科技英语文献翻译英文资料原文

更新时间:2023-07-18 04:01:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

英语原文科技英语文献翻译材料原文分享下载

Strategiesfordevelopingbulkmaterialsnanotechnology(BMN)intoindustrialproducts

D.J.Branagan*,A.V.Sergueeva,S.Cheng,J.K.Walleser,T.F.Weznel,J.V.Costa,W.Kiilunen,B.E.MeachamandC.D.Tuffile

mercialdevelopmentofbulkmaterialsnanotechnology(BMN)isenabledthroughnewdiscoveriesovercomingageoldproblemsspecifically:(1)openingupofprocesswindowtoenablenanoscalestructureformationinindustrialproductsand(2)utilisationofnewnanoscaleductilitymechanismstoachievecombinationsofhighstrengthwithductility.StrategiesforusingBMNaseitherasurfacetechnologyorasastandalonemonolithictechnologyaredependentontheoperableductility/toughnessmechanismswhichareoverridingfactorsforsuccessfulcommercialisation.Foreachroute,thepathwayformicrostructuralformation,thetargetednanoscalestructuresandtheprocesswindowgoalsaredescribedalongwithmainstreamexamplesofeachtechnologyforamultitudeofrealworldindustrialapplications.

Keywords:Nanotechnology,Metallicglass,Devitrification,Nanomaterials,Tensileproperties,Bulkmaterialsnanotechnology

ThispaperispartofaspecialissueonNanoengineeringintheModernSteelIndustry

Introduction

arecreatedarethemselvesinherentlybrittlesinceasReducedlengthscalematerialshavegrainsizeisdecreasedtothenanoscale,dislocation1,2beenusedfordecadesforsoftmagneticapplications,suchasme-pileupsbecomeincreasinglylesslikelyanddislocationtallicglassesastransformercores,andhardmagneticmotionbecomesincreasinglymoredif cult.Thus,inapplications,3,4includingdevitri ednanocompositesasnanomaterials,dislocationsbecomeeffectivelyimmobilehighenergydensitypermanentmagnets.However,induetothelargefractionofgrainandphaseboundaries,ordertoutilisethisclassofmaterialsinnewtypesofresultinginlowvaluesoftensileductilityandbrittleindustrialproducts,theweaklinkintheseclassesofresponse.

materialsmustbeovercome,whichistheabilitytoAfteryearsofresearch,extensive eldtrialsanddeformatroomtemperature.Atambienttemperature,successfulindustrialimplementationinamultitudeofmetallicglassescandeformbutdosoinhomogeneouslymainstreammarkets,TheNanoSteelCompanyhasthroughshearbanding.5,6Atunconstrainedloadingdevelopedspeci cstrategiestowarddevelopingironconditions,thepropagationofaslowasasingleshearbasedbulkmaterialsnanotechnology(BMN)intobandcanleadtocatastrophicfailure.6Notethatwhileindustrialproductsforcommercialmarkets,whicharesomeglassescanexhibitsigni cantductilitythroughdescribedbytheoverviewinFig.1.Thestartingpointhomogeneousviscous owatelevatedtemperatureina(1)inBMNistostartwithironbasedglassformingnarrowtemperaturerangecalledthesupercooledliquidalloysthatexhibitsuf cientlylowcriticalcoolingratesformetallicglassformationcorrespondingtothechosenregion,5afterdeformationandreturningtoambientindustrialprocessingmethod.Forsurfacetechnologytemperatures,theresultingglassisbrittle,limitingits(2a),theglassformingalloywillbeappliedoverausefulness.Themetallicglassstructurecanalsobeusedsurface/substrate.Thismeansthatsystemtoughnesscanasaprecursorfordevelopingawholerangeofderivedbedeveloped,andinherentmaterialtoughnessisnotananoscalestructuresthroughhistorydependantglassnecessarycriterion.Duringsolidi cationofthecoating,devitri cationtransformation,whichcanbein uencedtheglassstructureisformedandcanbeused;however,bythetransformationalpathwaysuchasrelaxation,thegeneralrouteistodevitrifytheglassandthusformrecoveryandrecrystallisation.7However,inallcases,anenablingstructuretype,whichiscalledadevitri edtheresultingdevitri ednanocompositestructuresthat

nanocompositestructure.Formonolithic(i.e.standalone)technology(2b),thereisnosubstrate,whichmeansthatthematerialmustdevelopinherentintrinsicTheNanoSteelCompany,Providence,RI,USA

toughness.Intrinsictoughnessarisesfromconventional*Correspondingauthor,emailDBranagan@plasticzonesinfrontofacracktipinhibitingcrack

