Influence of mix proportions on rheology of cement grouts containing limestone powder
更新时间:2023-06-10 08:05:01 阅读量: 实用文档 文档下载
- influence推荐度:
- 相关推荐
Cement&ConcreteComposites25(2003)
737–749
/locate/cemconcomp
In uenceofmixproportionsonrheologyofcementgrouts
containinglimestonepowder
LucieSvermova,MohammedSonebi*,PeterJ.M.Bartos
DepartmentofCivilEngineering,AdvancedConcreteandMasonryCentre,UniversityofPaisley,PaisleyPA12BE,UK
Received27May2002;accepted30September2002
Abstract
Inthispapertheparametersofcementgrouta ectingrheologicalbehaviourandcompressivestrengthareinvestigated.Factorialexperimentaldesignwasadoptedinthisinvestigationtoassessthecombinede ectsofthefollowingfactorson uidity,rheologicalproperties,inducedbleedingandcompressivestrength:water/binderratio(W/B),dosageofsuperplasticiser(SP),dosageofviscosityagent(VA),andproportionoflimestonepowderasreplacementofcement(LSP).Mini-slumptest,Marshcone,Lombardiplatecohesionmeter,inducedbleedingtest,coaxialrotatingcylinderviscometerwereusedtoevaluatetherheologyofthecementgroutandthecompressivestrengthsat7and28daysweremeasured.Atwo-levelfractionalfactorialstatisticalmodelwasusedtomodelthein uenceofkeyparametersonpropertiesa ectingthe uidity,therheologyandcompressivestrength.Themodelsarevalidformixeswith0.35–0.42W/B,0.3–1.2%SP,0.02–0.7%VA(percentageofbinder)and12–45%LSPasreplacementofcement.Thein uencesofW/B,SP,VAandLSPwerecharacterisedandanalysedusingpolynomialregressionwhichcanidentifytheprimaryfactorsandtheirinteractionsonthemeasuredproperties.Mathematicalpolynomialsweredevelopedformini-slump,platecohesionmeter,inducingbleeding,yieldvalue,plasticviscosityandcompressivestrengthasfunctionofW/B,SP,VAandproportionofLSP.Thestatisticalapproachusedhighlightedthelimestonepowdere ectandthedosageofSPandVAonthevariousrheologicalcharacteristicsofcementgrout.
Ó2002ElsevierLtd.Allrightsreserved.
Keywords:Compressivestrength;Grout;Inducedbleeding;Limestonepowder;Mini-slump;Rheology;Superplasticizer;Viscosityagent;Water/binder
1.Introduction
Cement-basedgroutsarewidelyusedininjectiongroutingofcracksinmassivestructuressincetheirphysicalandmechanicalpropertiescanbeeasilycon-trolled.Therheologicalbehaviourofspecialcementgroutsintendedfortheunderwatersealingofcracksindams,o shorestructures,massivefoundations,or s-suresinrockcanbeenhancedbytheincorporationofviscosityagent(VA)[1,2].GroutscontainingVAarealsousedfor llingpost-tensioningducts,whereitisimportanttoensurehighresistancetosedimentationandbleeding,henceensuringcorrosionprotectionofstressedtendons[3].Admixturesmainlya ectthe owbehaviourofthecementpastewithoutalteringthecomposition.Therefore,itseemsreasonabletotryto
Correspondingauthor.Tel.:+44-141-849-4216;fax:+44-141-848-3275.
E-mailaddress:mohammed.sonebi@paisley.ac.uk(M.Sonebi).0958-9465/$-seefrontmatterÓ2002ElsevierLtd.Allrightsreserved.doi:10.1016/S0958-9465(02)00115-4
*
studythee ectofwater/binderandadmixtures,chemi-calandmineral,byonlytestingthecementpaste.Therheologicalmeasurementsoncementpastewereusedtoassessthefreshproperties.Viscosityagentsarealsousedingroutsfortherepairofdeterioratedstructuresbyinjection.
