如何使数学教学成为数学活动的教学
更新时间:2023-08-05 12:40:01 阅读量: 实用文档 文档下载
如何使数学教学成为数学活动的教学
前苏联著名教育家斯托利亚尔在他所著的《数学教育学》一书中指出:数学教学是数学活动的教学(思维活动的教学)。”这种提法,是符合数学教育发展要求的,在数学教育改革的今天,使数学教学成为数学活动的教学非常必要。
所谓数学活动是指把数学教学的积极性概念作为具有一定结构的思维活动的形式和发展来理解的。按这种解释,数学活动教学所关心的不是活动的结果,而是活动的过程,让不同思维水平的儿童去研究不同水平的问题,从而发展学生的思维能力,开发智力。
那么,要想使数学教学成为数学活动的教学主要应考虑哪几个问题呢?下面谈谈笔者一些想法。
一、考虑学生现有的知识结构
知识和思维是互相联系的,在进行某种思维活动的教学之前,首先要考虑学生的现有知识结构。
什么是知识结构?一般人们认为:在数学中,包括定义、公理、定理、公式、方法等,它们之间存在的联系以及人们从一定角度出发,
用某种观点去描述这种联系和作用,总结规律,归纳为一个系统,这
就是知识结构。在教学中只有了解学生的知识结构,才能进一步了解思维水平,考虑教新知识基础是否够用,用什么样的教法来完成数学活动的教学。
例如:在讲解一元二次方程[a (x) 2+bx+c=0 a工时,讨论它的解,
须用到配方法,或因式分解法等等,那么上课前教师要清楚这些方法学生是否掌握,掌握程度如何,这样,活动教学才能顺利进行。
二、考虑学生的思维结构
数学教学是数学思维活动的教学,进行数学教学时自然应考虑学生现有的思维活动水平。
心理学早已证明,思维能力及智力品质都随着青少年年龄的递增而发展,学生的思维水平在不同的年龄阶段上是不相同的。斯托利亚尔在《数学教育学》中介绍了儿童在学习几何、代数时的五种不同水平,在这五个阶段上,学生掌握知识,思考方式、方法,思维水平都有明显差异。因此,要使数学教学成为数学活动的教学必须了解学生的思维水平。下面谈谈与学生思维水平有关的两个问题。
1.中学生思维能力之特点
我们知道,中学生的运算思维能力处于逻辑抽象思维阶段,尽管思维能力的几个方面的发展有所先后,但总的趋势是一致的。初一学生的运算能力与小学四、五年级有类似之处,处于形象抽象思维水平;初二与初三学生的运算能力是属于经验型的抽象逻辑思维;高一与高二学生的运算能力的抽象思维,处在由经验型水平向理论型水平的急剧转化的时期。从概括能力、空间想象能力、命题能力和推理能力四项指标来看,初二年级是逻辑抽象思维的新的起步,是中学阶段运算思维的质变时期,是这个阶段的关键时期。高一年级是逻辑抽象思维阶段中趋于初步定型的时期,高中之后,学生的运算思维走向成熟。总的来说,中学生思维有如下特点。
首先,整个中学阶段,学生的思维能力得到迅速发展,他们的抽象逻辑思维处于优势地位,但初中学生的思维和高中学生的思维是不同的。初中学生的思维,抽象逻辑思维虽然开始占优势,可是在很大程度上还属于经验型,他们的逻辑思维需要感性经验的直接支持。而高中学生的抽象逻辑思维则属于理论型的,他们已经能够用理论作指导来分析、综合各种事实材料,从而不断扩大自己的知识领域。也只有在高中学生那里,才开始有可能初步了解对立统一的辩证思维规律。
其次,初中二年级是中学阶段思维发展的关键期。从初中二年级开始,中学生抽象逻辑思维开始由经验型水平向理论型水平转化,到高中一、二年级,这种转化初步完成,这意味着他们的思维趋向成熟这就要求教师,要适
应他们思维发展的飞跃时期来进行适当的思维训练,使他们的思维能力得到更好的发展。
2.学习数学的几种思维形式
(1)逆向思维。与由条件推知结论的思维过程相反,先给出某个结论或答案,要求使之成立各种条件。比如说,给一个浓度问题,我们列出一个方程来;反过来,给一个方程,就能编出一个浓度方面的题目。后者就属于逆向型思维。