ß2013InstituteofMaterials,MineralsandMiningPublishedbyManeyonbehalfoftheInstitute

Received4September2012;accepted7November2012DOI10.1179/1743284712Y.0000000161

MaterialsScienceandTechnology2013

VOL

29

NO

101193

英语原文科技英语文献翻译材料原文分享下载

Branaganetal.DevelopingBMNintoindustrialproducts

1Successfulstrategiestoprocessglassformingliquidmelts(1)into(2a)surfacetechnologyand(2b)monolithictechnology

propagation.Inordertodeveloptensileductility,devi-tri cationmustbeavoided,andtheenablingstructuretypeisfoundtobeaspinodalglassmatrixmicrocon-stituent(SGMM).Inthesubsequentsections,thesuccessfulcommercialapproachesillustratedinFig.1willbedescribedinadditionaldetail.

Surfacetechnology

Forsurfacetechnology,theglassformingalloyisutilisedasacoating,whichbyitsnatureisalwaysappliedontoasubstrateandnotutilisedinapplicationswherethecoatingisgoingtocarryastructuralload.Throughcarefulmanipulationoftheapplicationprocessandsubstrateselection,highsystemtoughnesscanbedevel-opedwithouttheneedforintrinsicmaterialtoughnessofthecoating.8,9Inthermalspraycoatings,hightoughnesscoatingscanbedevelopedduetothenatureofthethermalsprayprocesswherethecoatingcanbedepositedinacompressivestressstateduetotheshotpeeningeffectofthecontinuousbuildingupofsemimoltenparticlesintoindividuallayersathighvelocity.Inweldoverlayhardfacing,ductilehightoughnessbackingmaterialsincludingplaincarbon(i.e.A36)andlowalloyhightoughnesssteels(i.e.4140)canbeutilisedwithfullmetallurgicalbondingachievedtotheductilesubstratematerial.

Owingtothedevelopmentofsystemtoughness,bothmetallicglassanddevitri ednanocompositestructurescanbeutilisedcommerciallythroughthesolidi cationpathwaysshownbythemodelcontinuouscoolingtransformation(CCT)diagraminFig.2.Asshownbycoolingrate1(CR1),thegoalistosolidifyatahighenoughcoolingrate,whichmissesthenoseoftheglasstocrystallineCcurve,representingtheglasstocrystal-linetransformation.Bythisroute,auniformmetallicglassstructurecanbedeveloped,which,dependingonthecriticalcoolingrateformetallicglassformation,canprovideawideoperationalwindow.Atcoolingrate2(CR2),itispossibletoundercoolsuf ciently,followedbyrapidnucleationfromthesupercooledliquidmeltto

formthecompletelycrystallinedevitri ednanocom-positestructure.Theprocesswindowtoproduceadevitri ednanocompositestructuredirectlyfromthemeltissmallanddif culttoachieveonanindustrialscale.Thus,amorescalableapproachistooverquenchintothemetallicglassstateandthenheattreattocompletelydevitrifyasshownbythehorizontalarrow.Thiselevatedtemperatureexposurecanbeaccomplishedbyasinglestageheattreatmentasindicatedorcanoccurinsituinelevatedtemperatureapplications,forexamplecoatingsappliedforerosion/corrosioninanoperatingcoilorbiomassboilers.10

Forsurfacetechnologyapplications,dependingontheenvironmentandtherequiredproperties,thecoatingcanbeutilisedinametallicglassstate,apartiallydevitri edorafullydevitri edcondition.Paramountpropertiesofperformancethatcanbedevelopedarehardnesslevelsintherangeofmanyceramics,11–13wearanderosionresistanceperformancelikehardmetals(i.e.WC)8,14,15andcorrosionresistancelikenickelbasedsuperalloys16–18inselectedenvironments.

