中国科学院力学研究所研发成功等离子体生活垃圾气化发电技术

更新时间:2024-06-07 15:51:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

中国科学院力学研究所研发成功等离子体生活垃圾气化发电技术

我国生活垃圾处理方式主要是填埋和焚烧。填埋不仅侵占大量土地,还污染地下水,是不得已而为之的选择。尽管如此,对于土地资源紧张的地区已没有多少场地可供填埋使用。焚烧法虽然减容比高,并能回收能量,但却因二噁英等污染问题遭到公众强烈反对,急需发展新一代的绿色环保、节能降耗的替代焚烧技术。 等离子体是物质第四态,具有许多异于固态、液态和气态的独特的物理化学性质,如温度和能量密度都很高、可导电和发光、化学性质活泼并能加强化学反应等,环保性能优良。通过电弧放电产生高达7000?C的等离子体,将垃圾加热至很高的温度,从而迅速有效地摧毁废物。可燃的有机成分充分裂解气化,转化成可燃性气体,可以用于能源回收,一般称为“合成气”(主要成分是CO+H2)。不可燃的无机成分经等离子体高温处理后成为无害的渣体。

采用等离子体处理垃圾是目前减容效果最显著、无害化最彻底、资源化程度最高的绿色环保技术。与焚烧法相比,等离子体技术最突出的优点有: (1)处理温度高:有害物质摧毁更彻底,二噁英前驱体被彻底破坏分解; (2)可采用还原性气氛或部分氧化性气氛,采用电能作为外加热源,二次污染物排放比焚烧低2-3个数量级,裂解底渣是无害的;

(3)合成气流量约为焚烧烟气量的5-10%,易于净化,后处理设备尺寸大大减小,节约了投资成本;

(4)能源回收效率高,将筛上物制成合成气,后续利用气体发动机发电,发电效率可高达39%,而焚烧法采用蒸汽轮机,发电效率很难超过22%;

(5)等离子体系统可快速启动与停机,等离子体核心工艺灵活,可根据不同的处理目的搭配不同的配套系统;

(6)整套设备紧凑,占地小,经济效益好。

更为重要的是,等离子体技术将垃圾看作是生产合成气的原料,符合新能源、环保、零碳排放以及可持续发展的概念。

等离子体法不仅在技术上比焚烧先进,而且经济效益也要更好,但投资略高。等离子体工艺配套的后处理设备及发电系统与焚烧配套的差异很大,这也会影响系统造价及经济效益。等离子体系统配套的是内燃机发电系统,发电能力明显高于原生垃圾焚烧,因此单位发电装机容量的投资与焚烧相当,甚至低于引进的焚烧技术。

1.2国内外发展现状

等离子体废物处理技术始于1970年代初期,最初主要用于低放射性废物、化学武器和常规武器销毁,于1990年代进入民用。由于等离子体设备技术含量高,投资巨大,运行成本高,多用于销毁多氯联苯(PCBs)、POPs、废农药、焚烧飞灰和医疗废物等危险废物。近十年来,随着技术的发展,成本逐渐得到控制,且政府对垃圾处理问题的重视和公众环保意识的提高,等离子体处理生活垃圾的技术也逐渐成为国内外的研究热点。

目前全球从事等离子体废物处理技术研究的单位有二十余家,技术还处于商业化的门槛阶段,多数未达到实用化阶段。

在生活垃圾处理方面,全球拥有商业化的等离子体设备的公司只有两家:1)原美国西屋等离子体公司WPC(Westinghouse Plasma Corporation,已被加拿大Alter NRG公司收购)的规模最大100 t/d X 2,位于日本北海道歌志内市,建成于2003年,是世界上最大的设备;2)加拿大的普拉斯科能源集团公司(Plasco Energy Group Inc.),单台规模最大也可接近100 t/d,建成于2008年6月,位于加拿大渥太华市,投资1.5亿加元。另外还有:1)接近中试规模的以色列环境能源资源公司(Environmental Energy Resources Ltd.)的12t/d设备,2)实验室规模的韩国浦项大学10t/d的实验设备,3)实验室规模的台湾成功大学的小型实验设备。这些设备均未达到商业化水平。

美国西屋等离子体公司(现为Alter NRG的部门)于1990年在美国宾州建成了48t/d规模的试验性质的中试项目,试验针对100多种废物进行。2000年,在日本吉田町建成150t/d规模的处理生活垃圾的示范项目,后来分别于2002年和2003年又日本建成两个项目,前者日处理20t生活垃圾和4t污泥,后者处理200t/d生活垃圾和废轮胎(100t/d反应器两台并联),由于采用效率较低的蒸汽发电技术,故经济效益较差。图1是其典型的等离子体反应器示意图。

图1 Alter NRG/WPC反应器

Plasco技术是针对北美生活垃圾,其工艺流程如图2所示,垃圾经过两级热解,第一级利用废物自身热值热解,第二级利用等离子体炬对加热重整合成气。一级裂解室的渣再送入熔融床用等离子体炬进行玻璃化。普拉斯科能源集团公司在渥太华建有85 t/d等离子体生活垃圾气化发电中试系统,等离子体炬总功率

450kW,每吨废物的耗电量低,但因尾气NOx和大分子碳氢化合物排放不达标而被迫经常停机。造成大分子碳氢化合物排放不达标的主要原因是炬功率太低,而且没有直接加热垃圾,只是重整合成气,这样布置等离子体炬一方面温度场不均匀,另一方面合成气在高温区的停留时间太短,使大分子碳氢化合物裂解不彻底。发电部分采用气体发动机,因缸壁温度低而存在淬熄层,层中大分子碳氢化合物在缸内未能燃烧就排出,难以达标。因此Plasco技术主工艺存在缺陷需要改进,尚不能用来处理我国的生活垃圾。

图2普拉斯科能源集团公司处理工艺示意图

在国内,中科院力学所从上世纪九十年代末开始采用等离子体技术进行销毁化学武器、裂解医疗废物、危险化工废物等的研究工作,先后承担过863项目、中科院院创新方向性项目和国家自然科学基金项目等,进行了多方面的等离子体废物处理的应用基础研究工作,相关研究成果得到国内外同行的广泛认可,已获得六项发明专利,建成了三条完整的等离子体处理危险废物的生产线:在实验室

建成了建成了一条3t/d的等离子体处理模拟医疗垃圾的实验线(见图3),与企业合作建成了两条工业规模(5-10 t/d)的等离子体处理危险废物的生产线。这三条线是国内仅有的三条完整的有机废物处理线,具有完全自主的知识产权。这三条线都是针对危险废物设计的,处理能力定位在5~10 t/d。

图3 力学研究所实验室设备

需要强调的是,我国原生混合垃圾与发达国家生活垃圾是很不一样的,虽然都称作生活垃圾,但它们的含水率、灰分含量和热值相差较大。我国现阶段原生混合垃圾厨余含量高,含水率高,热值较低,约为发达国家生活垃圾的三到四分之一。垃圾热值是设计等离子体反应器和系统的主要依据。按照估算,处理100t/d发达国家生活垃圾的等离子体反应器,可处理400 t/d我国原生垃圾的筛上物(需要预处理系统配合)。

本文来源:https://www.bwwdw.com/article/gdv6.html

Top