中考数学二模试卷(含解析)501
更新时间:2024-07-04 00:33:01 阅读量: 综合文库 文档下载
浙江省杭州市滨江区2016年中考数学二模试卷
一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案. 1.如图,右侧立体图形的俯视图是( )
A. B. C. D.
2.在实数A.
,2π,,sin45°中,是有理数的是( ) D.sin45°
B.2π C.
3.下列各式中,无意义的是( ) A.
B.
C.
D.
4.下列计算正确的是( )
A.m+m=m B.m?m=m C.(m)=m D.m÷m=m 5.下列分式中,最简分式是( ) A.
B.
C.
D.
3
3
6
3
2
6
3
2
5
3
2
6.下列说法正确的是( )
A.在同一年出生的400人中至少有两人的生日相同
B.投掷一粒骰子,连投两次点数相同的概率与连投两次点数都为1的概率是相等的 C.从一副完整的扑克牌中随机抽取一张牌恰好是红桃K,这是必然事件 D.一个袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是
7.如图,某小区规划在一个长AD=40m,宽AB=26m的矩形场地ABCD上修建三条同样宽的通道(图中阴影部分),使其中两条与AB平行,另一条与AD平行,其余部分种植花草,要使每一块种植花草的场地面积都是144m2.若设通道的宽度为x(m),则根据题意所列的方程是( )
1
A.(40﹣x)(26﹣2x)=144×6 B.(40﹣2x)(26﹣x)=144×6 C.(40﹣2x)(26﹣x)=144÷6 D.(40﹣x)(26﹣2x)=144÷6
8.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为( )
A.5 B. C. D.
9.如图,在正五边形ABCDE中,对角线AD,AC与EB分别交于点M,N,则下列结论正确的是( )
A.EM:AE=2:C.AM:MN=
:
B.MN:EM=
D.MN:DC=
: :2
10.如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(0,2),某抛物线的顶点坐标为D(﹣1,1)且经过点B,连接AB,直线AB与此抛物线的另一个交点为C,则S
△BCD
:S△ABO=( )
2
A.8:1 B.6:1 C.5:1 D.4:1
二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.
11.数据2,4,4,4,6的众数是 ,平均数是 . 12.因式分解:xy﹣4y= .
13.已知y关于x的一次函数y=kx﹣8,函数图象经过点(﹣5,2),则k= ;当﹣3≤x≤3时,y的最大值是 .
14.如图,⊙O是Rt△ABC的内切圆,∠C=90°,AO的延长线交BC于点D,若AC=6,CD=2,则⊙O的半径 .
2
15.如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则有下列选项: ①∠ACD=60°; ②CB=6
;
③阴影部分的周长为12+3π; ④阴影部分的面积为9π﹣12
.
其中正确的是 (填写编号).
16.如图,已知点A在函数y=(x<0)图象上,过点A作AB∥x轴,且AB交直线y=x于点B,交y轴正半轴于点C.若AB2﹣AO2=4,则k= .
3
三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(6分)现有四个整式:x2﹣1,,
,﹣6.
(1)若选择其中两个整式用等号连接,则共能组成 个方程; (2)请列出(1)中所有的一元一次方程,并解方程. 18.(8分)如图,已知等腰直角△ABC,∠A=90°.
(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法); (2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.
19.(8分)为迎接G20峰会,某校开展了“手绘G20作品”美术比赛,且作品的评分只有60分,70分,80分,90分,100分这五种结果.现随机抽取其中部分作品,对其份数及成绩进行整理统计,制作如下两幅不完整的统计图.
(1)本次共抽取了 份作品;
(2)其中得分为80分的作品所占的比例为 ,得分为70分的作品有 份;
4
(3)已知该校收到参赛的作品为1500份,估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?
20.(10分)如图,已知平行四边形ABCD,点M,N分别在边AD和边BC上,点E,F在线段BD上,且AM=CN,DF=BE.求证: (1)∠DFM=∠BEN;
(2)四边形MENF是平行四边形.
