PLC基本工作原理1

更新时间:2023-06-02 01:20:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

PLC基本工作原理

※PLC的基本结构和工作原理

1. PLC的硬件结构

可编程控制器主要由中央处理单元(CPU)、存储器(RAM、ROM)、输入输出单元(I/O)、电源和编程器等几组成。PLC硬件结构如图1所示:

图1 PLC硬件结构

2. 中央控制处理单元(CPU)

可编程控制器中常用的CPU主要采用通用微处理器、单片机和双极型位片式微处理

器三种类型。

通用微处理器有8080、8086、80286、80386等;单片机有8031、8096等;位片式微

处理器的AM2900、AM2903等。FX2可编程控制器使用的微处理器是16位的8096单片机。

3. 存储器

可编程控制器配有两种存储器:系统存储器和用户存储器。

系统存储器:存放系统管理程序。

用户存储器:存放用户编制的控制程序。

4. 输入接口电路

PLC通过输入单元可实现将不同输入电路的电平进行转换,转换成PLC所需的标准电

平供PLC进行处理。

接到PLC输入接口的输入器件是:各种开关、按钮、传感器等。各种PLC的输入电路

大都相同,PLC输入电路中有光耦合器隔离,并设有RC滤波器,用以消除输入触点的抖动和外部噪声干扰。PLC输入电路通常有三种类型:直流(12∽24)V输入、交流(100∽120)V输入与交流(200∽240)V输入和交直流(12∽24)V输入

PLC基本工作原理

图2 直流输入模块

图3 交、直流输入模块

图4 交流输入模块

5. 输出接口电路

PLC的输出有三种形式,即继电器输出、晶体管输出、晶闸管输出。如图所示:

图5 场效应晶体管输出方式(直流输出)

PLC基本工作原理

图6 可控硅输出方式(交流输出)

图7 继电器输出方式(交直流输出)

输出端子有两种接法:

一种是输出各自独立,无公共点:各输出端子各自形成独立回路。

一种为每4∽8个输出点构成一组,共有一个公共点:在输出共用一个公共端子时,必须用同一电压类型和同一电压等级,但不同的公共点组可使用不同电压类型和等级的负载,且各输出公共点之间是相互隔离的。

输入输出端子处理的过程如下:

6. 电源

PLC的供电电源一般是市电,也有用直流24V电源供电的。

7. 编程器

利用编程器可将用户程序输入PLC的存储器,还可以用编程器检查程序、修改程序;

利用编程器还可以监视PLC的工作状态。编程器一般分简易型 和智能型。

8. PLC的软件结构

在可编程控制器中,PLC的软件分为两大部分:

1. 系统监控程序:用于控制可编程控制器本身的运行。主要由管理程序、用户指令解释

程序和标准程序模块,系统调用。

2. 用户程序:它是由可编程控制器的使用者编制的,用于控制被控装置的运行。

PLC基本工作原理

9. PLC的工作原理

(1) PLC的工作方式:采用循环扫描方式。在PLC处于运行状态时,从内部处理、通

信操作、程序输入、程序执行、程序输出,一直循环扫描工作。

注意:

由于PLC是扫描工作过程,在程序执行阶段即使输入发生了变化,输入状态映象

寄存器的内容也不会变化,要等到下一周期的输入处理阶段才能改变。循环扫描过程

如下:

停止

(2) 工作过程:主要分为内部处理、通信操作、输入处理、程序执行、输出处理几个

阶段。

1) 内部处理阶段:

在此阶段,PLC检查CPU模块的硬件是否正常,复位监视定时器,以及完成一些

其它内部工作。

2) 通信服务阶段

在此阶段,PLC与一些智能模块通信、响应编程器键入的命令,更新编程器的显

示内容等,当PLC处于停状态时,只进行内容处理和通信操作等内容。

3) 输入处理

输入处理也叫输入采样。在此阶段顺序读入所有输入端子的通断状态,并将读入

的信息存入内存中所对应的映象寄存器。在此输入映象寄存器被刷新,接着进入

程序的执行阶段。

4) 程序执行

根据PLC梯形图程序扫描原则,按先左后右,先上后下的步序,逐句扫描,执

行程序。但遇到程序跳转指令,则根据跳转条件是否满足来决定程序的跳转地址。

若用户程序涉及到输入输出状态时,PLC从输入映象寄存器中读出上一阶段采入的

对应输入端子状态,从输出映象寄存器读出对应映象寄存器的当前状态。根据用

户程序进行逻辑运算,运算结果再存入有关器件寄存器中。

PLC基本工作原理

5) 输出处理

程序执行完毕后,将输出映象寄存器,即元件映象寄存器中的Y寄存器的状态,

在输出处理阶段转存到输出锁存器,通过隔离电路,驱动功率放大电路,使输出

端子向外界输出控制信号,驱动外部负载。

(3) PLC的运行方式:

