圆的综合练习(给学生答案版)

更新时间:2024-01-10 06:33:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

圆的综合练习

1、如图,△ABC内接于半圆,AB为直径,过点A 作直线MN,若∠MAC=∠ABC。 (1) 求证:MN是半圆的切线。

(2) 设D是弧AC的中点,连结BD交AC于G,过D作DE⊥AB于E,交AC于F,

求证:FD=FG。

(3) 若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积。

1

2、如图已知直线L:y?3x?3,它与x轴、y轴的交点分别为A、B两点。 4(1)求点A、点B的坐标。

(2)设F为x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F(不写作法,

保留作图痕迹)。

(3)设(2)中所作的⊙P的圆心坐标为P(x,y),求y关于x的函数关系式。

(4)是否存在这样的⊙P,既与x轴相切又与直线L相切 于点B,若存在,求出圆心P的坐标,若不存在,请说明 理由。

2

3、如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC?PC,?COB?2?PCB. (1)求证:PC是⊙O的切线; (2)求证:BC?1AB; 2(3)点M是?AB的中点,CM交AB于点N,若AB?4,求MN?MC的值.

C

A O N B

M

??A??ACO, 解:(1)?OA?OC,C 又??COB?2?A,?COB?2?PCB, ??A??ACO??PCB. A

O N B 又?AB是⊙O的直径, ??ACO??OCB?90°,

M

??PCB??OCB?90°,即OC⊥CP, 而OC是⊙O的半径,

··································································································· (3分) ?PC是⊙O的切线.

3

P

P

??A??P, (2)?AC?PC,??A??ACO??PCB??P,

又??COB??A??ACO,?CBO??P??PCB,

??COB??CBO,?BC?OC,?BC?(3)连接MA,MB,

1AB. ····················································· (6分) 2?,??ACM??BCM, AB的中点,??AM?BM?点M是?而?ACM??ABM,??BCM??ABM,而?BMN??BMC,

?△MBN∽△MCB,?BMMN2?MC, ,?BM?MN?MCBM?, 又?AB是⊙O的直径,?AM?BM??AMB?90°,AM?BM.

············································· (10分) ?AB?4,?BM?22,?MN?MC?BM2?8. ·

4、如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若?AEC(1)判断直线BD和⊙O的位置关系,并给出证明; (2)当AB?10,BC?8时,求BD的长.

E C

F

A 解:(1)直线BD和⊙O相切. O

证明:∵?AEC??ODB,?AEC??ABC, ∴?ABC??ODB.························································ 2分 ∵OD⊥BC,

∴?DBC??ODB?90°. ············································· 3分 ∴?DBC??ABC?90°.

E C 即?DBO?90°. ····························································· 4分

F ∴直线BD和⊙O相切. ··················································· 5分

(2)连接AC. A O

∵AB是直径,

∴?ACB?90°. ······························································ 6分 在Rt△ABC中,AB?10,BC?8, ∴AC???ODB.

D

B

D

B

AB2?BC2?6.

∵直径AB?10,∴OB?5. ····························································································· 7分 由(1),BD和⊙O相切,∴?OBD?90°. ···································································· 8分 ∴?ACB??OBD?90°. 由(1)得?ABC??ODB, ∴△ABC∽△ODB. ········································································································· 9分 ∴

4

ACBC6820?.∴?,解得BD?. ································································· 10分 OBBD5BD35、在Rt△ABC中,?ACB?90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连结DE并延长,与BC的延长线交于点F.

A (1)求证:BD?BF;

D (2)若BC?6,AD?4,求⊙O的面积.

E O

解:(1)证明:连结OE. A B C F ?AC切⊙O于E,

D ?OE⊥AC,

,又?ACB?90°即BC⊥AC, E O ?OE∥BC, ······················································ 2分 ??OED??F.

B C F 又OD?OE,??ODE??OED, ??ODE??F,?BD?BF. ························································································ 4分 (2)设⊙O半径为r,由OE∥BC得△AOE∽△ABC.

?AOOEr?4r??,?r2?r?12?0,解之得r1?4,r2??3(舍),即. ········ 7分 ABBC2r?46··········································································································· 8分 ?S⊙O?πr2?16π. ·

6、如图所示,在梯形ABCD中,AD//BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知 AB=8,边BC比AD大6, (1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、 D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由。 解:(1)方法1:过D作DF⊥BC于F

在Rt△DFC中,DF=AB=8,FC=BC-AD=6 ∴DC2=62+82=100,即DC=10 ………1分 设AD=c,则DE=AD=x,EC=BC=x+6 ∴x+(x+6)=10 ∴x=2

∴AD=2,BC=2+6=8 ……………………4分 方法2:连OD、OE、OC,

由切线长定理可知∠DOC=90°,AD=DE,CB=CE 设AD=x,则BC=x+6

由射影定理可得:OE2=DE2EC…………………………………………2分 即:x(x+6)=16 解得x1=2, x2=-8(舍去)

∴AD=2, BC=2+6=8 ……………………………………………4分 (2)存在符合条件的P点

设AP=y,则BP=8-y,△ADP与△BCP相似,有两种情况:

5

① △ADP∽△BCP时,有8ADAP2y∴y=…………6分?,即?5 BCPB88?y

②△ADP∽△BPC时,有ADAP2y∴y=4 ……………7分 ?,即?BPBC8?y8

8或4 ……………………………………8分 5故存在符合条件的点P,此时AP=

?分为三等份,连接MC并7、已知:如图,直径为OA的⊙M与x轴交于点O、A,点B、C把OA延长交y轴于点D(0,.(6分) 3) (1)求证:△OMD≌△BAO;(2)若直线l:y?kx?b把⊙M的面积分为二等份, 求证:3k?b?0.(4分)

2 1 O M 3 A x y D?0,3? 4 C B ?三等分,∴?1??5?60°, · ·证明:(1)连接BM,∵B、C把OA······························ 1 分