InFig.3,thetechnologicaldevelopmentofmetallicglassesintoaplatformsurfacetechnologyisshown.Thedevelopmentbeganwithinitiallyverythin(,1mm)physicalvapourdepositioncoatingsappliedthroughlaserablationorsputteringandwithonlyanarrowprocesswindowrequiringextremelyhighcoolingratesaty109Ks21.Throughcontinuousalloydevelopment,thecriticalcoolingrateformetallicglassformationwasreducedordersofmagnitudetothe,104Ks21range(Fig.3b),whichenabledthermalsprayapplicationtechniques.Typicalthermalspraycoatingthicknessesarefrom0?1to1mmandappliedthroughtechniquessuchasplasmaspray,highvelocityoxyfuelsprayandtwinrollwirearcspray.Furtherreductionincriticalcoolingratestothey102Ks21range(Fig.3c)enabledthick(typicallyfrom3to10mm)weldoverlayhard-facingapplicationtechniquesincludinggasmetalarcwelding,plasmatransferredarcwelding,openarcweldingandsubmergedarcweldingforweld

overlay

1194MaterialsScienceandTechnology2013

VOL

29

NO

10

英语原文科技英语文献翻译材料原文分享下载

Branaganetal.DevelopingBMNintoindustrialproducts

2Structuralformationmodelutilisedtodevelopsurfacetechnologysolutions

wearplate.Onenoteisthatthedevelopmentofweldresistanceofthecoatings,whichhasbeensuccessfullyoverlaytechnologytookauniquepathsinceweldingutilisedatanumberofoperatingpowerplants.Figure4b(otherthanlaserweldingwherethedilutionislow)19showsweldoverlayhardfacing/hardbandingappliedtoainvolvesintimatemixingwiththecrystallinesubstrate.tooljointaspartofthetoolstemforoilandgaswellThus,itwasfoundthatitwasverydif culttoretainthedrillingillustratingthehighwearresistanceandlowglassstructureindependentofthecriticalcoolingrateforfrictiontribologicalcouplethatcanbeproduced.metallicglassformationduetothepresenceofcrystallineFigure4cisanexampleofawearpackageutilisingweldheterogeneousnucleationsites.Nevertheless,itwasfoundoverlaytoprovideextremewearprotectiontoalargethattheglassformingnatureofthealloysresultedinhigh26yard3(y20m3)shoveldipper.Figure4disa240tonundercoolingbeforenucleationasshownbythenuclea-(,217metrictons)haultruckwithwearplatesinstalledtionpointtninFig.3c,whichallowedahighnucleationinthebedofthetruckwithover10milliontonsofhardfrequencyandlimitedtimeforgrowthresultinginrockoreprocessed,illustratingresistancetoextrememetallurgicalre nementoftheresultingweldoverlayimpact,highstressabrasionandploughing/gouging.

structure.ThecreationofnovelnearnanoscalestructuresdirectlyduringtheweldingprocesshasresultedincompellingcombinationsofpropertiesincludinglowMonolithictechnology

frictionandhighwear/abrasionresistance.14,20

Inmonolithictechnology,nosubstrateisutilised,soExamplesofsurfacetechnologyapplicationsforBMNthereisnomethodologytodevelopsystemtoughness.arewidespread,andselectedcommercialexamplesofThisnecessitatesinherentmaterialtoughnessrequiringsurfacetechnologyareprovidedinFig.4.Figure4atensileplasticitysoaneffectiveplasticzonecanbeshowsanexampleofawirearccoatingbeingappliedformedaheadofa aworcracktip.Asdiscussedontotheheatexchangetubesofabiomassboilerandispreviously,reducedlengthscalematerialshaveveryillustrativeofthehightemperatureerosionandcorrosion

limitedabilitytodeformatroomtemperature.

Metallic

aphysicalvapourdeposition;bthermalspraycoating;cweldoverlayhardfacing

3ModelCCTdiagramsforsurfacetechnologyshowingtechnologicalexploitationofBMNtonewapplicationtechniques

atincreasinglevelsofthicknesscorrespondingtoreductionsinnecessarycooling

rate

MaterialsScienceandTechnology2013

VOL

29

NO

101195

英语原文科技英语文献翻译材料原文分享下载

Branaganetal.DevelopingBMNintoindustrialproducts

aboilertubecoatingappliedinpowerplant;bweldoverlayhardfacing/hardbandingontooljoint;cweldoverlayhardfa-cingappliedtolargeshoveldipper;dwearplateinhaultruckbedliners