21.(10分)如图,在平面直角坐标系中,点A,B分别在x轴正半轴与y轴正半轴上,线段OA,OB(OA<OB)的长是方程x(x﹣4)+8(4﹣x)=0的两个根,作线段AB的垂直平分线交y轴于点D,交AB于点C. (1)求线段AB的长; (2)求tan∠DAO的值;
(3)若把△ADC绕点A顺时针旋转α°(0<α<90),点D,C的对应点分别为D1,C1,得到△AD1C1,当AC1∥y轴时,分别求出点C1,点D1的坐标.
22.(12分)已知D为△ABC边BC上的一个动点(不与B,C重合),过D作DE∥AC交AB于点E,作DF∥AB交AC于点F. (1)证明:△BDE∽△DCF;
(2)若△ABC的面积为10,点G为线段AF上的任意一点,设FC:AC=n,△DEG的面积为S,求S关于n的关系式,并求S的最大值.
5
23.(12分)在平面直角坐标系中,已知y1关于x的二次函数y1=ax+bx+c(a≠0)的图象过点(0,1),且在y轴的左侧,函数值y1随着自变量x的增大而增大. (1)填空:a 0,b 0,c 0(用不等号连接);
(2)已知一次函数y2=ax+b,当﹣1≤x≤1时,y2的最小值为﹣且y1≤1,求y1关于x的函数解析式;
(3)设二次函数y1=ax+bx+c的图象与x轴的一个交点为(﹣1,0),且当a≠﹣1时,一次函数y3=2cx+b﹣a与y4=围.
x﹣c(m≠0)的图象在第一象限内没有交点,求m的取值范
2
2
6
2016年浙江省杭州市滨江区中考数学二模试卷
参考答案与试题解析
一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案. 1.如图,右侧立体图形的俯视图是( )
A. B. C. D.
【考点】简单组合体的三视图.
【分析】从上边看立体图形得到俯视图即可. 【解答】解:如图,右侧立体图形的俯视图是,
故选A
【点评】此题考查了简单组合体的三视图,俯视图即为从上面看几何体得到的视图. 2.在实数,2π,
,sin45°中,是有理数的是( ) A.
B.2π C.
D.sin45°
【考点】实数;特殊角的三角函数值.
【分析】根据有理数的概念和无理数的概念对各选项分析判断即可得解. 【解答】解:A、
=2
是无理数,故本选项错误;
B、2π是无理数,故本选项错误; C、
=﹣3是有理数,故本选项正确;
D、sin45°=是无理数,故本选项错误.
故选C.
7
【点评】本题考查了实数,特殊角的三角函数值,熟练掌握有理数与无理数的概念是解题的关键.
3.下列各式中,无意义的是( ) A.
B.
C.
D.
【考点】二次根式有意义的条件;立方根.
【分析】根据二次根式有意义的条件:被开方数为非负数,以及立方根的概念求解即可. 【解答】解:A式中被开方数小于0,故该式无意义; B、C、D三式均有意义. 故选A.
【点评】本题考查了二次根式有意义的条件以及立方根的知识,解答本题的关键是掌握二次根式有意义的条件:被开方数为非负数.
4.下列计算正确的是( )
A.m+m=m B.m?m=m C.(m)=m D.m÷m=m
【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 【分析】分别根据同底数幂的除法法则、幂的乘方与积的乘方及合并同类项的法则对各选项进行逐一判断即可.
【解答】解:A、m3+m3=2m3≠m6,故本选项错误; B、m?m=m≠m,故本选项错误; C、(m)=m≠m,故本选项错误; D、m3÷m2=m,故本选项正确. 故选D.
【点评】本题考查的是同底数幂的除法,熟知同底数幂的乘法与除法法则、合并同类项的法则是解答此题的关键.
5.下列分式中,最简分式是( ) A.
B.
C.
D.