1?5?30°, ········································································ 2 分 21 又∵OA为⊙M直径,∴?ABO?90°,∴AB?OA?OM,?3?60°, ············ 3 分

2∴?1??3,?DOM??ABO?90°, ············································································ 4 分

又∵OM?BM,∴?2???1??3,?在△OMD和△BAO中,?OM?AB, ································································· 5 分

??DOM??ABO.?∴△OMD≌△BAO(ASA) ····························································································· 6 分 (2)若直线l把⊙M的面积分为二等份,

y 则直线l必过圆心M, ············································· 7 分

D?0,3? 3),?1?60°, ∵D(0,OD3??3, ∴OM?tan60°3∴M(3,··························································· 8 分 0), ·把 M(3,0)代入y?kx?b得:

6

4 C B 2 1 O M 5 3 A x ························································ 10 分 3k?b?0. ·

8、如图 11,矩形ABCD中,AB?5,AD?3.点E是CD上的动点,以AE为直径的⊙O与AB交于点F,过点F作FG⊥BE于点G. (1)当E是CD的中点时:

①tan?EAB的值为______________; ② 证明:FG是⊙O的切线;

(2)试探究:BE能否与⊙O相切?若能,求出此时DE的长;若不能,请说明理由. E D C

O G

解:(1)①

A F 图11

B

E 6D C ······························································· 2分

5O G ②法一:在矩形ABCD中,AD?BC,

?ADE??BCE,又CE?DE, B A F ∴△ADE≌△BCE, ················································ 3分

得AE?BE,?EAB??EBA,

连OF,则OF?OA, ∴?OAF??OFA, ?OFA??EBA, ∴OF∥EB, ·················································································· 4 分 ∵FG⊥BE, ∴FG⊥OF, ∴FG是⊙O的切线 ································································································· 6分 (法二:提示:连EF,DF,证四边形DFBE是平行四边形.参照法一给分.) (2)法一:若BE能与⊙O相切, ∵AE是⊙O的直径, ∴AE⊥BE,则?DEA??BEC?90°,

又?EBC??BEC?90°, ∴?DEA??EBC,

∴Rt△ADE∽Rt△ECB, ADDE3x??, ∴,设DE?x,则EC?5?x,AD?BC?3,得ECBC5?x3整理得x?5x?9?0. ······································································································· 8 分 ∵b?4ac?25?36??11?0, ∴该方程无实数根.

∴点E不存在,BE不能与⊙O相切. ·········································· 10分 法二: 若BE能与⊙O相切,因AE是⊙O的直径,则AE⊥BE,?AEB?90°,

222设DE?x,则EC?5?x,由勾股定理得:AE?EB?AB,

2222即(9?x)?[(5?x)?9]?25, 整理得x?5x?9?0, ······································· 8分

2∵b?4ac?25?36??11?0, ∴该方程无实数根.

7

2∴点E不存在,BE不能与⊙O相切. ·········································· 10分 (法三:本题可以通过判断以AB为直径的圆与DC是否有交点来求解,参照前一解法给分)

9、问题:(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影部分四边形OFCG的面积是△ABC的面积的

1. 31. 3AE(2)如图2,若∠DOE保持120°角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的

A

E G O BBCF

D

图1解:(1)证明:过点O作OH⊥AB于点H.

∵等边△ABC是⊙O的内接三角形,OD⊥BC ,OH⊥AB,OE⊥AC

∴∠B=∠C=60°,∠BHO=∠BFO=∠CFO=∠CGO=90°, BH=BF=CF=CG,OH=OF=OG ∴∠FOH=∠FOG=180°-60°=120°,∴四边形BDOH≌四边形CFOG 同理:四边形BDOH≌四边形AHOG

OCD图2∴四边形BDOH≌四边形CFOG≌四边形AHOG ∴S四边形AHOG=S四边形BHOF=S四边形CFOG, 又∵S?ABC?S四边形AHOG+S四边形BHOF+S四边形CFOG=3S四边形CFOG∴S四边形CFOG=S?ABC.

(2)证明:过圆心O分别作OM⊥BC,ON⊥AC,垂足为M、N. 则有∠OMF=∠ONG=90°,OM=ON,∠MON=∠FOG=120° ∴∠MON-∠FON=∠FOG-∠FON,即∠MOF=∠NOG ∴△MOF≌△NOG,∴S四边形CFOG=S四边形CMON=S?ABC ∴若∠DOE保持120°角度不变,当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的

10、如图13-1至图13-5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c. 阅读理解:

(1)如图13-1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB = c时,⊙O恰好自转1周. (2)如图13-2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1

n的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2 = n°,⊙O在点B处自转周(360分之n).实

360践应用:

(1)在阅读理解的(1)中,若AB = 2c,则⊙O自转 周;若AB = l,则⊙O自转 周.在

8

13131. 3阅读理解的(2)中,若∠ABC = 120°,则⊙O在点B处自转 周;若∠ABC = 60°,则⊙O在点B处自转 周.

(2)如图13-3,∠ABC=90°,AB=BC=⊙O4的位置,⊙O自转 周.

拓展联想:

(1)如图13-4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由. (2)如图13-5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数. ..B

O1 O1 O O2 O2 O2 O1 O O3 O B n° D A B A D B C A 图13-2 图13-1 C A O4 C

图13-4

图13-3

1c.⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到2l151解:实践应用(1)2;.;. (2).

436cl拓展联想(1)∵△ABC的周长为l,∴⊙O在三边上自转了周.

c又∵三角形的外角和是360°,

∴在三个顶点处,⊙O自转了

O D 360. ?1(周)

360图13-5

l∴⊙O共自转了(+1)周.

cl(2)+1.

c

?11、如图10,在⊙O中,AB为⊙O的直径,AC是弦,OC?4,?OAC?60.

(1)求∠AOC的度数;

(2)在图10中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;

(3) 如图11,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO?S△CAO时,求动点M所经过的弧长.