4ExamplesofindustrialproductsbasedonsurfacetechnologyapplicationofBMN

glassesdoexhibitaroomtemperaturedeformationmechanism;however,whenexposedtoatensileload,itexperiencescatastrophicfailureduetoshearbandfor-mation,freevolumecreation,shearsofteningandrunawayshearpropagation.5Recently,wehavereportedaspeci cstructuretypecalledaSGMMstructure,whichhastheabilitytodeformwithoutrunawayshearpro-pagationresultingintheachievementofsigni cantlevelsofglobalplasticityandusableductility.21–24

ThestructuralformationmodelfortheSGMMstructurerequiredformonolithictechnologyisshowninFig.5.Thekeytoformingthisenablingstructureisasolidi cationpathwaywherebyglassdevitri cationisavoided,whichisshownbythecoolingcurvesmissingthenoseoftheglassdevitri cationtransformation.Thisisbecauseglassdevitri cation,whetherornotitisper-formedinsingleormultiplestages,orwhetherinvolvingrecovery,relaxationorrecrystallisation,resultsinthecreationofbrittlestructures.Theglassformingnatureofthealloyisparamounttoformasupersaturatedglassmatrixduetothehighsolubilityofelementsinthemetallicglassstructure.Keytosubsequenttransformationistheabilityofthemulticomponentalloytoexhibiteitherastableormetastablemiscibilitygapatasuf cientlylowtemperaturerangetoallowtransformationinametallicglassmatrixthroughspinodaldecomposition.Unlikedevitri cation,spinodaltransformationisnotnucleationcontrolledbutinsteadinvolvesphaseseparationfromfreeenergydrivencompositionalgradientsduetothepresenceofeitherastableormetastablemiscibilitygap.Duringcooling,afterametallicglassisformed,thissupersaturatedsolutionthenundergoesspinodaldecompositiontocreateadistributionofvery nenanoscale(typically1–10nm)precipitatesintheglassmatrix.AsshowninFig.5,dependingonthecoolingrate,thespinodalstructurecanbeobservedtobehaveasexpectedforaspinodaldecompositiontransformation,andearlystage(CR4),middlestage(CR5)andlatestage(CR6)spinodalstructurescanbeobserved.Notethattheearlystagespinodalphasesareverysmallat,2nmandwheninitiallyformsappeartobesemicrystalline,butinlaterstages,oncetheycoarsengreaterthany6nmbecomecompletelycrystalline.

OncetheSGMMstructureisformed,ithastheuniqueabilitytodeformunderatensileload.InFig.6a,ahighdensityofshearbandscanbeobservedinasampleproducedwiththeSGMMstructureandthentensiletesteduntilfailure.Twotypesofinteractionsareobserved,whicharecalledinducedshearbandblunting(smallcircles)andshearbandarrestinginteractions(SBAI)(largecircles).21–24InFig.6b,additionaldetailsoftheinducedshearbandbluntingprocessareshownasapropagatingshearbandisinteractingwiththeSGMMstructureandisbluntedduetocomplexmultifoldinteractionsoftheshearbandwiththeSGMMstructurethroughlocaliseddeformationinducedchangesinclud-ingphasetransformation,phasegrowthandinsitunanocrystallisation.21–24InFig.6c,additionaldetailsoftheSBAIprocessareshown,whichshowthataftershearbandsarecreated,theyinteractwithexistingshearbandsandareoftensplitandbluntedafterashortdistance.Theresultistheformationofhighdensitiesofshearbandsupto105–106linespervolume,analogoustodislocationsincrystallinemetals,leadingtosigni -cantlevelsofglobalplasticity.

ThetargetedSGMMstructurehasbeensuccessfullyproducedinmanyproductformsincludingmicrowiresthroughTaylor–Ulitovskywireproduction, bresthroughvariationsofindustrialscalemeltspinningprocessesandfoilsthroughplanar owcasting.In

these

1196MaterialsScienceandTechnology2013

VOL

29

NO

10

英语原文科技英语文献翻译材料原文分享下载

Branaganetal.DevelopingBMNintoindustrialproducts

5Structuralformationmodeltodevelopthinmonolithictechnology

solutions

productforms,theabilitytoachievecombinationsoffabricshavebeenusedwithimprovementsinpropertiesstrength(2?5upto4?0GPa)andductility(3–7%)issuchasabrasion/cutresistance,temperaturestability,enablingforawholehostofpotentialapplications.EMI/RFIshielding,resistanceheatingandsignaltrans-ExamplesofproductformsmadefrommonolithicmissionalongwithimprovedenvironmentalstabilityduetechnologyareshowninFig.7.Figure7ashowshightoresistancetowatervapourandUVabsorption.