3
2
6
5
3
2
5
6
3
3
6
3
2
6
3
2
5
3
2
8
【考点】最简分式.
【分析】根据最简分式的定义对四个分式分别进行判断即可. 【解答】解:A、原式=
,所以A选项错误;
B、是最简分式,所以B选项正确;
C、原式=D、原式=故选B.
,所以C选项错误; ,所以D选项错误.
【点评】本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.
6.下列说法正确的是( )
A.在同一年出生的400人中至少有两人的生日相同
B.投掷一粒骰子,连投两次点数相同的概率与连投两次点数都为1的概率是相等的 C.从一副完整的扑克牌中随机抽取一张牌恰好是红桃K,这是必然事件 D.一个袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是 【考点】概率的意义.
【分析】根据概率的意义以及随机事件和必然事件的定义对各选项分析判断即可得解. 【解答】解:A、在同一年出生的400人中至少有两人的生日相同,正确,故本选项正确; B、投掷一粒骰子,连投两次点数相同的概率是不相等,故本选项错误;
C、从一副完整的扑克牌中随机抽取一张牌恰好是红桃K,这是随机事件,故本选项错误; D、一个袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是,故本选项错误. 故选A.
【点评】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.
7.如图,某小区规划在一个长AD=40m,宽AB=26m的矩形场地ABCD上修建三条同样宽的通道(图中阴影部分),使其中两条与AB平行,另一条与AD平行,其余部分种植花草,要使
=,连投两次点数都为1的概率是
,
9
每一块种植花草的场地面积都是144m.若设通道的宽度为x(m),则根据题意所列的方程是( )
2
A.(40﹣x)(26﹣2x)=144×6 B.(40﹣2x)(26﹣x)=144×6 C.(40﹣2x)(26﹣x)=144÷6 D.(40﹣x)(26﹣2x)=144÷6 【考点】由实际问题抽象出一元二次方程.
【分析】设通道的宽度为x(m),于是六块草坪的面积为(40﹣2x)(26﹣x),根据面积之间的关系可列方程(40﹣2x)(26﹣x)=144×6. 【解答】解:设通道的宽度为x(m), 根据题意得(40﹣2x)(26﹣x)=144×6, 故选B.
【点评】本题考查的是一元二次方程的应用以及矩形面积计算公式,难度一般.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.
8.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为( )
A.5 B. C. D.
【考点】矩形的性质.
【分析】设BE=x,则EC=6﹣x,由△EBF∽△DCE,得问题.
【解答】解:设BE=x,则EC=6﹣x, ∵EF⊥ED, ∴∠FED=90°,
10
=,列出方程求出x,即可解决
∴∠FEB+∠DEC=90°, ∵∠DEC+∠EDC=90°,
∴∠FEB=∠EDC,∵∠B=∠C=90°, ∴△EBF∽△DCE, ∴∴
=
,
=,解得x=2或4(舍弃),
,DE=4
,DF=
=2
,
当x=2时,EF=2∴AM=ME=∵AM⊥ME, ∴∠AME=90°, ∴AE=故选B.
=,
=2,
【点评】本题考查矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.
9.如图,在正五边形ABCDE中,对角线AD,AC与EB分别交于点M,N,则下列结论正确的是( )
A.EM:AE=2:C.AM:MN=
:
B.MN:EM=
D.MN:DC=
: :2
【考点】正多边形和圆.
【分析】根据正五边形的性质得到∠DAE=∠DAE,∠ADE=∠AEM=36°,推出△AME∽△AED,根据相似三角形的性质得到,得到AE2=AD?AM,等量代换即可得到论.
11
【解答】证明:∵五边形ABCDE是正五边形, ∴DE=AE=AB,∠AED=∠EAB=108°, ∴∠ADE=∠AEM=36°, ∴△AME∽△AED, ∴
,
∴AE2=AD?AM, ∵AE=DE=DM, ∴DM=AD?AM, 设AE=DE=DM=2, ∴2=AM(AM+2), ∴AM=
﹣1,(负值设去),
﹣1,AD=
+1,
22
∴EM=BN=AM=∵BE=AD,
∴MN=BE﹣ME﹣BN=3﹣∴MN:CD=故选D.