9

C C P A O

B

A M 2 O B

图10

图11

.解:(1)∵ 在△ACO中,?OAC?60,OC?OA

∴ △ACO是等边三角形 ∴ ∠AOC?60° ························································ (3分) (2)∵ CP与⊙O相切,OC是半径. ∴ CP⊥OC

∴ ∠P?90°-∠AOC?30° ∴ PO?2CO?8 ·············································· (6分) (3)如图11,(每找出一点并求出弧长得1分)

① 作点C关于直径AB的对称点M1,连结AM1,OM1 .

C M3 ?4π4?AM1??60?π ∴ ?180?3易得S?M1AO?S?CAO,?AOM1?60?

A M 2 M1 O B ∴ 当点M运动到M1时,S△MAO?S△CAO, 此时点M经过的弧长为

M2 图11

4π. 3② 过点M1作M1M2∥AB交⊙O于点M2,连结AM2,OM2,易得S△M2AO?S△CAO. ∴ ?AOM1??M1OM2??BOM2?60?

AM2?∴?4π84π8??2?π 或 ?AM2??120?π 33180?38π. 3∴ 当点M运动到M2时,S△MAO?S△CAO,此时点M经过的弧长为

③ 过点C作CM3∥AB交⊙O于点M3,连结AM3,OM3,易得S△M3AO?S△CAO ∴ ?BOM3?60?,

AM2M3?∴?4π168π16???240?πAMM??2?π 或 23180?33316π. 3∴ 当点M运动到M3时,S△MAO?S△CAO,此时点M经过的弧长为 ④ 当点M运动到C时,M与C重合,S△MAO?S△CAO, 此时点M经过的弧长为

4π2016π4π20??300?π??π. 或 180?3333

12、如图11,AB是⊙O的直径,弦BC=2cm,∠ABC=60o. (1)求⊙O的直径;

(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切;

(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0?t?2),连结EF,当t为何值时,△BEF为直角三角形.

10

C E O C F C F B

A O E B

A O B D A 图10(1) 图10(2) 图10(3)

解:(1)∵AB是⊙O的直径(已知)

∴∠ACB=90o(直径所对的圆周角是直角) ∵∠ABC=60o(已知) ∴∠BAC=180o-∠ACB-∠ABC= 30o(三角形的内角和等于180o) ∴AB=2BC=4cm(直角三角形中,30o锐角所对的直角边等于斜边的一半) 即⊙O的直径为4cm.

(2)如图10(1)CD切⊙O于点C,连结OC,则OC=OB=1/22AB=2cm.

∴CD⊥CO(圆的切线垂直于经过切点的半径) ∴∠OCD=90o(垂直的定义)

∵∠BAC= 30o(已求) ∴∠COD=2∠BAC= 60o(在同圆或等圆中一条弧所对的圆周角等于它所对的圆心角

的一半)

∴∠D=180o-∠COD-∠OCD= 30o(三角形的内角和等于180o) ∴OD=2OC=4cm(直角三角形中,30o锐角所对的直角边等于斜边的一半) ∴BD=OD-OB=4-2=2(cm) ∴当BD长为2cm,CD与⊙O相切. (3)根据题意得:BE=(4-2t)cm,BF=tcm;

如图10(2)当EF⊥BC时,△BEF为直角三角形,此时△BEF∽△BAC ∴BE:BA=BF:BC 即:(4-2t):4=t:2 解得:t=1

如图10(3)当EF⊥BA时,△BEF为直角三角形,此时△BEF∽△BCA ∴BE:BC=BF:BA 即:(4-2t):2=t:4 解得:t=1.6

∴当t=1s或t=1.6s时,△BEF为直角三角形.

13、如图,点A、B、C是?O上的三点,AB//OC. (1)求证:AC平分?OAB. (2)过点O作OE?AB于点E,交AC于点P. 若AB?2,

CBEA?AOE?30?,求PE的长.

解:(1)∵AB//OC, ∴?C??BAC;∵OA?OC,∴?C??OAC ∴?BAC??OAC 即AC平分?OAB. (2)∵OE?AB ∴AE?BE?OP1AB?1 又??AOE?30?,?PEA?90?∴?OAE?60?211

∴?EAP?11?OAE?30?, ∴PE?PA,设PE?x,则PA?2x,根据勾股定理得22PE33(或者用tan?EAP?) 即PE的长是.

AE33x2?12?(2x)2,解得x?

13、如图,在平面直角坐标系中,直线l∶y=?2x?8分别与x轴,y轴相交于A,B两点,点

P?0,k?是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.

(1)连结PA,若PA?PB,试判断⊙P与x轴的位置关系,并说明理由;

(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?

y l l

A O A x

P

B

解:(1)⊙P与x轴相切.……………1分 直线y??2x?8与x轴交于A??4,0?, 与y轴交于B?0,-8?,

(备用图)

l A y O P B P2 第(1)题

第(2)题 l x A C E y O P1 D B y O x ?OA?4,OB?8,

?PB?PA?8?k. 由题意,OP??k,22?k??3, 在Rt△AOP中,k?4??8?k?,2x ?OP等于⊙P的半径,?⊙P与x轴相切.

(2)设⊙P与直线l交于C,D两点,连结PC,PD. 当圆心P在线段OB上时,作PE⊥CD于E.

1333?△PCD为正三角形,?DE?CD?,PD?3,. ?PE?222??AOB??PEB?90°,?ABO??PBE,△?AOB∽△PEB,

33AOPE4315??,?2,?PB?即,……………2分 ABPBPB245?315?315?PO?BO?BP?8?,?P??0,2?8??, 2???k?315?8.……………2分 212

??315P?8?当圆心在线段OB延长线上时,同理可得P?0,-??, 2???k??315?8,……………2分 2315315以⊙P与直线l的两个交点和圆心P为顶点的三角形?8或k???8时,

22? 当k?是正三角形.