strength bresaddedataloadingrateof30kgm23inFormonolithictechnology,productdevelopmentisordertodevelopconcretewithhigherresistancetocrackcontinuingasindustrylearnstoworkwithanewclassofformationandtomaintainresidualstrengthafterthematerials.However,thefutureimplementationofthiscrackforms.InFig.7b,ahoneycombstructureisshowntechnologymaybeexpectedtoprogresswithincreas-madefromfoil,whichhasahigherspeci cstrengthinglythickerproductsanalogoustothedevelopmentalandspeci cstiffnessthanexistinghoneycombstructurespathwaytosurfacetechnologyasshowninFig.8.Oneaswellasgreater reandheatresistance.Figure7candkeytechnologicalhurdletoovercomeisprocesswindowdshowsexamplesoffabricproducedbyweavingnarrowexpansionfromtheexistingcoolingraterequirementsof lamentsofSGMMfoil(Fig.7c)oraramidserved104Ks21downtothe103–100Ks21rangedependingSGMMfoil lamenthybridyarns(Fig.7d).Thefabricsonthecommercialproductionstrategy.Inaccordancecanbeappliedwheretraditionalhighstrengthpolyamidewithglassformingabilityrequirements,two

potential

aimage(SEM)showinghighdensityofshearbandsincludinginducedshearblandblunting(smallcircles)andSBAI(largecircles);bTEMimageshowinginteractionofshearbandwithSGMMstructureleadingtoblunting;cTEMimageshowingSBAI

6Micrographsofshearbandinginmeltspunribbonafterexperiencingtensileload

MaterialsScienceandTechnology2013

VOL

29

NO

101197

英语原文科技英语文献翻译材料原文分享下载

Branaganetal.DevelopingBMNintoindustrialproducts

a bresutilisedinconcreteundergoingthree-pointbendtesting;bhoneycombstructuresmadefromfoil;cbidirectionalhybridfabric;dfabricmadebyweavinghybridSGMMfoilaramidyarn7ExamplesofproductformswithSGMM

structure

pathwaysforfuturedevelopmentareanticipated.Inpathwayone,asshowninFig.8b,thespinodaldecom-positionisdecoupledfromtheglassdevitri cationprovidingalargeprocesswindow.However,thisneces-sitateslowtemperaturesforspinodaldecompositiontransformation,whichmaynotallowsuf cientdiffusionduringtheinitialcooling.InFig.8c,asecondpathwayisanticipatedwherebythespinodaldecompositionremainscoupledtotheglassdevitri cationtransformation.Inthiscase,thereisanarrowprocesswindowtoformthetargetedSGMMstructuredirectly,butitmaybedevelopedthroughoverquenchingandthencarefulannealingthroughthespinodaldecompositiontransfor-mationwhileavoidingdevitri cationoftheglassmatrix.

Conclusions

TheNanoSteelCompanyhasbeenapplyingBMNasamainstreamtechnologyforamultitudeofrealworld

industrialapplicationsforoveradecade.Speci cnewstrategiesforthecommercialexploitationofthisnovelclassofmaterialshavebeendevelopedonthebasisoftheinherentmaterialpropertiesandresultingchallengesfortheapplication.Forsurfacetechnologyapplications,glassformingalloyscanbeappliedasacoating,andtheresultingmetallicglassstructurecanbedevitri edtodevelophighwear,abrasion,erosionandcorrosionresistanceandenabledbyhighsystemtoughness.Formonolithictechnologyapplications,devitri cationofthemetallicglassprecursormustbeavoided,andthedevelopmentofaspeci cmicrostructuralconstituent,SGMM,isfoundtobeenablingfortheachievementofglobalplasticityandinherentmaterialtoughnessneces-saryforstructuralapplications.Challengesyetremainespeciallyinforminghightensilestrength(.2GPa)thick(.1mm)industrialproductsincorporatingtheSGMM

structure.

athinmonolithic;bpotentialpathway1;cpotentialpathway2

8ModelCCTdiagramstoallowtechnologicalexploitationofSGMMstructuresatincreasingthickness

1198MaterialsScienceandTechnology2013

VOL

29

NO

10

英语原文科技英语文献翻译材料原文分享下载

Branaganetal.DevelopingBMNintoindustrialproducts

References

1.R.Haseqawa:J.Magn.Magn.Mater.,2000,215–216,240–245.2.L.K.Varga,Zs.Gercsi,Gy.KovacsandF.Mazaleyrat:J.Magn.Magn.Mater.,2006,301,527–531.