Viscosityagentsarerelativelynewadmixturesusedtoenhancethecohesionandstabilityofcement-basedsys-tems[4–10].SuchVAsarewater-solublepolysaccharidesthatenhancethewaterretentioncapacityofpaste[4,5,7–10].Theuseofviscosityagentincreasestheyieldvalueandplasticviscosityofcement-basedgrout,thusneces-sitatingincreaseinwater/binderorsuperplasticiserdos-agetoinsurealowyieldstressnecessaryforproperpenetrability,spreadingandcontrolsedimentation[4,10].Severalresearchershaverelatedtheimprovementinrheologicalpropertiesandtheperformanceofcement-basedgrouttotheadditionofsuperplasticiser(SP)andVA[4–10].Forexample,forunderwatercement-basedgrout,mini-slump,washoutresistanceandresidual
738L.Svermovaetal./Cement&ConcreteComposites25(2003)737–749
compressivestrengtharehighlyin uencedbywater/binderratio(W/B),VAandSPdosages[7–9].Thewash-outresistanceimprovesasVAcontentincreasesforagivenW/BdespitethegreaterdosageofSPnecessarytomaintain uidity[7–9].ForagivenW/Bof0.40,anin-creaseinmini-slumpduetoagreaterdosageofSPcanincreasethewashoutmasslossandreduceresidualstrength,regardlessofthedosageofVA[9].Anoptimi-sationisthereforenecessarytoestablishabalancebe-tweenthedosagesofVAandSP,theW/Bratioandtheproportionofmineraladmixture(limestonepowder, yash,silicafume,etc.)toensuresuitable owandpene-trationandreducethebleeding.ThemixoptimisationofgroutoftennecessitatesseveraltrialbatchestoachieveabalancebetweenthemineralandchemicaladmixturesandW/Btoensuresuitable uidity,stabilityandme-chanicalproperties,someofwhichparametershaveoppositee ects.Forthisreasonthestatisticalmodellingapproachwasusedinordertoreducethenumberoftrialbatches.Nehdiandco-workers[11,12]reportedthatthelimestonemicro llerreplacementofcementslightlyincreasedtheyieldvalueofcementpasteanddecreaseditsplasticviscosity,whichimpliesbetterstabilityand owabilityofthecementpaste.However,increasingthelimestonemicro llercontentsreducedtheinducedbleedingofcementpasteonlyathighW/Bratiosanddidnotseemtohaveasigni cante ectatlowW/B[11,12].Theaimofthisstudyistoevaluatethee ectoftheW/B,thedosagesofSPandVA,andtheproportionoflimestonepowderreplacementofcementontherhe-ologicalpropertiesandthecompressivestrength(fc0)at7and28daysofgroutsusingastatisticaldesignapproachandanalysisofexperiments[13].Themini-slumptest,Marshcone,Lombardiplatecohesionmeter,inducedbleedingtest,andcoaxialrotatingcylinderviscometer
Table1
Mixproportionforgroutsusedinthetwo-levelfractionalfactorialdesign
Codedvalues
W/B
Levelsoffactors
1234567891011121314151617
)11)11)11)1100000.140.430.710.43)0.14
SP)1)111)1)11100000.000.330.440.33)0.56
LSP)1)1)1)1111100000.09)0.820.390.24)0.52
wereusedfortestingthebehaviouroffreshcementgrouts.Thecompressivestrengthsofgroutsat7and28daysofagewerealsomeasured.Theestablishedmodelscanidentifyparametersandthetwo-wayinteractionsthathavesigni cante ectontherheologicalpropertiesandcompressivestrengthofgrouts.Themodelscanbeusedtoevaluatethepotentialin uenceofadjustingmixvariablesongroutpropertiesrequiredtoensuresuc-cessfuldevelopmentofgrout.Suchsimulationcanfa-cilitatethetestprotocolneededtooptimizegroutwithagivensetofperformancecriteriathatcanbetriedinthelaboratory.