0)和点E(0,4).动点C从点M(5,14、如图,已知射线DE与x轴和y轴分别交于点D(3,0)出发,

以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长

度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒. (1)请用含t的代数式分别表示出点C与点P的坐标; (2)以点C为圆心、

1t个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B的左侧),2y E P O A C B M D x 连接PA、PB.

①当⊙C与射线DE有公共点时,求t的取值范围; ②当△PAB为等腰三角形时,求t的值.

13

0),以点O1为圆心,8为半径的圆与x轴交于15、如图,在平面直角坐标系中,点O1的坐标为(?4,A,B两点,过A作直线l与x轴负方向相交成60°的角,且交y轴于C点,以点O2(13,5)为圆心

的圆与x轴相切于点D.

(1)求直线l的解析式;

(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,当⊙O2第一次与⊙O1外切时,求⊙O2平移的时间.

14

y l 60° O1 O B O2 D x A C 解:由题意得OA?|?4|?|8|?12,

?A点坐标为(?12,0).

y l 60° ?在Rt△AOC中,?OAC?60°, OC?OAtan?OAC?12?tan60°?123 ?C点的坐标为(0,································· 1分 ?123). ·

设直线l的解析式为y?kx?b, 由l过A、C两点,

O1 O3 P O2 x A O B D1 D C ????123?b?b??123得?解得? ???0??12k?b?k??3········································································ 3分 ?直线l的解析式为:y??3x?123. ·

(2)如图,设⊙O2平移t秒后到⊙O3处与⊙O1第一次外切于点P,

⊙O3与x轴相切于D1点,连接O1O3,O3D1.

则OO13?O1P?PO3?8?5?13

?O3D1⊥x轴,?O3D1?5,

在Rt△O1O3D1中,O1D1?O1O3?O3D1?13?5?12. ······································· 6分

2222?O1D?OO1?OD?4?13?17, ?D1D?O1D?O1D1?17?12?5,

?t?5?5(秒) ?⊙O2平移的时间为5秒. ································································· 8分 1

16、如图10,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F. (1)求证:CF?BF;

(2)若AD?2,⊙O的半径为3,求BC的长.

15

C D F A O E B

图10

证明:(1) 连结AC,如图10 G ∵C是弧BD的中点

C ∴∠BDC=∠DBC ················································ 1分

D 又∠BDC=∠BAC

F 在三角形ABC中,∠ACB=90°,CE⊥AB

∴ ∠BCE=∠BAC B A O E ∠BCE=∠DBC ·············································· 3分 ∴ CF=BF ······················································· 4分 因此,CF=BF.

图10 (2)证法一:作CG⊥AD于点G,

∵C是弧BD的中点

∴ ∠CAG=∠BAC , 即AC是∠BAD的角平分线. ··········································· 5分 ∴ CE=CG,AE=AG ···························································································· 6分 在Rt△BCE与Rt△DCG中,CE=CG , CB=CD ∴Rt△BCE≌Rt△DCG ∴BE=DG ·············································································································· 7分 ∴AE=AB-BE=AG=AD+DG 即 6-BE=2+DG

∴2BE=4,即 BE=2 ··························································································· 8分

又 △BCE∽△BAC

·AB?12 ·∴ BC?BE···················································································· 9分

BC??23(舍去负值)

∴BC?23 ··································································································· 10分 (2)证法二:∵AB是⊙O的直径,CE⊥AB

∴∠BEF=?ADB?90?, ······························· 5分 在Rt△ADB与Rt△FEB中, ∵?ABD??FBE

2C D F A O E B

ADAB?∴△ADB∽△FEB,则 EFBF26?即, ∴BF?3EF ···················· 6分 EFBF又∵BF?CF, ∴CF?3EF

利用勾股定理得:

图10

······································································ 7分 BE?BF2?EF2?22EF ·又∵△EBC∽△ECA 则

CEBE2?,即则CE?AE?BE ································································ 8分 AECE2∴(CF?EF)?(6?BE)?BE

即(3EF?EF)2?(6?22EF)?22EF

16

∴EF?2 ···································································································· 9分 2········································································ 10分 BE2?CE2?23 ·

∴BC?

17、如图,A、P、B、C是⊙O上的四点,∠APC =∠BPC = 60?,AB与PC交于Q点. (1)判断△ABC的形状,并证明你的结论;(2)求证:

APAQ;(3)若∠ABP = 15?,△ABC?PBQBP A Q O B C 的面积为43,求PC的长.

解:(1) ∵ ∠ABC =∠APC = 60?,∠BAC =∠BPC = 60?,

∴ ∠ACB = 180?-∠ABC-∠BAC = 60?, ∴ △ABC是等边三角形.

(2)如图,过B作BD∥PA交PC于D,则 ∠BDP =∠APC = 60?. 又 ∵ ∠AQP =∠BQD,∴ △AQP∽△BQD,

AQAP. ?QBBDP A Q O F C H AQAP?∵ ∠BPD =∠BDP = 60?, ∴ PB = BD. ∴ . QBPB(3)设正△ABC的高为h,则 h = BC· sin 60?.

B R E 11∵ BC · h = 43, 即BC · BC· sin 60? = 43,解得BC = 4.

22连接OB,OC,OP,作OE⊥BC于E.

由△ABC是正三角形知∠BOC = 120?,从而得∠OCE = 30?, ∴ OC?G M N CE4?.

cos30?3由∠ABP = 15? 得 ∠PBC =∠ABC +∠ABP = 75?,于是 ∠POC = 2∠PBC = 150?. ∴ ∠PCO =(180?-150?)÷2 = 15?.

如图,作等腰直角△RMN,在直角边RM上取点G,使∠GNM = 15?,则∠RNG = 30?,作GH⊥RN,垂足为H.设GH = 1,则 cos∠GNM = cos15? = MN.

∵ 在Rt△GHN中,NH = GN · cos30?,GH = GN · sin30?.