3.D.J.Branagan,M.J.Kramer,Y.Tang,R.W.McCallum,D.C.CrewandL.H.Lewis:J.Mater.Sci.,2000,35,3459–3466.4.J.F.Herbst:Rev.Mod.Phys.,1991,63,819–897.

5.C.Schuh,T.C.HufnagelandU.Ramamurty:ActaMater.,2007,55,4067–4109.

6.Z.F.Zhang,J.EckertandL.Schultz:ActaMater.,2003,51,1167–1179.

7.B.B.Kappes,B.E.Meacham,Y.L.TangandD.J.Branagan:Nanotechnology,2003,14,1228–1234.

8.B.E.Meacham,M.C.MarshallandD.J.Branagan:Metall.Mater.Trans.A,2006,37A,3617–3627.

9.NanoSteel:‘NanoSteelfieldtrialresults’,/applications/index.php,2003–2012.

10.J.Zhou,J.K.Walleser,B.E.MeachamandD.J.Branagan:

J.Therm.SprayTechnol.,2010,19,(5),950–957.

11.D.J.BranaganandY.Tang:CompositesPartA,2002,33A,855–859.12.D.J.Branagan,W.D.Swank,D.C.HaggardandJ.R.Fincke:

Metall.Mater.Trans.A,2001,32A,2615–2621.

13.D.J.Branagan,M.C.Marshall,B.E.Meacham,L.F.Aprigliano,R.

Bayles,E.J.Lemieux,T.Newbauer,F.J.Martin,J.C.Farmer,J.J.HaslamandS.D.Day:Proc.Conf.ITSC2006:‘Buildingon100yearsofsuccess’,Seattle,WA,USA,May2006,ASMThermalSpraySociety.14.D.J.Branagan,M.C.MarshallandB.E.Meacham:Mater.Sci.

Eng.A,2006,A428,116–123.15.D.J.Branagan,A.R.Patete,B.E.Meacham,B.D.Merkleand

W.D.Kiilunen:‘UtilizingGlassFormingIronBasedOverlaysforReplacementofHardmetalsinHighWearApplications’,ProcMaterialScienceandTechnology(MS&T)Conf.,Pittsburgh,PA,USA,October2008,TMS.

16.L.Kaufman,J.H.Perepezko,K.Hildal,J.Farmer,D.Day,

N.YangandD.J.Branagan:Calphad,2009,33,89–99.

17.J.Farmer,J.-S.Choi,C.Saw,J.Haslam,D.Day,P.Hailey,

T.Lian,R.Rebak,J.Perepezko,J.Payer,D.Branagan,B.Beardsley,A.D’amatoandL.Aprigliano:Metall.Mater.Trans.A,2009,40A,(6),1289–1305.

18.D.J.Branagan:Int.Therm.SpraySurf.Eng.,2011,6,33–34.19.D.T.A.Matthews,V.Ocel ´k,D.BranaganandJ.Th.M.de

Hosson:Surf.Coat.Technol.,2009,203,1833–1843.

20.A.Chan,D.Hannahs,M.J.Jellison,M.Breitsameter,D.J.

Branagan,H.StoneandG.Jeffers:Proc.2008IADC/SPEDrillingConf.,Orlando,FL,USA,March2008,SPE.

21.D.J.Branagan,J.Zhou,B.E.MeachamandA.V.Sergueeva:Adv.

Mater.Processes,2010,168,(10),25–31.

22.D.J.Branagan,J.Zhou,J.K.Walleser,B.E.MeachamandA.V.

Sergueeva:‘NewClassofMonolithicGlassyNanomaterialswithUsableDuctility’,Proc.MaterialScienceandTechnology(MS&T)Conf.,Houston,TX,USA,October2010,TMS.

23.D.J.Branagan,J.E.ShieldandA.V.Sergueeva:USProvisional

Application61/107,037,21October2008;USApplicationno.12/580,858,16October2009;andPCT/US2009/61059,16October2009.

24.A.V.Sergueeva,J.Walleser,J.Zhou,B.E.MeachamandD.J.

Branagan:Mater.Sci.Eng.A,2012,A534,603–608.

MaterialsScienceandTechnology2013

VOL

29

NO

101199

本文来源:https://www.bwwdw.com/article/gcr1.html

Top