,
:2,
【点评】本题考查了正五边形的性质、全等三角形的判定和性质,黄金分割,熟记正五边形的性质是解题的关键.
10.如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(0,2),某抛物线的顶点坐标为D(﹣1,1)且经过点B,连接AB,直线AB与此抛物线的另一个交点为C,则S
△BCD
:S△ABO=( )
A.8:1 B.6:1 C.5:1 D.4:1
12
【考点】二次函数的性质.
【分析】设直线AB的解析式为y=kx+b,二次函数的解析式为y=a(x+1)2+1,结合点的坐标利用待定系数法求出一次函数与二次函数的解析式,联立一次函数与二次函数解析式解出交点C的坐标,根据两点间的距离公式求出线段BC、AB的长度,再借用点到直线的距离公式(分子部分)寻找到点D、O到直线AB的距离间的关键,借助各比例关系利用三角形的面积公式即可得出结论.
【解答】解:设直线AB的解析式为y=kx+b,二次函数的解析式为y=a(x+1)2+1, 将点A(1,0)、B(0,2)代入y=kx+b中得:
,解得:
,
∴直线AB的解析式为y=﹣2x+2;
将点B(0,2)代入到y=a(x+1)+1中得: 2=a+1,解得:a=1,
∴二次函数的解析式为y=(x+1)+1=x+2x+2. 将y=﹣2x+2代入y=x2+2x+2中得: ﹣2x+2=x+2x+2,整理得:x+4x=0, 解得:x1=﹣4,x2=0, ∴点C的坐标为(﹣4,10).
∵点C(﹣4,10),点B(0,2),点A(1,0), ∴AB=∴BC=4AB.
∵直线AB解析式为y=﹣2x+2可变形为2x+y﹣2=0, ∴|﹣2+1﹣2|=3,|﹣2|=2. ∴S△BCD:S△ABO=4×3:2=12:2=6:1. 故选B.
【点评】本题考查了二次函数的性质、两点间的距离公式、点到直线的距离公式以及三角形的面积公式,解题的关键是求出两函数的解析式.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用待定系数法求出函数解析式是关键.
=
,BC=
=4
,
2
2
2
2
2
13
二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.
11.数据2,4,4,4,6的众数是 4 ,平均数是 4 . 【考点】众数;算术平均数.
【分析】利用算术平均数的求法求平均数,众数的定义求众数即可. 【解答】解:平均数为:(2+4+4+4+6)÷5=4; 数据4出现了3次,最多,众数为4. 故答案为4,4.
【点评】本题考查了众数及算术平均数的求法,属于基础题,比较简单.
12.因式分解:xy﹣4y= y(x﹣2)(x+2) . 【考点】提公因式法与公式法的综合运用.
【分析】首先提取公因式y,再利用平方差公式分解因式即可. 【解答】解:x2y﹣4y=y(x2﹣4)=y(x﹣2)(x+2). 故答案为:y(x﹣2)(x+2).
【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式分解因式是解题关键.
13.已知y关于x的一次函数y=kx﹣8,函数图象经过点(﹣5,2),则k= ﹣2 ;当﹣3≤x≤3时,y的最大值是 ﹣2 . 【考点】一次函数图象上点的坐标特征.
【分析】将点(﹣5,2)代入解析式即可求出k的值,根据增减性可知:k=﹣2<0,y随x的增大而减小,即x=﹣3时,y最大,求出最大值. 【解答】解:把(﹣5,2)代入y=kx﹣8中得: 2=﹣5k﹣8, k=﹣2,
∵k=﹣2<0,y随x的增大而减小, ∴当﹣3≤x≤3时,x=﹣3时,y最大, y=﹣3×(﹣2)﹣8=﹣2, 故答案为:﹣2,﹣2.
