数学建模竞赛组队及成绩预测

更新时间:2024-03-09 18:54:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

数学建模暑假培训第

一次模拟论文

论文题目:数学建模竞赛组队及成绩预测

姓名1: 学号: 专业: 姓名1: 学号: 专业: 姓名1: 学号: 专业:

2011 年 7 月 7 日

数学建模竞赛组队及成绩预测

摘 要

全国大学生数学建模竞赛是由教育部高教司和中国工业与应用数学学会共同主办,是面向全国高校所有大学生的竞赛。从1992年开始,每年一届,已经举办了快二十年了。近来随着社会的迅速发展,运用数学知识及方法在解决实际问题中发挥着越来越重要的作用,数学建模也越来越受到社会的重视。本文研究了数学建模获奖的影响因素、数学建模获奖情况的预测以及如何进行最佳的组队。

首先,对于数学建模获奖的影响因素问题,我们首先通过对数据的分析得出了数学建模获奖的影响因素:数学能力、计算机能力和综合能力。然后快捷、巧妙地运用SPSS对所给的数据进行了作图分析,了解各个因素之间的相关性,得到了数学各科成绩对于获奖情况的影响等价的,计算机科目也同样。所以我们就取其各科的平均成绩来表示其机体体现。综合能力下由于其影响因素比较广、相关性差,所以利用层次分析法求出其各个因素的的权重,乘以相应的成绩再相加即得出综合能力的集中表现。最后,再次利用层次分析法求出数学能力、计算机能力和综合能力的权重,然后分别与其相应分数相乘再相加来表示参赛队的总体能力。

其次,对于数学建模获奖情况的预测问题,我们首先利用数学建模或将影响因素中数学能力、计算机能力和综合能力的权重乘以2010年相应的队伍的各方面能力得出获奖等级的队整体能力在和范围。同理,算出2011年各参赛队伍的整体能力,与2010年的相对比,进而预测出2011年参赛队伍的获奖情况。

最后,对于数学建模的最佳组队问题,我们采用从2011年参赛队员中任选三人出来,通过利用上面的层次分析法算出的数学能力、计算机能力和综合能力的权重算出其队伍的整体能力,进而获得队伍的整体能力高的多的方向上组合。并如上的方法预测出获奖情况。

关键词: 统计分析法 层次分析法 一致性检验 组队问题

1

§1问题重述

全国大学生数学建模竞赛是由教育部高教司和中国工业与应用数学学会共同主办,是面向全国高校所有大学生的竞赛。从1992年开始,每年一届,已经举办了快二十年了。由于与传统的封闭式竞赛不同,数学建模竞赛从开始就以开放型、通讯式、高强度挑战性吸引着广大的大学生的兴趣。特别是近来随着社会的迅速发展,运用数学知识及方法在解决实际问题中发挥着越来越重要的作用,数学建模也越来越受到社会的认同。同样,我们学校也高度重视数学建模竞赛。在本次数学建模竞赛即将来临之际,为了尽可能取得更好的成绩,通过处理以往附件一参赛同学的一些资料,得到建立适当模型对本次加数学建模竞赛进行预测。具体讨论的问题如下:

问题一:通过处理附件一2010年我校所有参赛队员的获奖情况以及相关数据,运用数学建模的方法,找出影响数学建模竞赛获奖等级(含校内赛和全国赛)的主要因素,并对其进行排序;

问题二:利用1中的主要因素,结合附件二中我校2011年参加数学建模暑假培训同学的相关数据,如果让所有队员按照原有组队参加竞赛,预测我校2011年全国数学竞赛成绩;

问题三:如果参加全国数学建模竞赛的参赛队伍只有18或26支,为了保证成绩,且保持现有组队不变,选出参赛的18或26支队伍,并预测他们的成绩;

问题四:若果3中的队伍可以重组,给出参赛的18或26支队伍,并预测获奖情况; 问题五:根据前面四题的分析,写一篇300字左右的文章,对提高我校2011年数学建模竞赛的成绩。

§2问题分析

对于问题一,我们考虑到,数学建模主要表现在建模能力、编程能力、以及写作能力三个方面;而进行深层次的分析和研究,建模能力表现在数学能力上,编程能力表现在计算机能力和算法的理解上,而写作是一种综合能力的体现,它不仅表现在对文字的组织能力上,还表现在算机的应用,比如对excell、word的熟练应用,对建模思想的快速理解,对算法实现过程的掌握。如此,才能从其笔下写出一篇优秀的建模论文,我们都知道,一个在好的建模思想最终都只能通过论文呈现在读者的眼前。每一个参赛队员的数学能力主要由高等数学、线性代数、概率统计、解析几何、数学分析、高等代数、常微分方程、近世代数来体现。计算机能力又主要表现在C语言程序设计、数据库原理及应用、数据库课程设计、数据结构四个课程上。综合能力表现在平均学分成绩、大学计算机基础、信息检索及利用、数学建模这些课程上。另外,我们考虑到,参加公选课、必修课以及个人的擅长都会对综合能力有影响;因此,在考虑其综合能力上,我们都会将这些影响因素考虑进去。