17

于是 RH = GH,MN = RN · sin45?,∴ cos15? =

2?6. 426. 3在图中,作OF⊥PC于E,∴ PC = 2FD = 2 OC ·cos15? =22?

18、已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D. (1)求证:BC=CD; (2)求证:∠ADE=∠ABD;

(3)设AD=2,AE=1,求⊙O直径的长.

CDAEO?B 解:(1)∵∠ABC=90°,∴OB⊥BC. ···················································································· 1分

∵OB是⊙O的半径,∴CB为⊙O的切线. ················ 2分 又∵CD切⊙O于点D,∴BC=CD; ·························· 3分 (2)∵BE是⊙O的直径,∴∠BDE=90°.

∴∠ADE+∠CDB =90°. ······································· 4分 又∵∠ABC=90°,∴∠ABD+∠CBD=90°. 由(1)得BC=CD,∴∠CDB =∠CBD. ∴∠ADE=∠ABD;

(3)由(2)得,∠ADE=∠ABD,∠A=∠A.

∴△ADE∽△ABD. ························································································· 7分 ∴

CDAEO?BADAE=. ································································································· 8分 ABAD21∴=,∴BE=3,················································································ 9分

21?BE∴所求⊙O的直径长为3. ·········································································· 10分

19、如图,⊙O是△ABC的外接圆,AB?AC,过点A作AP∥BC,交BO的延长线于点P.

(1)求证:AP是⊙O的切线;

(2)若⊙O的半径R?5,BC?8,求线段AP的长. A P

O

C B

18

解:(1)证明:过点A作AE⊥BC,交BC于点E. ?AB?AC,?AE平分BC.

······································ (2分) ?点O在AE上. ·

又?AP∥BC, ?AE⊥AP.

?AP为⊙O的切线. ································ (4分) (2)?BE?A P O 1C B BC?4,?OE?OB2?BE2?3. E 2 又??AOP??BOE,

?△OBE∽△OPA. ··································································································· (6分) BEOE43???. . 即APOAAP520?AP?. ················································································································· (8分)

3

20、如图,在△ABC中,∠C=90°,AC=3,BC=4.0为BC边上一点,以0为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连结DE.

(1)当BD=3时,求线段DE的长; (2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F.求证:△FAE是等腰三角形.

19

21、如图,Rt△ABC中,?ABC?90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE.

(1)求证:直线DE是⊙O的切线;

(2)连接OC交DE于点F,若OF?CF,求tan?ACO的值.

C

D F E 证明:(1)连接OD、OE、BD.

?AB是⊙O的直径,??CDB??ADB?90°, ?E点是BC的中点,?DE?CE?BE. ?OD?OB,OE?OE,△?ODE≌△OBE. ??ODE??OBE?90°,?直线DE是⊙O的切线. (2)作OH⊥AC于点H,

由(1)知,BD⊥AC,EC?EB.

A

O

B

C

D F H A

O

B

1AC. 2??CDF??OEF,?DCF??EOF.

?CF?OF,?△DCF≌△EOF,?DC?OE?AD. ?BA?BC,??A?45°. ?OH⊥AD,?OH?AH?DH.

OH1?CH?3OH,?tan?ACO??.

CH3?OA?OB,?OE∥AC,且OE?E

22、如图9所示,在△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在BA边上自由移动,动点F在AC边上自由移动.

(1)点E,F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,请指出△OEF为等腰三角形时动点E,F的位置.若不能,请说明理由. (2)当∠EOF=45°时,设BE=x,CF=y,求y与x之间的函数解析式,写出x的取值范围. (3)在满足(2)中的条件时,若以O为圆心的圆与AB相切(如图10),试探究直线EF与⊙O的位置关系,并证明你的结论.

A A

E E F F

B

C B

C O 图9

O 图10

20

简析(1)点E,F移动的过程中,△OEF能成为∠EOF=45°的等腰三角形.此时点E,F的位置分别是:①E是BA的中点,F与A重合.②BE=CF=2.③E与A重合,F是AC的中点.(2)在△OEB和△FOC中,∠EOB+∠FOC=135°,∠EOB+∠OEB=135°,所以∠FOC=∠OEB,又因为∠

BEBO1=.因为BE=x,CF=y,OB=OC=22?22=2,COCF22BEOEBEOE所以y=(1≤x≤2).(3)EF与⊙O相切.因为△OEB∽△FOC,所以=,所以=,

xCOOFBOOFBEBO即=,又因为∠B=∠EOF=45°,所以△BEO∽△OEF,所以∠BEO=∠OEF,所以点OOEOFB=∠C,所以△OEB∽△FOC,所以

到AB和EF的距离相等.因为AB与⊙O相切,所以点O到EF的距离等于⊙O的半径.所以EF与⊙O相切.

23.如图,已知直线L与⊙O相交于点A,直径AB=6,点P在L?上移动,连结OP交⊙O于点C,连结BC并延长BC交直线L于点D. (1)若AP=4,求线段PC的长;

(2)若△PAO与△BAD相似,求∠APO的度数和四边形OADC的面积.(?答案要求保留根号)

BOCADP

L解:(1)∵L与⊙O相切于点A, ∴∠4=90°,∴OP=OA+AP, ∵OB=OC=

2

2

2

1AB=3,AP=4, ∴OP2=32+42,∴OP=5, ∴PC=5-3=2. 2 (2)∵△PAO∽△BAD,且∠1>∠2,∠4=90°, ∴∠2=∠APO,∴OB=OC,∴∠2=∠3 ∵∠1=∠2+∠3,∴∠2=2∠2=2∠APO ∴∠4=90°,∴∠1+∠APO=90° ∴3∠APO=90°,∴∠APO=30°.

在Rt△BAD中,∠2=∠APO=30°. ∴AD=6sin30°=633=23. 3333,BE=33cos30°=, 22 过点O作OE⊥BC于点E ∵∠2=30°,BO=3, ∴OE= ∴BC=2BE=33,∴S四边形OADC=S△BAD-S△BOC=

1AB2AD 21113915=BC2OE=36323-3333=63-3=2222443 .