14
2
【点评】本题考查了利用直线上点坐标确定解析式,熟练掌握直线上任意一点的坐标都满足函数关系式y=kx+b;对于一次函数求极值问题可通过增减性求,也可以代特殊值求出.
14.如图,⊙O是Rt△ABC的内切圆,∠C=90°,AO的延长线交BC于点D,若AC=6,CD=2,则⊙O的半径
.
【考点】三角形的内切圆与内心.
【分析】首先证明四边形CEOF是正方形.设圆O的半径为r,则DE=2﹣r,OE=r,然后证明△OED∽△ACD,最后依据相似三角形的性质列方程求解即可. 【解答】解:∵⊙O是Rt△ABC的内切圆, ∴OF=OE,OF⊥AC,OE⊥BC, 又∵∠C=90°, ∴CEOF是正方形.
设圆O的半径为r,则DE=2﹣r,OE=r. ∵CEOF是正方形, ∴OE∥AC. ∴△OED∽△ACD. ∴
即
.
解得:r=. 故答案为:.
【点评】本题主要考查的是三角形的内心的性质、相似三角形的性质和判定、正方形的判定、切线的性质,依据相似三角形的性质列出关于r的方程是解题的关键.
15.如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则有下列选项:
15
①∠ACD=60°; ②CB=6
;
③阴影部分的周长为12+3π; ④阴影部分的面积为9π﹣12
.
其中正确的是 ①③④ (填写编号).
【考点】扇形面积的计算;弧长的计算;翻折变换(折叠问题).
【分析】①正确,先证明△BOD是等边三角形,再证明∠BCO=∠BCD=60°即可. ②错误,在RT△BOC中利用30°性质得到BC=4.
③正确.根据阴影部分周长=AC+CD+BD+
的长=AC+OC+BO+
的长即可解决问题.④正确.根据阴影部分面积=S扇形OAB﹣2S△BOC即可解决问题. 【解答】解:①正确.如图连接OD.
∵△BCD是由△BCO翻折得到, ∴BO=BD=OD,
∴△ODB是等边三角形, ∴∠DBO=60°, ∴∠CBO=∠CBD=30°, ∵∠COB=90°,
∴∠OCB=90°﹣∠CBO=60°=∠BCD,
∴∠ACD=180°﹣∠BCO﹣∠BCD=60°,故①正确.
②错误.在RT△BOC中,∵∠BOC=90°,OB=6,∠OBC=30°, ∴cos30°=
,
16
∴BC=4,故②错误.
的长=AC+OC+BO+
的长=12+
=12+3π,故③正
③正确.阴影部分周长=AC+CD+BD+确.
④正确.阴影部分面积=S扇形OAB﹣2S△BOC=?π?6﹣2××6×2故答案为①③④.
2
=18π﹣12,故④正确.
【点评】本题考查法则变换、扇形的面积、弧长公式等知识,解题的关键是发现△OBD是等边三角形,记住画出公式、扇形面积公式,属于中考常考题型.
16.如图,已知点A在函数y=(x<0)图象上,过点A作AB∥x轴,且AB交直线y=x于点B,交y轴正半轴于点C.若AB﹣AO=4,则k= ﹣2 .
2
2
【考点】反比例函数与一次函数的交点问题;反比例函数图象上点的坐标特征.
【分析】由点A在反比例函数图象上,设出点A的坐标为(m,),用含m、k的代数式表示出点B的坐标,再由两点间的距离公式表示出来AB和AO,两者做差,即可得出关于k的一元一次方程,解方程即可得出结论.
【解答】解:∵点A在反比例函数y=(x<0)图象上, ∴设点A的坐标为(m,), 将代入到y=x中,得:y=, ∴点B的坐标为(,).
