2016届高三数学一轮总复习:专题17-坐标系与参数方程(含解析,选
更新时间:2024-05-26 21:33:01 阅读量: 综合文库 文档下载
- 2016高三毕业时间推荐度:
- 相关推荐
专题十七、选修4-4 坐标系与参数方程
重点1 坐标系与参数方程
1.极坐标和直角坐标互化的前提条件是: (1)极点与直角坐标系的原点重合;
(2)极轴与直角坐标系的x轴正半轴重合;
(3)两种坐标系取相同的长度单位.设点P的直角坐标为(x,y),它的极坐标为(?,?),则互化公式是??x??cos??y??sin???2?x2?y2?或?,y;若把直角坐标化为极坐标,求极角?时,应注意判断点P所在的象限(即角?的终边的位置)?tan??x?以便正确地求出角?,在转化过程中注意不要漏解,特别是在填空题和解答题中,则更要谨防漏解.
2.消去参数是参数方程化为普通方程的根本途径,常用方法有代入消元法(包括集团代人法)、加减消元法、参数转化法和三角代换法等,转化的过程中要注意参数方程中x,y含有的限制条件,在普通方程中应加上这种限制条件才能保持其等价性.
3.参数方程的用途主要有以下几个方面:
(1)求动点(x,y)的轨迹,如果x,y的关系不好找,我们引入参变量t后,很容易找到x与t和y与t的等量关系式,消去参变量后即得动点轨迹方程.此时参数方程在求动点轨迹方程中起桥梁作用.
(2)可以用曲线的参数方程表示曲线上一点的坐标,这样把二元问题化为一元问题来解决,这也是圆锥曲线的参数方程的主要功能.
(3)有些曲线参数方程的参变量t有几何意义.若能利用参变量的几何意义解题,常会取得意想不到的效果.如利用直线标准参数方程中t的几何意义解题,会使难题化易、繁题化简.
[高考常考角度]
角度1 若曲线的极坐标方程为??2sin??4cos?,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为 .
解析:关键是记住两点:1、x??cos?,y??sin?,2、??x?y即可.
由已知??2sin??4cos????2?2?sin??4?cos???x2?y2?2y?4x,?x2?y2?4x?2y?0为所求.
角度2在极坐标系中,点 (?,222??) 到圆??2cos?的圆心的距离为( )
A. 2 B. 4??29 C. 1??29 D. 3 解析:极坐标(?,,2sin),即(1,3).圆的极坐标方程??2cos?可化为33?,则由两点间距离?2?2?cos?,化为直角坐标方程为x2?y2?2x,即(x?1)2?y2?1,所以圆心坐标为(1,0)
?)化为直角坐标为(2cos??公式d?(1?1)2?(3?0)2?3.故选D.
- 1 -
52??x?t??x?5cos?角度3 已知两曲线参数方程分别为?(0≤?<?)和?4(t?R),它们的交点坐标为 .
??y?sin???y?t52??x?t4x2??x?5cos?22?y?1(y?0),?解:?表示椭圆4表示抛物线y?x
55??y?sin??y?t??x2?y2?1??5??x2?4x?5?0??x?1或x??5(舍去)联立得?,
?y2?4x?5?25又因为y?0,所以它们的交点坐标为(1,)
5
角度4 直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线C1:
?x?3?cos?(?为参数)和曲线C2:??1上,则|AB|的最小值为 . ?y?4?sin??点评:利用化归思想和数形结合法,把两条曲线转化为直角坐标系下的方程.
2222解析:曲线C1的方程是(x?3)?(y?4)?1,曲线C2的方程是x?y?1,两圆外离,所以|AB|的最小值为
32?42?1?1?3.
?x?cos??x?acos?角度5 在平面直角坐标系xOy中,曲线C1的参数方程为?(?为参数),曲线C2的参数方程为??y?sin??y?bsin?(a?b?0,?为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:???与C1,C2各有一个交点.当??0时,这两个交点间的距离为2,当?=
?2时,这两个交点重合.
(Ⅰ)分别说明C1,C2是什么曲线,并求出a与b的值; (Ⅱ)设当?=的面积.
?4时,l与C1,C2的交点分别为A1,B1,当?=??4时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1x2y2解析:(Ⅰ)C1,C2的普通方程分别为x?y?1和2?2?1,故C1是圆,C2是椭圆.
ab22 当??0时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a?3. 当???2时,射线l与C1,C2交点的直角坐标分别为(0,1),(0,b),因为这两点重合,所以b?1.
22x2?y2?1. (Ⅱ)C1,C2的普通方程分别为x?y?1和9- 2 -
当???4时,射线l与C1交点A1的横坐标为x?2310,与C2交点B1的横坐标为x??. 210当????4时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此,四边形A1A2B2B1为梯形.
故四边形A1A2B2B1的面积为
(2x??2x)(x??x)2?.