1) 运行工作模式

当处于运行工作模式时,PLC要进行从内部处理、通信服务、输入处理、程序

处理、输出处理,然后按上述过程循环扫描工作。

在运行模式下,PLC通过反复执行反映控制要求的用户程序来实现控制功能,

为了使PLC的输出及时地响应随时可能变化的输入信号,用户程序不是只执行一

次,而是不断地重复执行,直至PLC停机或切换到STOP工作模式。

注:

PLC的这种周而复始的循环工作方式称为扫描工作方式。

2) 停止模式

当处于停止工作模式时,PLC只进行内部处理和通信服务等内容。

10. PLC的编程语言

(1) 梯形图

梯形图编程语言习惯上叫梯形图。梯形图沿袭了继电器控制电路的形式,也可以说,

梯形图编程语言是在电气控制系统中常用的继电器、接触器逻辑控制基础上简化了符号演变而来的,具有形象、直观、实用,电气技术人员容易接受,是目前用得最多的一种PLC编程语言。

(2) 指令表

这种编程语言是一种与计算机汇编语言相类似的助记符编程方式,用一系列操作指令

组成的语句表将控制流程热核出来,并通过编程器送到PLC中去。

(3) 顺序功能图

采用IEC标准的SFC(Sequential Function Chart)语言,用于编制复杂的顺控程序。

利用这种先进的编程方法,初学者也很容易编出复杂的顺控程序,大大提高了工作效率,也为调试、试运行带来许多言传的方便。

(4) 状态转移图

类似于顺序功能图,可使复杂的顺控系统编程得到进一步简化。

(5) 逻辑功能图

它基本上沿用了数字电路中的逻辑门和逻辑框图来表达。一般用一个运算框图表示一

种功能。控制逻辑常用“与”、“或”、“非”三种功能来完成。目前国际电工协会(IEC)正在实施发展这种编程标准。

(6) 高级语言

近几年推出的PLC,尤其是大型PLC,已开始使用高级语言进行编程采用高级语言编

程后,用户可以象使用PC机一样操作PLC。在功能上除可完成逻辑运算功能外,还可以 进行PID调节、数据采集和处理、上位机通信等。

PLC基本工作原理

目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能 控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接 口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、 变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器 (仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器 (intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制 器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现 PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

1、开环控制系统

开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

2、闭环控制系统

闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系 统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈 的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系 统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。

3、阶跃响应

阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。控制系统的性能可以用稳、准、快三个字 来描述。稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;准是指控制系统的准确性、控 制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性,通常用上升时间来定量描述。

4、PID控制的原理和特点

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它 以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的 其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或 不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、 积分、微分计算出控制量进行控制的。 比例(P)控制

比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果

PLC基本工作原理

在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的 或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积 分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳 态误差。

微分(D)控制

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用, 其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入 “比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能 够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在 调节过程中的动态特性。

5、PID控制器的参数整定

PID控制器的参数整定是控制系统设计的核心内容。它是根据被 控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是 依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主 要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应 曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需 要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡, 记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。 在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。

对于温度系统:P(%)20--60,I(分)3--10,D(分)0.5--3

对于流量系统:P(%)40--100,I(分)0.1--1

对于压力系统:P(%)30--70,I(分)0.4--3

对于液位系统:P(%)20--80,I(分)1--5

参数整定找最佳,从小到大顺序查

先是比例后积分,最后再把微分加

曲线振荡很频繁,比例度盘要放大

曲线漂浮绕大湾,比例度盘往小扳

曲线偏离回复慢,积分时间往下降

曲线波动周期长,积分时间再加长

曲线振荡频率快,先把微分降下来

动差大来波动慢。微分时间应加长

理想曲线两个波,前高后低4比1

一看二调多分析,调节质量不会低

PID与自适应PID的区别:

首先弄清楚什么是自适应控制

在生产过程中为了提高产品质量,增加产量,节约原材料,要求生产管理及生产过程始终处于

PLC基本工作原理

最优工作状态。因此产生了一种最优控制的方法,这就叫自适应控制。在这种控制中要求系统能够根据被测参数,环境及原材料的成本的变化而自动对系统进行调节,使系统随时处于最佳状态。自适应控制包括性能估计(辨别)、决策和修改三个环节。它是微机控制系统的发展方向。但由于控制规律难以掌握,所以推广起来尚有一些难以解决的问题。

加入自适应的pid控制就带有了一些智能特点,像生物一样能适应外界条件的变化。 还有自学习系统,就更加智能化了。

编辑本段计算机术语

PID(进程控制符)英文全称为Process Identifier,它也属于电工电子类技术术语。

PID就是各进程的身份标识,程序一运行系统就会自动分配给进程一个独一无二的PID。进程中止后PID被系统回收,可能会被继续分配给新运行的程序。

PID一列代表了各进程的进程ID,也就是说,PID就是各进程的身份标识。

==========

只要运行一程序,系统会自动分配一个标识!