∵点A(m,),点B(,),点O(0,0), ∴AB2=
∵AB2﹣AO2=4, ∴
2
2
,AO2=m2+.
﹣m2+=4,即﹣2k=4,
17
解得:k=﹣2. 故答案为﹣2.
【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、两点间的距离公式以及解一元一次方程,解题的关键是根据AB﹣AO=4找出关于k的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标,根据两点间的距离公式结合已知条件找出关于反比例函数系数k的方程是关键.
三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.现有四个整式:x﹣1,,
2
2
2
,﹣6.
(1)若选择其中两个整式用等号连接,则共能组成 5 个方程; (2)请列出(1)中所有的一元一次方程,并解方程. 【考点】解一元一次方程;方程的定义.
【分析】(1)根据整式列出方程,即可得到结果; (2)找出所有一元一次方程,求出解即可.
【解答】解:(1)若选择其中两个整式用等号连接,则共能组成5个方程; 故答案为:5 (2)
=0.5,
去分母得:x+1=2.5, 解得:x=1.5;
=﹣6,
去分母得:x+1=﹣30, 解得:x=﹣31.
【点评】此题考查了解一元一次方程,以及方程的定义,熟练掌握运算法则是解本题的关键.
18.如图,已知等腰直角△ABC,∠A=90°.
(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法); (2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.
18
【考点】翻折变换(折叠问题);作图—基本作图. 【分析】(1)利用尺规作出∠ABC的平分线BD即可.
(2)首先利用勾股定理求出BC,再求出A1C,根据△A1DC的面积=?A1C?A1D计算即可. 【解答】解:(1)∠ABC的平分线BD,交AC于点D,如图所示,
(2)在RT△ABC中,∵∠A=90°,AC=BC=1, ∴BC=
,
∵AB=A1B=AC=1, ∴A1C=
,
∵∠C=45°,∠DA1C=90°, ∴∠C=∠A1DC=45°
∴△A1DC是等腰直角三角形, ∴
=
.
【点评】本题考查尺规作图、翻折变换、勾股定理、三角形面积等知识,熟练掌握基本尺规作图是解题的关键,属于基础题,中考常考题型.
19.为迎接G20峰会,某校开展了“手绘G20作品”美术比赛,且作品的评分只有60分,70分,80分,90分,100分这五种结果.现随机抽取其中部分作品,对其份数及成绩进行整理统计,制作如下两幅不完整的统计图.
19
(1)本次共抽取了 120 份作品;
(2)其中得分为80分的作品所占的比例为 35% ,得分为70分的作品有 24 份; (3)已知该校收到参赛的作品为1500份,估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?
【考点】条形统计图;用样本估计总体;扇形统计图.
【分析】(1)根据90分所占的百分比和作品的份数,求出总数;
(2)根据总作品数和70分的百分比可得70分的数量,即可求出80分的人数和所占的百分比;
(2)根据总人数和成绩达到90分以上(包含90分)所占的百分比,再乘以总数1500即可得出答案.
【解答】解:(1)本次共抽取作品36÷30%=120(份),故答案为120;
(2)得分为70分的作品有120×20%=24(份), 得分为80分的作品所占的比例为:故答案为:35%,24;
(3)1500×(30%+10%)=600(份),
答:估计该校学生比赛成绩达到90分以上(含90分)的作品有600份.
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
20.(10分)(2016?拱墅区二模)如图,已知平行四边形ABCD,点M,N分别在边AD和边BC上,点E,F在线段BD上,且AM=CN,DF=BE.求证:
20
×100%=35%,
(1)∠DFM=∠BEN;
(2)四边形MENF是平行四边形.
【考点】平行四边形的判定与性质.
