线面平行证明的常用方法

更新时间:2023-06-07 00:03:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

线面平行证明的常用方法 张磊

立体几何在高考解答题中每年是必考内容,必有一个证明题;重点考察:平行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨:

方法一:中位线型:找平行线。

例1、如图⑴,在底面为平行四边形的四棱锥P ABCD中,点E是PD的中点.求证:PB//平面AEC

方法二:构造平行四边形,找平行线

AE//平面DCF.

分析:过点E作EG//AD交FC于G, DG就是平面AEGD

与平面DCF的交线,那么只要证明AE//DG即可。

例2、如图⑵, 平行四边形ABCD和梯形BEFC所在平面相交,BE//CF,求证:

方法三:作辅助面使两个平面是平行, 即:作平行平面,使得过所证直线作与已

知平面平行的平面

例3、如图⑷,在四棱锥O ABCD中,底面ABCD为菱形, M为OA的中点,N为BC的中点,证明:直线MN‖平面OCD

分析::取OB中点E,连接ME,NE,只需证平面MEN平面OCD。 方法四:利用平行线分线段成比例定理的逆定理证线线平行。

例4、已知正方形ABCD和正方形ABEFAC和BF上,且AM=FN. 求证:MN‖平面BCE.

如图⑷ 如图⑸ 如图⑹

例5.如图⑸,已知三棱锥P—ABC,A′,B′,C′是△PBC,△PCA,△PAB的重心.

(1)求证:A′B′∥面ABC;

(2)求S△A′B′C′:S△ABC .

方法五:(向量法)所证直线与已知平面的法向量垂直,关键:建立空间坐标系

(或找空间一组基底)及平面的法向量。

例6、如图⑹,在四棱锥S ABCD中,底面ABCD为正方形,

,E,F分别为AB,SC的中点.证明EF∥平面侧棱SD⊥底面ABCD

SAD;

分析:因为侧棱SD⊥底面ABCD,底面ABCD是正方形,所以很容易建立空间直角坐标系及相应的点的坐标。

证明:如图,建立空间直角坐标系D xyz.

设A(a, 0,0),S(0,0,b),则B(a,a,0),C(0,a,0), a E a,0 ,F2

bEF a,02

ab 0 , 22 . 因为y轴垂直与平面SAD,故可设平面的法向

量为n=(0,1,0) b则:EF n a,02 =0 ( 0,1,0)

因此 EF n

所以EF∥平面SAD.

本文来源:https://www.bwwdw.com/article/g5j1.html

Top