25规避2个易失分点
易失分点1 参数的几何意义不明
1?x?t?2?典例 已知直线l的参数方程为?(t为参数),若以平面直角坐标系xOy中的O点为极点,Ox方向
?y?2?3t??22为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为??2cos(??(1)求直线l的倾斜角;
(2)若直线l与曲线C交于A,B两点,求|AB|.
易失分提示:对直线参数方程中参数的几何意义不明确导致错误.
?4).
??x?tcos?23?解析:(1)直线的参数方程可以化为?,根据直线参数方程的意义,直线l经过点(0,),倾斜角
2?y?2?tsin??23?为
?. 32,即23x?2y?2?0 22222)?(y?)?1, 22(2)l的直角坐标方程为y?3x?曲线C??2cos(???4)的直角坐标方程为(x?所以圆心(22,)到直线l的距离d?22|23?22?2??2|622? 412?4所以 |AB|?2?1?(6210 )?42
易失分点2 极坐标表达不准
典例 已知曲线C1,C2的极坐标方程分别为?cos??3,??4cos?,??0,则曲线C1与C2交点的极坐标为
- 3 -
_________________
???23???23??cos??3???????易失分提示: 本题考查曲线交点的求法,易错解为:由方程组? ???3???4cos??cos?????或?66??2(23,即两曲线的交点为
?6)或(23,??6)
???23???23???23??cos??3????????正解解析:由方程组?或 ????3??2k?????4cos??cos?????2k??6??6??2即两曲线的交点为(23,2k???)或(23,2k??),k?Z
66?在极坐标系中,有序实数对的集合{(?,?)|?,??R}与平面内的点集不是一一对应的.给出一个有序数对
(?,?),(?,?)在极坐标系中可以唯一确定一个点,但极坐标系中的一点,它的极坐标不是唯一的,若点M不是极点,
是它的一个掇坐标,那么M有无穷多个极坐标(?,??2k?)与(??,??(2k?1)?),k?Z
各类题型展现:
1. (本小题满分10分)选修4—4:坐标系与参数方程
在平面直角坐标系xOy中,椭圆C方程为??x?5cos?(?为参数)
?y?3sin?(1)求过椭圆的右焦点,且与直线??x?4?2t(t为参数)平行的直线l的普通方程.
y?3?t?(2)求椭圆C的内接矩形ABCD面积的最大值。
x2y2??1,?c?25?9?4,右焦点为(4,0), 解析:(1)由已知得椭圆的普通方程为
259直线的普通方程为x?2y?2?0,所以k?11,于是所求直线方程为y?(x?4)即x?2y?4?0. 22(2)S?4|xy|?60sin?cos??30sin2?, 当2??2. (本小题满分10分)选修4-4:坐标系与参数方程 在极坐标系中,已知圆C的圆心C(2, (Ⅰ)求圆C的极坐标方程;
?2时,面积最大为30.
?4),半径r?3.
?x?2?tcos??l??[0,) (Ⅱ)若,直线的参数方程为?(t为参数),直线l交圆C于A、B两点,求弦长AB4y?2?tsin??的取值范围.
- 4 -
解析:(Ⅰ)方法一:∵圆心C(2,?4)的直角坐标为(1,1),∴圆C的直角坐标方程为?x?1?2??y?1?2?3.
化为极坐标方程是?2?2??cos??sin???1?0.
方法二:如图,设圆C上任意一点M??,??,则CM?OM?OC?2OM?OCcos?COM
222(3)2??2?(2)2?2??2cos(??) 化简得?2?2??cos??sin???1?0.........4分
4(Ⅱ)将???x?2?tcos?22代入圆C的直角坐标方程?x?1???y?1??3,
?y?2?tsin?22得?1?tcos????1?tsin???3 即t?2t?sin??cos???1?0
2COM所以 t1?t2??2?sin??cos??,t1?t2??1. 故AB?t1?t2?∵??[0,x?t1?t2?2?4t1t2??4?sin??cos???4?22?sin2?,
2?)??2??[0,),∴22?AB?23 , 42即弦长AB的取值范围是[22,23)..................10分 3. (本小题满分10分)选修4-4:坐标系与参数方程
?2x?t???2已知直线l的参数方程是(t是参数),圆C的极坐标方程为??2cos(??). ?4?y?2t?42??2(Ⅰ)求圆心C的直角坐标;
(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值。
解析:(Ⅰ)由??2cos(???4)????2cos??2sin????2?2?cos??2?sin?