【分析】(1)由平行四边形的性质得到得AD∥BC,AD=BC,∠ADF=∠CBE,然后根据AM=CN得到DM=BN,从而证得△DMF≌△BNE,理由全等三角形对应角相等证得结论; (2)利用一组对边平行且相等的四边形为平行四边形进行判定即可. 【解答】证明:(1)由平行四边形ABCD得AD∥BC,AD=BC,∠ADF=∠CBE ∵AM=CN, ∴AD﹣AM=BC﹣CN, 即DM=BN, 又∵DF=BE, ∴△DMF≌△BNE, ∴∠DFM=∠BEN;
(2)由△DMF≌△BNE得NE=MF, ∵∠DFM=∠BEN得∠FEN=∠MFE, ∴MF∥NE,
∴四边形NEMF是平行四边形;
【点评】本题考查了平行四边形的判定与性质的知识,解题的关键是了解全等三角形的判定方法及平行四边形的判定方法,难度不大.
21.(10分)(2016?拱墅区二模)如图,在平面直角坐标系中,点A,B分别在x轴正半轴与y轴正半轴上,线段OA,OB(OA<OB)的长是方程x(x﹣4)+8(4﹣x)=0的两个根,作线段AB的垂直平分线交y轴于点D,交AB于点C. (1)求线段AB的长; (2)求tan∠DAO的值;
21
(3)若把△ADC绕点A顺时针旋转α°(0<α<90),点D,C的对应点分别为D1,C1,得到△AD1C1,当AC1∥y轴时,分别求出点C1,点D1的坐标.
【考点】几何变换综合题;线段垂直平分线的性质;勾股定理的应用;旋转的性质. 【分析】(1)先根据方程的解求得线段OA,OB的长,再根据勾股定理求得AB的长; (2)先根据线段垂直平分线的性质,得到AD=BD,再根据Rt△AOD中的勾股定理,求得OD的长,并计算tan∠DAO的值;
(3)先根据旋转的性质,求得AC1和C1D1的长,再根据OA=4,AC1∥y轴,求得点C1和点D1的坐标.
【解答】解:(1)由方程x(x﹣4)+8(4﹣x)=0,解得 x1=4,x2=8, 即OA=4,OB=8, ∴由勾股定理可得AB=
(2)∵CD为AB的垂直平分线, ∴AD=BD
∵在Rt△AOD中,OD+OA=AD 即OD+4=(8﹣OD), ∴OD=3 ∴
(3)由旋转可得,AC1=AC=2又∵OA=4,AC1∥y轴 ∴C1(4,
2
2
22
2
2
,C1D1=CD==
),D1(,)
22
【点评】本题主要考查了几何变换中的旋转变换,掌握线段垂直平分线的性质以及利用勾股定理列出方程是解题的关键.在图形旋转时,旋转前、后的图形全等,即对应边相等,对应角也相等.
22.(12分)(2016?拱墅区二模)已知D为△ABC边BC上的一个动点(不与B,C重合),过D作DE∥AC交AB于点E,作DF∥AB交AC于点F. (1)证明:△BDE∽△DCF;
(2)若△ABC的面积为10,点G为线段AF上的任意一点,设FC:AC=n,△DEG的面积为S,求S关于n的关系式,并求S的最大值.
【考点】相似形综合题.
【分析】(1)根据相似三角形的判定证明即可; (2)根据相似三角形的性质和二次函数的最值解答即可. 【解答】解:(1)∵DF∥AB, ∴△DFC∽△BAC,
23
∵DE∥AC, ∴△BED∽△BAC ∴△DFC∽△BED;
(2)∵△BED∽△DFC∽△BAC,FC:AC=n,△ABC的面积为10, ∴
,
,,
∵点G为线段AF上的任意一点,∴S=﹣10n2+10n=﹣10∴S的最大值是2.5.
【点评】此题考查相似三角形的综合题,关键是根据相似三角形的判定和性质进行解答.
