多点执业劳务合同
- 星河发展历程
- 《爱在农信》演讲稿七篇
- 企业数据中心建设公有云VS私有云分析
- 密码技术在信息安全中的应用
- 财务总监培训认证论文.项目投资马文翔
- 关于矿权设置工作的几点要求
- 15期目录
- 广东海洋大学航海学院毕业实习报告完美版 - 图文
- 亿赛通加密软件操作说明