21

4

24、如图2-5-11所示,直线y=- x+ 4与x 轴、y轴分别交于点M、N.

3(1)求M、N两点的坐标;

124

(2)如果点P在坐标轴上,以点P为圆心, 为半径的圆与直线y=- x+ 4相切,求点P的坐标.

53

22

25、如图所示,点O2是⊙O1上一点,⊙O2与⊙O1相交于A、D两点,BC⊥AD,垂足为D,分别交⊙O1、⊙O2于B、C两点,延长DO2交⊙O2于E,交BA的延长线于F,BO2交AD于G,连结AG.? (1)求证:∠BGD=∠C;

(2)若∠DO2C=45°,求证:AD=AF;

(3)若BF=6CD,且线段BD、BF的长是关于x的方程x2-(4m+2)x+4m2+8=0?的两个实数根,求BD、BF的长.

解析:(1)∵BC⊥AD于D, ∴∠BDA=∠CDA=90°, ∴AB、AC分别为⊙O1、⊙O2的直径.

∵∠2=∠3,∠BGD+∠2=90°,∠C+∠3=90°, ∴∠BGD=∠C. (2)∵∠DO2C=45°,∴∠ABD=45°,∵O2D=O2C, ∴∠C=∠O2DC=

1(180°-∠DO2C)=67.5°, ∴∠4=22.5°, ∵∠O2DC=∠ABD+∠F, 2 ∴∠F=∠4=22.5°,∴AD=AF.

(3)∵BF=6CD,∴设CD=k,则BF=6k. 连结AE,则AE⊥AD,∴AE∥BC, ∴

AEAF? ∴AE2BF=BD2AF. BDBF 又∵在△AO2E和△DO2C中,AO2=DO2 ∠AO2E=∠DO2C, O2E=O2C,

∴△AO2E≌△DO2C,∴AE=CD=k, ∴6k2=BD·AF=(BC-CD)(BF-AB). ∵∠BO2A=90°,O2A=O2C,∴BC=AB. ∴6k2=(BC-k)(6k-BC).∴BC2-7kBC+12k2=0, 解得:BC=3k或BC=4k. 当BC=3k,BD=2k.

∵BD、BF的长是关于x的方程x2-(4m+2)x+4m2+8=0的两个实数根. ∴由根与系数的关系知:BD+BF=2k+6k=8k=4m+2. 整理,得:4m2-12m+29=0.

∵△=(-12)2-434329=-320<0,此方程无实数根. ∴BC=3k(舍).

当BC=4k时,BD=3k.

∴3k+6k=4m+2,18k2=4m2+8,整理, 得:m2-8m+16=0, 解得:m1=m2=4,

∴原方程可化为x2-18x+72=0,

解得:x1=6,x2=12, ∴BD=6,BF=12.

23

26、已知矩形ABCD在平面直角坐标系中,顶点A、B、D的坐标分别为A(0,0),B(m,0),D(0, 4)其中m≠0.

⑴ 写出顶点C的坐标和矩形ABCD的中心P点的坐标(用含m的代数式表示) ⑵ 若一次函数y=kx-1的图象l把矩形ABCD分成面积相等的两部分,求此一次函数的解析式(用含 m的代数式表示)

⑶ 在⑵的前提下,l又与半径为1的⊙M相切,且点 M(0,1),求此矩形ABCD的中心P点的坐标.

27、两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED按如图1所示的位置放置A与C重合,O与E重合.

(1)求如图19中,A,B,D三点的坐标.

(2)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长的速度向右运动,当D点运动到与B点重合时停止,设运动x秒后Rt△CED和Rt△AOB重叠部分面积为y,求y与x之间的函数关系式. (3)当Rt△CED以(2)中的速度和方向运动,运动时间x=4秒时Rt△CED运动到如图20所示的位置,求经过A,G,C三点的抛物线的解析式.

(4)现有一半径为2,圆心P在(3)中的抛物线上运动的动圆,试问⊙P在运动过程中是否存在⊙P与x轴或y轴相切的情况,若存在请求出P的坐标,若不存在请说明理由.

y (C)y A C A

G D B x (E) O O B D x E

图19 图20

24

y y C A A C

G

G I J

x D O H E B O D H B E x

图21 图22

简析(1)由图形容易求得A(0,6),B(6,0),D(-6,0).

(2)当0≤x<3时,位置如图21所示,作GH⊥DB,垂足为H,可知:OE=2x,EH=x,DO=6-2x,DH=6-x,所以y=2S

梯形IOHG

=2(S△GHD-S△IOD)=2[

11(6-x)2-(6-2x)2]=-3x2+12x;当222?1?23≤x≤6时,位置如图22所示,可知:DB=12-2x,所以y=S△DGB=DB???=2?2??2???3x?12x(0≤x?3),1?2?2

=x-12x+36.所以y与x之间的函数关系式y= (12?2x)?2??2?2??x?12x?36(3≤x≤6).?1(3)如图21中,当x=4时,OE=2x=8,DB=12-2x=4,所以GH=DH=DB=2,OH=6-

21HB=6-DB=6-2=4,所以可知A(0,6),G(4,2),C(8,6).所以经过A,G,C三点的抛物线

211的解析式为y=(x-4)2+2=x2-2x+6.(4)当⊙P在运动过程中,存在⊙P与坐标轴相切的情况,

442设P点坐标为(x0,y0). 当⊙P与y轴相切时,有x0=2,x0=±2,由x0=-2,得y0=11,所以P1(-2,11),由x0=2,得y0=3,所以P2(2,3),当⊙P与x轴相切时,有y0=2,因为y=

1(x-4)2+24>0,所以y0=2,得x0=4,所以P3(4,2),综上所述,符合条件的圆心P有三个,其坐标分别是:P1(-2,11),P2(2,3),P3(4,2).