得 圆的直角坐标方程为x2?y2?2x?2y?0 即(x?2222)?(y?)?1, 22所以 圆心C的直角坐标为(22,?) 22(Ⅱ)由直线l上的点向圆C引切线,切线长为
(222222?)?(t?42?)?1?t2?8t?40?(t?4)2?24?26 2222所以,当t??4时,切线长的最小值为26
4.选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l上两点M,N的
- 5 -
极坐标分别为(2,0),(?x?2?2cos?23?(?为参数) ,),圆C的参数方程?32?y??3?2sin?(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;
(Ⅱ)判断直线l与圆C的位置关系。
解析:(Ⅰ)由题意知,M,N的直角坐标为M(2,0),M(0,233),因为P是线段MN中点,则P(1,) 33因此OP直角坐标方程为 y?3x 323) 3(Ⅱ)因为直线l上两点M(2,0),M(0,∴l的方程为:
xy??1即x?3y?2?0,又圆心(2,?3),半径r?2. 2233所以d?|2?3?2|3??2?r,故直线l和圆C相交. 22
5.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,圆C1:x2?y2?4,圆C2:(x?2)2?y2?4
(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示)
(2)求圆C1与圆C2的公共弦的参数方程
??=2?解析:圆C1的极坐标方程为?=2,圆C2的极坐标方程为?=4cos?,解?得?=2,?=?,
3??=4cos?
故圆C1与圆C2交点的坐标为(2,(2)(解法一)由??),(2,?) ……5分 注:极坐标系下点的表示不唯一
33??x=?cos?,得圆C1与圆C2交点的直角坐标为(1,3),(1,?3)
?y=?sin??x?1故圆C1与圆C2的公共弦的参数方程为?,?3?t?3 (t为参数)
?y?t?x?1(或参数方程写成?,?3?y?3) … 10分
?y?y
?x=?cos?1x?1(解法二)将代入?,得?cos?=1,从而?=
cos?y=?sin???x?1??于是圆C1与圆C2的公共弦的参数方程为?,???? … 10分
3?y?tan?3- 6 -
极坐标分别为(2,0),(?x?2?2cos?23?(?为参数) ,),圆C的参数方程?32?y??3?2sin?(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;
(Ⅱ)判断直线l与圆C的位置关系。
解析:(Ⅰ)由题意知,M,N的直角坐标为M(2,0),M(0,233),因为P是线段MN中点,则P(1,) 33因此OP直角坐标方程为 y?3x 323) 3(Ⅱ)因为直线l上两点M(2,0),M(0,∴l的方程为:
xy??1即x?3y?2?0,又圆心(2,?3),半径r?2. 2233所以d?|2?3?2|3??2?r,故直线l和圆C相交. 22
5.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,圆C1:x2?y2?4,圆C2:(x?2)2?y2?4
(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示)
(2)求圆C1与圆C2的公共弦的参数方程
??=2?解析:圆C1的极坐标方程为?=2,圆C2的极坐标方程为?=4cos?,解?得?=2,?=?,
3??=4cos?
故圆C1与圆C2交点的坐标为(2,(2)(解法一)由??),(2,?) ……5分 注:极坐标系下点的表示不唯一
33??x=?cos?,得圆C1与圆C2交点的直角坐标为(1,3),(1,?3)
?y=?sin??x?1故圆C1与圆C2的公共弦的参数方程为?,?3?t?3 (t为参数)
?y?t?x?1(或参数方程写成?,?3?y?3) … 10分
?y?y
?x=?cos?1x?1(解法二)将代入?,得?cos?=1,从而?=
cos?y=?sin???x?1??于是圆C1与圆C2的公共弦的参数方程为?,???? … 10分
3?y?tan?3- 6 -
正在阅读:
2016届高三数学一轮总复习:专题17-坐标系与参数方程(含解析,选05-26
日语论文: 中日婚葬祭中的色彩文化比较05-13
山东省临沂市郯城一中2013届高三1月月考数学理试题含答案05-31
设计部图纸会审及设计交底管理制度04-05
天津地铁信号系统UPS电源配置的方案研究05-12
仿写珍珠鸟写小狗作文06-18
四种性格类型测试原题04-26
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 一轮
- 坐标系
- 方程
- 高三
- 复习
- 解析
- 参数
- 数学
- 专题
- 2016
- 17
- 胜利行政审批管理系统培训教程
- 工程力学(第4次作业)
- 现浇混凝土路面作业指导书
- (湘少版)六年级英语上册教案 unit9
- 考研论说文总结
- 混凝土专项施工方案
- 财务管理(清华大学出版社)课后答案及考试习题
- 尔雅基础生命科学期末考试答案 (2)
- 2017年中国养老市场供需预测及投资前景评估(目录) - 图文
- 立体构成课程教学大纲
- 2018年中国猕猴桃发展现状与市场前景分析(目录) - 图文
- 苯加氢项目可行性研究报告
- 九年级 第6课 乘坐飞机的常识 教案
- 千斤顶设计
- 一课一练易错题(力~机械能)
- 博星卓越客户关系管理使用说明书
- 《信息分析方法》习题
- 2018民主评议党员登记表个人自评
- Spa设计要求-Chinese
- 《电力安全作业规程》标准化试题 - 热力机械部分1