对于问题二,我们在问题一的基础上可以算出2011年每一个参赛队员的数学能力、计算机能力及其综合能力,在每一个队中,我们以队中某一个参赛队员在某一方面的最佳能力代表该队在这方面的能力。然后,我们再根据数学能力、计算机能力、综合能力对每一个参赛队获奖的绝对权重算出每一个队的获奖概率,应用所算出的概率对参赛队的成绩进行预测。

对于问题三,我们知道,在问题二中,我们已经算出了2011年每一个队的获奖概率,那么现在,我们就可以直接从已算出的结果中选出获奖概率最大的18支或26支队伍参加竞赛。对于他们成绩的预测,我们可以这样考虑,我们同样以上述的方法算出2010年每一个参赛队的获奖概率,有对照他们的获奖情况,算出每一种奖项获奖概率的范围,再

2

将2011年每一个参赛队的获奖概率与上面算出的每一种奖项获奖的获奖范围进行对照,然后对2011年参赛队的获奖成绩进行预测。

对于问题四的求解,我们应用已算出来的每一个参赛队员的能力指数,在他们组队时,同样以队中某一个参赛队员在某一方面的最佳能力代表该队在这方面的能力。根据约束条件,给出他们的组队方案。依据题三中的预测方法对参赛队的成绩进行预测。

这样,这个问题就可以得到解决。

§3模型假设

1、假设参赛队员的外部环境都相同,不考虑其他的随机因素的影响,在正式的比赛 中每一组队伍中的队员都是正常水平发挥,不考虑存在超常发挥和失常发挥。 2、假设队伍中某方面能力强的队员代表该队的在这一方面的最强能力。

3、假设题中所定给数据都是客观公正的,且竞赛水平的发挥只取题中所给的条件。 4、假设对于每个队员的量化指标能充分且准确反映出该队员的综合能力。 5、假设各组队之间是相互独立,即各自之间不会相互影响。 6、只考虑主要的因素数学能力、计算机能力和综合能力等,忽略掉其他的对建模能 力的因素。

§4符号说明

x1 平均学分成绩在综合能力中的权重 x2 数学建模在综合能力中的权重 x3 信息检索在综合能力中的权重 x4 计算机基础在综合能力中的权重 y1 数学能力在建模能力的权重

y2 计算机能力在建模能力的权重 y3 综合能力在建模能力的权重 a1 表示平均学分 a2 表示数学建模 a3 表示信息检索 b3 表示综合能力 b2 表示计算机能力 b1 表示数学能力 a4 表示计算机基础

§5模型的建立与求解

一、问题一的模型建立及求解 Step1问题一的模型建立

针对于本题的考虑,我们可以用层次分析法进行建模求解,将问题所包含的因素按属性分为目标层、准则层一、准则层二、方案层。从而,本题中的各种元素之间形成了一种至上而下的支配关系,形成一种阶梯层次,如图:

3

Step2数据分析得出主要因素

根据附件一中我校2010年所有参赛队员的获奖情况相关数据,得出了影响数学建模竞赛获奖等级的因素,并将其归纳为三个因素数学能力、计算机能力和综合能力。数学能力主要包括数学能力主要由高等数学、线性代数、概率统计、解析几何、数学分析、高等代数、常微分方程、近世代数来体现。计算机能力又主要表现在C语言程序设计、数据库原理及应用、数据库课程设计、数据结构四个课程上。综合能力表现在平均学分成绩、大学计算机基础、信息检索及利用、数学建模这些课程上。另外,我们考虑到,参加公选课、必修课以及个人的擅长都会对综合能力有影响;因此,在考虑其综合能力上,我们都会将这些影响因素考虑进去。在影响数学能力的几个方面,我们假设他们所占的比重都是一样的,也就是说,在计算他们的数学能力时,我们以影响数学能力的几个方面的成绩的平均值表示他们每一个参赛队员的数学能力;在计算机能力方面,我们采用同数学能力的计算方法一样,也假设计算机能力能用影响它的几个因素的平均成绩来表示;对于综合能力,影响它的因素很广泛,不同的因素对它的影响差异很大,而且相关性差。所以对其中的平均学分成绩、大学计算机基础、信息检索及利用、数学建模等这些因素,我们对其采用层次分析法,算出它们对综合能力的影响度。

对其他诸如参加公选课、必修课、校内数学建模竞赛及个人擅长等因素,通过统计得以下表:

校内数学建模比赛 校一等奖 校二等奖 校三等奖 总和 参加必修课 6 7 4 17

4

本文来源:https://www.bwwdw.com/article/gbua.html

Top