说明 本题是一道综合性很强的传统型压轴题,其难度比较恰当,选拔功能较强,解第4小题时要注意分类讨论,这是本题最容易失分的地方.

28、如图3-2-2所示,如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴交于A、B两点,过点A作直线l与x轴负方向相交成60°角。以点O2(13,5)为圆心的圆与x轴相切于点D. (1)求直线l的解析式;

(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,同时直线l沿x轴向右平移,当⊙O2第一次与⊙O2相切时,直线l也恰好与⊙O2第一次相切,求直线l平移的速度;

(3)将⊙O2沿x轴向右平移,在平移的过程中与x轴相切于点E,EG为⊙O2的直径,过点A作⊙

25

O2的切线,切⊙O2于另一点F,连结A O2、FG,那么FG2A O2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。

解(1)直线l经过点A(-12,0),与y轴交于点(0,-, 123)

设解析式为y=kx+b,则b=-123,k=-3,所以直线l的解析式为y=-3x-123. (2)可求得⊙O2第一次与⊙O1相切时,向左平移了5秒(5个单位)如图所示。 在5秒内直线l平移的距离计算:8+12-所以直线l平移的速度为每秒(6-53=30-33,

53)个单位。 3FGEG1= (其中O2E=EG)(3)提示:证明Rt△EFG∽Rt△AE O2 于是可得: O2EAO22所以FG2A O2=1EG2,即其值不变。

2

?29、如图1,已知Rt△ABC中,?CAB?30,BC?5.过点A作AE⊥AB,且AE?15,连

接BE交AC于点P.(1)求PA的长;

(2)以点A为圆心,AP为半径作⊙A,试判断BE与⊙A是否相切,并说明理由;

(3)如图2,过点C作CD⊥AE,垂足为D.以点A为圆心,r为半径作⊙A;以点C为圆心,R为半径作⊙C.若r和R的大小是可变化的,并且在变化过程中保持⊙A和⊙C相切,且使D点在⊙..A的内部,B点在⊙A的外部,求r和R的变化范围.

E

P C

A B

图1

26

E D

A P C B 图2

[解](1)?在Rt△ABC中,?CAB?30,BC?5, ?AC?2BC?10.

?AE∥BC,?△APE∽△CPB. ?PA:PC?AE:BC?3:1. ?PA:AC?3:4,PA?(2)BE与⊙A相切.

?在Rt△ABE中,AB?53,AE?15, ?tan?ABE??3?1015?. 42AE15??3,??ABE?60?. AB53???APB?90, 又??PAB?30,??ABE??PAB?90, ?BE与⊙A相切.

(3)因为AD?5,AB?53,所以r的变化范围为5?r?53.

当⊙A与⊙C外切时,R?r?10,所以R的变化范围为10?53?R?5; 当⊙A与⊙C内切时,R?r?10,所以R的变化范围为15?R?10?53.

30、在平面直角坐标系xOy中,已知直线l1经过点A(-2,0)和点B(0,为y????23),直线l2的函数表达式 334x?3,l1与l2相交于点P.⊙C是一个动圆,圆心C在直线l1上运动,设圆心C的横 33坐标是a.过点C作CM⊥x轴,垂足是点M.

(1) 填空:直线l1的函数表达式是 ,交点P的坐标是 ,∠FPB的度数是 ;

(2) 当⊙C和直线l2相切时,请证明点P到直线CM的距离等于⊙C的半径R,并写出R=32?2时a的值.

(3) 当⊙C和直线l2不相离时,已知⊙C的半径R=32?2,记四边形NMOB的面积为S(其中点N是直线CM与l2的交点).S是否存在最大值?若存在,求出这个最大值及此时a的值;若不存在,请说明理由.

y

l2 C 3

F 2 B 1 P E A

-3 -2 -1 O 1 2 3 4 x -1 l1

27

32x?3;P(1,3);60o 33(2) 设⊙C和直线l2相切时的一种情况如图甲所示,D是切点,连接CD,则CD⊥PD.

[解] (1) y?过点P作CM的垂线PG,垂足为G,则Rt△CDP≌Rt△PGC (∠PCD=∠CPG=30o,CP=PC), 所以PG=CD=R. 当点C在射线PA上,⊙C和直线l2相切时,同理可证.

取R=32?2时,a=1+R=32?1,或a=-(R-1)?3?32. (3) 当⊙C和直线l2不相离时,由(2)知,分两种情况讨论: ① 如图乙,当0≤a≤32?1时, S?12334332[?(?a?)]?a??a?3a, 23336y l2 3 2 1 F B P 1 2 C A -3 -2 -1 O -1 l1 3 E 4 x (第24题图甲)

y 当a??32?(?3)6?3时,(满足a≤32?1),S有最大值.此时

l2 3 2 1 F B C P E 4 x 339S最大值??(或).

23234?(?)6?3A -3 -2 -1 O -1 l1 图2

1 2 3 ② 当3?32≤a<0时,显然⊙C和直线l2相切即a?3?32时,S最大.此时 S最大值?12334333[?(3?32)?]?3?32?. 2333233 2 综合以上①和②,当a?3或a?3?32时,存在S的最大值,其最大面积为

31、半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知BC :CA=4 : 3,点P在?AB上运动,过点C作CP的垂线,与PB的延长线交于点O (1)当点P与点C关于AB对称时,求CQ的长; (2)当点P运动?AB到的中点时,求CQ的长;

(3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.

28

[解] (1)当点P与点C关于AB对称时,CP⊥AB,设垂足为D.

∵AB为⊙O的直径, ∴∠ACB=900. ∴AB=5,AC:CA=4:3, ∴BC=4, AC=3.