是暂时唯一:进程中止后,这个号码就会被回收,并可能被分配给另一个新进程。

只要没有成功运行其他程序,这个pid会继续分配给当前要运行的程序!!

如果成功运行一个程序,然后再运行别的程序时,系统会自动分配另一个pid!!

编辑本段医疗术语

盆腔炎(PID)指女性上生殖道及其周围组织的炎症,主要包括子宫内膜炎,输卵管炎,输卵管卵巢囊肿,盆腔腹膜炎。

PID的诊断标准(2002美国CDC诊断标准):

一,基本标准(minimum criteria):宫体压痛,附件区压痛,宫颈触痛。

二,附加标准(additional criteria):体温超过38.3摄氏度(口表),宫颈或阴道异常粘液脓性分泌物。阴道分泌物生理盐水涂片见到白细胞,实验室证实的宫颈淋病奈瑟菌或衣原体阳性。红细胞沉降率升高,C-反应蛋白升高。

三,特异标准(specific criteria):子宫内膜活检证实子宫内膜炎,阴道超声或MRI显示充满液体的增粗输卵管。伴或不伴盆腔积液。输卵管卵巢肿块,腹腔镜检查发现输卵管炎。播注意:基本标准为诊断PID所必需;附加标准可增加诊断的特异性;特异标准基本可诊断PID。

四,腹腔镜诊断PID的标准:(1)输卵管表面xdadaAWW血;(2) 输卵管壁水肿;(3)输卵管伞端或浆膜面有脓性分泌物。

编辑本段U盘PID

U盘PID是指Product ID(产品ID),与VID一样,都对于量产工具很重要。

编辑本段管路和仪表流程图 PID

PID::Piping & Instrument Diagram,工艺管道仪表流程图

P&ID的设计是在PFD(PFD:Process Flow Diagram 工艺流程图,可以说是简化版的PID)的基础上完成的。它是化工厂的工程设计中从工艺流程到工程施工设计的重要工序,是工厂安装设计的依据。

化工工程的设计,从工艺包、基础设计到详细设计中的大部分阶段,P&ID 都是化工工艺及工艺系统专业的设计中心,其他专业(设备、机泵、仪表、电气、管道、土建、安全等)都在为实现P&ID里的设计要求而工作。

PLC基本工作原理

广义的P&ID可分为工艺管道和仪表流程图(即通常意义的P&ID)和公用工程管道和仪表流程图(即UID)两大类。

由于P&ID的设计千变万化,对同一工艺流程的装置,也可以因为外界因素的影响(如用户要求、地理环境的差异、以及操作人员的经验不同等),需要在设计P&ID时作出相应对策,再加上设计者不同的处理方法,因而同一工艺流程在不同的工程项目中,其P&ID不可能完全相同,但也不会有太大的差异。P&ID通常有6~8版,视工程需要而定。

一套完整的P&ID及UID清楚地标出工艺流程对工厂安装设计中的所有要求,包括所有的设备、配管、仪表等方面的内容和数据。

编辑本段PID同步控制应用方案

一、控制原理

本系统通过摆杆(辊)反馈的位置信号实现同步控制。收线控制采用实时计算的实际卷径值,通过卷径的变化修正PID前馈量,可以使整个系统准确、稳定运行。控制原理如图:

二、系统特点

1、主驱动电机速度可以通过电位器来控制,把S350设置为SVC开环矢量控制,将模拟输出端子FM设定为运行频率,从而给定收卷用变频器的主速度。

2、收卷用S350变频器的主速度来自放卷(主驱动)的模拟输出端口。摆杆电位器模拟量 信号通过CI通道作为PID的反馈量。S350的频率源采用主频率VI和辅助频率源PID叠加的方式。通过调整运行过程PID参数,可以获得稳定的收放卷效果。

3、本系统启用逻辑控制和卷径计算功能,能使系统在任意卷径下平稳启动,同时两组PID参数可确保生产全程摆杆控制效果稳定。

三、系统应用

本系统可以广泛应用于双变频拉丝机、涂布机、印刷包装等行业设备。

本文来源:https://www.bwwdw.com/article/gg91.html

Top