2015-2016学年吉林省长春市名校调研九年级(上)第三次月考数学试

更新时间:2024-07-02 14:39:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2015-2016学年吉林省长春市名校调研九年级(上)第三次月考

数学试卷

一、选择题(共8小题,每小题3分,满分24分) 1.(3分)(2015秋?安岳县期中)下列二次根式中的取值范围是x≥3的是( ) A.

B.

C.

D.

2

2.(3分)(2015秋?长春月考)一元二次方程x+1=2x的根的情况是( ) A.没有实数根 B.有两个实数根

C.有两个相等的实数根 D.有两个不相等的实数根 3.(3分)(2013?重庆)已知△ABC∽△DEF,若△ABC与△DEF的相似比为3:4,则△ABC与△DEF的面积比为( ) A.4:3 B.3:4 C.16:9 D.9:16 4.(3分)(2015?温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是( )

A.

B.

C.

D.

5.(3分)(2015?湖北)下列说法中正确的是( )

A.“任意画出一个等边三角形,它是轴对称图形”是随机事件 B.“任意画出一个平行四边形,它是中心对称图形”是必然事件 C.“概率为0.0001的事件”是不可能事件

D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 6.(3分)(2015?东营)如图,有一个质地均匀的正四面体,其四个面上分别画着圆、等边三角形、菱形、正五边形,投掷该正四面体一次,向下的一面的图形既是轴对称图形又是中心对称图形的概率是( )

A.1

B.

C.

D.

7.(3分)(2015秋?长春月考)如图,AC是菱形ABCD的对角线,CE⊥AB于点E,且点E是AB的中点,则tan∠BCE的值是( )

第1页(共17页)

A.

B.2

C.

D.

8.(3分)(2015秋?长春月考)如图,在△ABC中,D为BC上一点,E为AD延长线上一点,BD:DC=5:3,∠C=∠E,若AD=4,BC=8,则DE的长为( )

A.

B.

C.5

D.3

二、填空题(共6小题,每小题3分,满分18分) 9.(3分)(2015秋?长春月考)计算:

= .

2

2

10.(3分)(2013秋?自贡期末)已知关于x的方程x+3x+k=0的一个根是﹣1,则k= . 11.(3分)(2015?邵阳)某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是 . 12.(3分)(2015?泗洪县校级模拟)如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC= .

13.(3分)(2015?邵阳)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了 米.

14.(3分)(2015?天水)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是 米.

第2页(共17页)

三、解答题(共10小题,满分78分)

15.(6分)(2015秋?长春月考)计算:(﹣)+2×.

2

16.(6分)(2013春?安徽期末)解方程x﹣1=4x. 17.(6分)(2015?酒泉)有三张卡片(形状、大小、颜色、质地都相等),正面分别写上整

22

式x+1,﹣x﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式. (1)请用画树状图或列表的方法,写出代数式所有可能的结果; (2)求代数式恰好是分式的概率.

18.(7分)(2015秋?长春月考)在某市组织的大型商业演出活动中,根据实际情况,活动组织单位决定对于个人购票采取优惠政策,每张门票的原定票价为400元,经过连续两次降价后降为324元,求平均每次降价的百分率. 19.(7分)(2015秋?长春月考)如图,在△ABC中,D、E分别为AB、CA的中点,连接DE、BE、CD,BE与CD交于点F,求

的值.

2

20.(7分)(2015秋?长春月考)如图,倾斜的大树与地面的夹角∠ABC为55°,高为3.5米的大客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)

[参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42].

21.(8分)(2013秋?罗甸县校级期末)如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成4等份;转盘B被均匀地分成6等份.有人为甲、乙两人设计了一个游戏,其规则如下:

(1)同时自由转动转盘A与B;

第3页(共17页)

(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针停留在某一数字为止),用所指的两个数字作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A指针指向3,转盘B指针指向5,3×5=15,按规则乙胜).

你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.