又∵AC2BC=AB2CD ∴ CD?1224,PC?. 55 在Rt△ACB和Rt△PCQ中,

∠ACB=∠PCQ=900, ∠CAB=∠CPQ, Rt△ACB∽Rt△PCQ ∴

ACBCBC?PC432?,CQ??PC?. PCCQAC35(2)当点P运动到弧AB的中点时,过点B作BE⊥PC于点E

(如图).

∵P是弧AB的中点,

∴?PCB?45,CE?BE?02BC?22 24 3又∠CPB=∠CAB ∴∠CPB= tan∠CAB=

∴PE?BE33272 ?BE?,而从PC?PE?EC?tan?CPB4224142PC?. 33BC?PC4?PC. AC320 3由(l)得,CQ?(3)点P在弧AB上运动时,恒有CQ?故PC最大时,CQ取到最大值. 当PC过圆心O,即PC取最大值5时,CQ 最大值为

2),以点A为圆心,以AO长为半径的圆交x轴于另一点B,过点2B作BF∥AE交?A于点F,直线FE交x轴于点C. (1)求证:直线FC是?A的切线;

(2)求点C的坐标及直线FC的解析式;

(3)有一个半径与?A的半径相等,且圆心在x轴上运动的?P.若?P与直线FC相交于M,N两,,0)E(0,?32、如图,已知A(?1点,是否存在这样的点P,使△PMN是直角三角形.若存在,求出点P的坐标;若不存在,请说明

y 理由.

B A

O C

E F

29

x [解] (1)证明:连结AF ?AE∥BF??1??3,?4??2 又?AB?AF??3??4??1??2

又?AO?AF,AE?AE?△AOE≌△AFE??AFE??AOE?90??FC是?O的切线. (2)方法①由(1)知EF?OE?2 2?AE∥BF,?22ACCEOC?1CECO?,?CE? ① ???221ABEF222?2?2又?OE2?OC2?CE2,?CE2?? ②

?2???CO??由①②解得OC?0(舍去)或OC?2, ?2?0)两点 ,C(2,0,??直线FC经过E????2??设FC的解析式:y?kx?b ?2?2k?b?0k????4 ??2解得??b???b??2?2??2?直线FC的解析式为y?22x?. 42方法②:?CF切?A于点F,??AFC??EOC?90?

OECO又?ACF??OCE,?△COE∽△CFA,? ?AFCF2?2?1COCE?22 即CE?2CO?2 ① 22?2?2又OE2?OC2?CE2,?CE2?? ② ?CO??2???由①②解得CO?0(舍去)或CO?2

?C(2,0) (求FC的解析式同上). 方法③?AE∥BF,??OC?1CE ?12222CO? ① 2230

ACCE ?ABEF?CE?

?FC切?A于点F,??AFC??COE?90? ??ACE??OCE,?△COE∽△CFA

2OECO,?2???1AFCFCO2CE?2 2 ② 2由①②解得:CO?2, ?CE?2CO?(求FC的解析式同上). (3)存在;

当点P在点C左侧时,若?MPN?90?,过点P作PH?MN于点H, ??MPN?90?,PM?PN,?PH?PM?cos45???AF?FC,?PH∥AF,?△CPH∽△CAF

2 22CPPHCP,?2? ??13AFCA?CP??323232??2,?P?2?,?PO?,0??? 222???P?N??90,过点P?作P?Q⊥M?N?于点Q,则P?Q?当点P在点C右侧P?时,设?M??P?Q?PH,可知P?与P关于点C中心对称,根据对称性得

?OP??OC?CP??2?32 22 2y

?32??P??2?,0??? 2??N?

M?

B

3

?存在这样的点P,使得△PMN为直角?32?三角形,P点坐标?2?,0???或2???32?2?,0????. 2??A

4

1

2

P O H E

Q

N

C

P?

x

F M

31

33、已知:∠MAN?60,点B在射线AM上,AB?4(如图1).P为直线AN上一动点,以BP为边作等边三角形BPQ(点B,P,Q按顺时针排列),O是△BPQ的外心.

(1)当点P在射线AN上运动时,求证:点O在∠MAN的平分线上;

(2)当点P在射线AN上运动(点P与点A不重合)时,AO与BP交于点C,设AP?x,

?AC?AO?y,求y关于x的函数解析式,并写出函数的定义域;

(3)若点D在射线AN上,AD?2,圆I为△ABD的内切圆.当△BPQ的边BP或BQ与圆IA 相切时,请直接写出点A与点O的距离.

P

B

O

Q M

图10

解析:(1)证明:如图3,连结OB,OP,

A P B O N M Q 备用图2

N

360??120?. ?O是等边三角形BPQ的外心,?OB?OP,圆心角?BOP?3 当OB不垂直于AM时,作OH?AM,OT?AN,垂足分别为H,T. 由?HOT??A??AHO??ATO?360,且?A?60, ?AHO??ATO?90,??HOT?120.

????BOH??P.O ??tBOH≌R△tP.O T ?R△T?点O在?MAN的平分线上. ?OH?O.

?? 当OB?AM时,?APO?360??A??BOP??OBA?90.

即OP?AN,?点O在?MAN的平分线上.

综上所述,当点P在射线AN上运动时,点O在?MAN的平分线上.

A A P T H B C B P O O Q M

图3

N

Q M

图4

N

(2)解:如图4,

?? ?AO平分?MAN,且?MAN?60,??BAO??PAO?30.

32

由(1)知,OB?OP,?BOP?120, ??CBO?30,??CBO??PAC.

????P,C??AOB??APC.?△ABO∽△ACP. ??BCO ?ABAAC?A.OP?AC?AO?AB?AP.?y?4x. 定义域为:x?0.

(3)解:①如图5,当BP与圆I相切时,AO?23; ②如图6,当BP与圆I相切时,AO?433; ③如图7,当BQ与圆I相切时,AO?0.

A P(A) I (DP) I D B O B O Q Q M N

M

N

图5

图6

33

P (A) O QI D B N M

图7

本文来源:https://www.bwwdw.com/article/gbzo.html

Top