23.(12分)(2016?拱墅区二模)在平面直角坐标系中,已知y1关于x的二次函数y1=ax+bx+c(a≠0)的图象过点(0,1),且在y轴的左侧,函数值y1随着自变量x的增大而增大. (1)填空:a < 0,b ≥ 0,c > 0(用不等号连接);
(2)已知一次函数y2=ax+b,当﹣1≤x≤1时,y2的最小值为﹣且y1≤1,求y1关于x的函数解析式;
(3)设二次函数y1=ax+bx+c的图象与x轴的一个交点为(﹣1,0),且当a≠﹣1时,一次函数y3=2cx+b﹣a与y4=围.
【考点】二次函数综合题.
【分析】(1)根据开口方向确定a的正负,再根据对称轴的位置确定b的值,根据y1=ax+bx+c(a≠0)的图象过点(0,1),得到c=1,由此即可判断.
(2)根据题意一次函数y2=ax+b的图象经过点(1,﹣),二次函数y1=ax2+bx+c(a≠0)的对称轴是y轴,由此即可解决问题.
(3)根据题意可知y3=2x+1,y4=mx﹣1,根据题意即可解决问题.
【解答】解:(1)由题意抛物线的对称轴在y轴的值右侧或y轴,开口向下, ∴a<0,﹣
2
2
2
,,
,
,
x﹣c(m≠0)的图象在第一象限内没有交点,求m的取值范
≥0,
24
∴b≥0,
∵y1=ax2+bx+c(a≠0)的图象过点(0,1), ∴c=1>0,
∴a<0,b≥0,c>0, 故答案为<,≤,>.
(2)∵y2=ax+b,当﹣1≤x≤1时,y2的最小值为﹣, ∴x=1时,y=﹣,即a+b=﹣, ∵y1≤1,
∴(0,1)是抛物线的顶点, ∴对称轴是y轴, ∴b=0, ∴a=﹣,
∴y1关于x的函数解析式为y=﹣x.
(3)∵二次函数y1=ax2+bx+c的图象与x轴的一个交点为(﹣1,0), ∴a﹣b+1=0,
∴b﹣a=1,a+1=b,∵c=1,a≠0, ∴y3=2x+1,y4=mx﹣1,
∵直线y3=2x+1与直线y4=mx﹣1的图象在第一象限内没有交点, ∴m<0或0<m≤2.
【点评】本题考查二次函数综合题、一次函数的性质、待定系数法等知识,解题的关键是灵活应用二次函数或一次函数的性质解决问题,学会利用函数图象解决问题,属于中考常考题型.
25
正在阅读:
中考数学二模试卷(含解析)50107-04
食品标准与技术法规复习题 201509-23
联合摄制影片协议书04-16
解放思想大讨论活动工作总结04-22
H3C实验报告1(1)要点02-27
工作计划开头语【最新9篇】03-22
弧焊变压器结构及交流电弧波形测试XX08-28
电石渣烘干破方案06-24
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 中考
- 试卷
- 解析
- 数学
- 501
- 氨中毒专项应急预案
- 小信号谐振放大器设计(2)
- 防治高脂血症的七大饮食原则
- 成都建委2011-172号关于印发《成都建筑工程施工图审查合格后的勘
- 2011届高考物理一轮复习重要题型名师精讲之曲线运动 万有引力与
- 240吨高温高压循环流化床锅炉运行规程全套大学毕设论文
- (微软一站式代码示例)编程规范
- 一年级语文综合实践活动教案
- 2010届高三物理一轮复习必备精品:第4章 曲线运动 万有引力定律
- 政经考试部分重点
- 人教版三年级上册第三四单元复习资料
- 冀教版三年级上册4—9单元数学教案
- 交直流调速报告 昆明学院
- 森林经理学实验报告2011D
- 2019届高考物理一轮复习微专题精炼: 第4章 曲线运动 万有引力与
- 华农财产保险股份有限公司个人意外伤害保险附加意外伤害住院津贴
- 高级面点师考试判断
- 黑龙江省建设工程预算软件 - 图文
- 新课标小学语文第二册全套教案
- 乐山市2015年初中毕业会考暨高中阶段教育学校招生统一考试地理试