22.(9分)(2015?兴化市三模)如图,一楼房AB后有一假山,其斜坡CD坡比为1:,山坡坡面上点 E处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得点E的俯角为45°. (1)求点E距水平面BC的高度; (2)求楼房AB的高.(结果精确到0.1米,参考数据≈1.414,≈1.732).

23.(10分)(2015秋?长春月考)探究:如图1,四边形ABCD是矩形,E是CD中点,G是BC上一点,BG=CE,连接EG并延长交AB的延长线于点H,过点E作EH的垂线交AD于点F,求证:△BGH≌△DEF.

应用:如图2,四边形ABCD是菱形,∠D=60°,E、F分别是CD、AD上一点,以点E为旋转中心,将射线EF逆时针旋转120°,交BC于点G,交AB的延长线于点H,M是CD上一点,∠DFM=60°,FD=2cm,FE=3cm,BH=6cm,求HG的长度.

24.(12分)(2015秋?长春月考)如图,在矩形ABCD中,已知AB=6cm,BC=8cm,连接BD,动点P从点B出发沿BD向终点D运动,速度为1厘米/秒,过点P作BD的垂线交折线BA﹣AD于点E,交折线BC﹣CD于点F,点P运动的时间为t(秒). (1)当t为何值时,点E与点A重合;当t为何值时,点F与点C重合; (2)在运动过程中,直线EF扫过的面积为S(cm),求S与t的函数关系式.

2

第4页(共17页)

第5页(共17页)

列表: 第一次 第二次 x+1 2x+1 2﹣x﹣2 23 ﹣x﹣2 3 2 (2)代数式所有可能的结果共有6种,其中代数式是分式的有4种:,

,,,

所以P (是分式)=.

18.(7分)(2015秋?长春月考)在某市组织的大型商业演出活动中,根据实际情况,活动组织单位决定对于个人购票采取优惠政策,每张门票的原定票价为400元,经过连续两次降价后降为324元,求平均每次降价的百分率. 【解答】解:设平均每次降价的百分率为x,

2

由题意得,400×(1﹣x)=324,

解得:x1=0.1,x2=1.9(不合题意,舍去). 答:平均每次降价的百分率为10%. 19.(7分)(2015秋?长春月考)如图,在△ABC中,D、E分别为AB、CA的中点,连接DE、BE、CD,BE与CD交于点F,求

的值.

第11页(共17页)

【解答】解:∵D、E分别为AB、CA的中点, ∴DE为△ABC的中位线, ∴DE∥BC,DE=BC,

∴∠FDE=∠FCB,∠FED=∠FBC, ∴△FDE∽△FCB, ∴

=.

20.(7分)(2015秋?长春月考)如图,倾斜的大树与地面的夹角∠ABC为55°,高为3.5米的大客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)

[参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42].

【解答】解:如图:在AB上取点D,过点D作DE⊥BC于点E,则DE=3.5, ∵tan55°=∴BE=

=1.42,

=2.46≈2.5(米),

答:至少要离此树的根部B点2.5米才能安全通过.

21.(8分)(2013秋?罗甸县校级期末)如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成4等份;转盘B被均匀地分成6等份.有人为甲、乙两人设计了一个游戏,其规则如下:

(1)同时自由转动转盘A与B;

第12页(共17页)

(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针停留在某一数字为止),用所指的两个数字作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A指针指向3,转盘B指针指向5,3×5=15,按规则乙胜).

你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.

【解答】解:不公平.理由如下: 画树状图为:

所以甲胜的概率=

=,乙胜的概率=

=,

所以这样的规则不公平.

公平的规则可为:转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针停留在某一数字为止),用所指的两个数字求和,如果得到的和是偶数,那么甲胜;如果得到的和是奇数,那么乙胜. 22.(9分)(2015?兴化市三模)如图,一楼房AB后有一假山,其斜坡CD坡比为1:,山坡坡面上点 E处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得点E的俯角为45°. (1)求点E距水平面BC的高度; (2)求楼房AB的高.(结果精确到0.1米,参考数据≈1.414,≈1.732).

【解答】解:(1)过点E作EF⊥BC于点F. 在Rt△CEF中,CE=20,

2

2

2

=,

∴EF+(EF)=20, ∵EF>0, ∴EF=10.