(2)造例型思维。某些条件或结论常常要用例子说明它的合理性,也常常要用反例证明其不合理性。根据要求构造例子,往往是由抽象回到具体,综合运用各种知识的思考过程。例如:试求其反函数等于自身的函数。
(3)归纳型思维。通过观察,试验,在若干个例子中提出一般规
律。
(4)开放型思维。即只给出研究问题的对象或某些条件,至于由此可推知的问题或结论,由学生自己去探索。比如让学生观察y=sinx 的图象,说出它的主要性质,并逐一加以说明。
了解了学生的思维特点和数学思维的几种主要形式,在教学中,结合教材的特点,运用有效的教学方法,思维活动的教学定能收到良好效果。
三、考虑教材的逻辑结构
我们现有的中学数学教材内容有的是按直线式排列,有的是按螺旋式排列。
如果进行数学活动的教学,教材的逻辑结构就应有相应的变化。比方说,指数、对数、开方三种不同形式都可表示为:a、b、N 之间的关系a的b次幕等于N,是否可以把它们安排在一起学习。再比方说,关于一元一次方程应用题,中学课本里有浓度问题、行程问题、工程问题、等积问题,在讲解时,可用一个方程表示不同问题,使他们得到统一,只是问题形式不同而已,其方程形式没有什么本质差异,可一次讲完几个问题。而现有中学教材把它们分开,使学生觉得似乎几种问题毫不相干。因为这些问题具体不同的思维形式,要受小学、初
中和高中学生各阶段思维发展不同特点的制约
数学思维活动的教学,就是要尽量克服这些制约,使学生在短期内高质量获取知识,大幅度提高思维能力,完成学习任务。
在考虑教材逻辑结构时,还应明确的一个问题是教材内容的特点,即初等数学有些什么特点,对它应有一个总的认识。
1.初等数学是相对于抽象程度来说的,其内容方法都比较直观具体,研究的对象大多可以看得见、摸得着,抽象程度不深,离开现实不远,几乎直接同人们的经验相联系。
2.初等数学是一门综合性数学,它数形并举,内容多种多样,方法应有尽有,自然分成几个部分,各部分又相互渗透,相互为用。
3.初等数学处于基础地位。因为无论数学多么高深,总离不开四则运算,总要应用等式、不等式和基本图形分析。初等数学又是整个数学的土壤和源泉,各专业数学领域几乎都是在这块土壤中发育成长起来的。
4.初等数学的普通教育价值。对中小学生来说,它的智能训练价值
远远超过了它的实用价值
5.与高等数学相互渗透,相互为用。一方面,由于实践中某些问题的出现,使初等方法被深入研究和发展成专门的数学分支,另一方面是高等数学中许多专题的初等化、通俗化。
正在阅读:
如何使数学教学成为数学活动的教学08-05
机电一体化专业课程大纲总汇08-30
学习严禁谋取不正当利益规定方案07-19
2011届高考地理专题复习检测1509-25
感恩父母演讲稿600字【三篇】.doc05-08
我最崇拜的比尔盖茨04-25
绿色植物对有机物的利用03-16
初中英语阅读课教学模式研112-01
国际货币体系概述习题与答案03-24
相声打电话02-17
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 数学教学
- 数学
- 成为
- 教学
- 活动
- 如何
- 烟台市汽车零部件行业企业名录1079家
- 外国语实验学校初三(5)班班主任工作计划
- 辽阳市中考满分作文-平凡的引路人
- 高中学生数学思维障碍的成因及突破
- 读《红与黑》有感
- 再生资源科学与技术专业实习总结范文
- 教你一次打开多个Excel工作表
- 滑轮及其应用说课稿(含说明)
- 2014陕西公务员面试政策之面试流程
- 山西大学商务学院学生公寓登陆校园网流程
- sql_server_2005_在win7安装教程
- 书作文之我喜欢的书日语作文
- 高等数学答案_第四册_四川大学编
- 驾驶证扣分(机动车驾驶常识普及)
- 哥林多后书第11章
- 人力资源管理师三级操作技能练习题(3)
- 第2节_金属的腐蚀和防护
- 现行国家标准列表
- 《公司理财》练习题40题
- 洋务运动的历史作用及其失败原因