答:点E距水平面BC的高度为10米.

第13页(共17页)

(2)过点E作EH⊥AB于点H. 则HE=BF,BH=EF.

在Rt△AHE中,∠HAE=45°, ∴AH=HE,

由(1)得CF=EF=10(米) 又∵BC=25米, ∴HE=25+10米,

∴AB=AH+BH=25+10+10=35+10答:楼房AB的高约是52.3米.

≈52.3(米),

23.(10分)(2015秋?长春月考)探究:如图1,四边形ABCD是矩形,E是CD中点,G是BC上一点,BG=CE,连接EG并延长交AB的延长线于点H,过点E作EH的垂线交AD于点F,求证:△BGH≌△DEF.

应用:如图2,四边形ABCD是菱形,∠D=60°,E、F分别是CD、AD上一点,以点E为旋转中心,将射线EF逆时针旋转120°,交BC于点G,交AB的延长线于点H,M是CD上一点,∠DFM=60°,FD=2cm,FE=3cm,BH=6cm,求HG的长度.

【解答】解:探究:∵E是CD中点, ∴ED=EC. ∵BG=CE, ∴ED=BG. ∵EF⊥EG, ∴∠HEF=90°,

∴∠DEF+∠CEG=90°. ∵四边形ABCD是矩形, ∴∠D=∠HBG=90°, ∴∠DEF+∠DFE=90°, ∴∠DFE=∠CEG. ∵AB∥CD,

第14页(共17页)

∴∠CEG=∠H, ∴∠DFE=∠H,

在△BGH和△DEF中,

∴△BGH≌△DEF(AAS);

应用:∵∠D=60°,∠DFM=60°, ∴△DFM是等边三角形, ∴FM=FD=2,∠DMF=60°, ∴∠FME=120°,

∴∠EFM+∠FEM=60°. ∵∠FEG=120°,

∴∠GEC+∠FEM=60°, ∴∠GEC=∠EFM.

∵四边形ABCD是菱形,

∴∠ABC=∠D=60°,AB∥CD, ∴∠HBC=120°,∠H=∠GEC,

∴∠HBG=∠FME=120°,∠H=∠EFM, ∴△HBG∽△FME, ∴

=

∵MF=2,FE=3,BH=6, ∴

=,

∴GH=9,

∴GH的长度为9cm. 24.(12分)(2015秋?长春月考)如图,在矩形ABCD中,已知AB=6cm,BC=8cm,连接BD,动点P从点B出发沿BD向终点D运动,速度为1厘米/秒,过点P作BD的垂线交折线BA﹣AD于点E,交折线BC﹣CD于点F,点P运动的时间为t(秒). (1)当t为何值时,点E与点A重合;当t为何值时,点F与点C重合;

2

(2)在运动过程中,直线EF扫过的面积为S(cm),求S与t的函数关系式.

【解答】解:(1)如图①所示,

第15页(共17页)

当点E与点A重合时,

∵∠APB=∠BAD=90°,∠ABP=∠DBA, ∴△ABP∽△DBA, ∴

=

,即

=

解得:BP=3.6,即t=3.6; 如图②所示,

当点F与点C重合时,

∵∠BPC=∠BCD=90°,∠PBC=∠CBD, ∴△BPF∽△BCD, ∴

=

,即

=

∴BP=6.4,即t=6.4;

(2)当0<t≤3.6时,如图③所示,

在运动过程中,直线EF扫过的面积为S=?t?t=当3.6<t≤6.4时,如图④所示,

t(cm);

2

2

第16页(共17页)

在运动过程中,直线EF扫过的面积为S=?[8﹣(10﹣t)+t]?6=当6.4<t≤10时,如图⑤所示,

t﹣;

运动过程中,直线EF扫过的面积为S=6×8﹣×(10﹣t)×(10﹣t)=﹣

t+

2

t﹣.

第17页(共17页)

本文来源:https://www.bwwdw.com/article/g6z.html

Top