2.Statisticaldesignapproach
Thetechniqueofanalysisusedwasastatisticalanalysisoftheresultsobtainedfromasetofexperiments[13].Thistechniqueappliedtocementmaterialgroutcangivealotofinformationfromafewexperiments.A24À1fractionalstatisticalexperimentaldesign(2kÀ1¼8)wasusedtoevaluatethein uenceoftwodi erentlevelsforeachindependentvariableontherelevantgroutproperties.Fourkeyparameters(k¼4)thatcanhavesigni cantin uenceonmixcharacteristicsofcementgroutwereselectedtoderivemathematicalmodelsforevaluatingrelevantproperties.ThefourvariableswereW/B,dosagesofSPandVA,andproportionofLSPasreplacementofcement.Themodelledexperimentalre-gionconsistedofmixesrangingbetweencodedvariablesof)1toþ1.ThederivedstatisticalmodelsarevalidformixesmadewithrangesofW/Bof0.35–0.42,dosagesofVAof0.02–0.07%,bymassofbinder(or0.057–0.166%ofwater),SPof0.3–1.2%,bymassofbinder,andtheproportionofLSPfrom12to45%(Table1).Themodel
Actualvalues
VA
W/B
SP(%)
LSP(%)
VA(%)
)10.350.312.00.0210.420.312.00.0710.351.212.00.07)10.421.212.00.0210.350.345.00.07)10.420.345.00.02)10.351.245.00.021.042.12.45.00070.0385.075.28.500450.0385.075.28.500450.0385.075.28.500450.0385.075.28.50045)0.60)0.201.00)0.20)0.60
0.390.400.410.400.38
0.750.900.950.900.50
30.015.035.032.520.0
0.030.040.070.040.03
Centrepoints
Pointsofveri cation
L.Svermovaetal./Cement&ConcreteComposites25(2003)737–749739
consistedofeightfactorialspointswhereeachvariablewas xedattwodi erentlevels.
Fourreplicatecentralpointswerepreparedtoesti-matethedegreeofexperimentalerrorforthemodelledresponses.Thecentralpointsconsistedofmixeswithvariablescorrespondingto0.385,0.75%,0.045%,and28.5%forW/B,dosageofSP,VAandLSP,respectively.Finally, verandommixeswereproducedtoestablishtheaccuracyofthederivedmodels.Themixeswereproducedandtestedinrandomorder,whichisoneoftherequirementsoffactorialexperimentaldesign.
Thefreshcementgroutsweretestedwithmini-slumptest,Marshcone,Lombardiplatecohesionmeter,in-ducedbleedingtest,andcoaxialrotatingcylindervis-cometer.Thecompressivestrengthsweremeasuredat7and28days.
The17mixcombinations,expressedincodedandactualvalues,consideredintheexperimentaldesignofgroutsarelistedinTable1.Thecodedfactorsofvari-ablesarecalculatedasfollows:
CodedFactor¼ðActualvalueÀFactormeanÞ=
ðRangeofthefactorialsvalues=2Þ
CodedW=B¼ðActualW=BÀ0:385Þ=0:035CodedVA¼ðActualVAÀ0:045Þ=0:025CodedSP¼ðActualSPÀ0:75Þ=0:45CodedLSP¼ðActualLSPÀ28:5Þ=16:5
3.Materialproportionsandtestingprocedures
ThegroutsinvestigatedinthisstudywerepreparedusinganordinaryPortlandcementandlimestonepowder.Thechemicalandphysicalpropertiesofce-mentandlimestonepowderarepresentedinTable2.Thelimestonepowderwasproducedfromcarbonifer-ouslimestoneofaveryhighpurityandwas nerthancement.Thelimestonehadgradingof98%<45and25%<5lm.
Anewgenerationofsuperplasticiseronthebasisofmodi edpolycarboxylateswasusedwithasolidcontentof30%andspeci cgravityof1.11.TheviscosityagentwastheKelco–Cretewelangumthatisahighmolecularweight,microbialpolysaccharide.Thewelangumwassuppliedinapowdergum.
Allgroutmixeswerepreparedina5lplanar-actionhigh-shearmixer.Themixingtapwaterhadatemper-atureof16Æ1°C,whichwasmeasuredbeforemixingstarted.Theviscosityagentwasmixedwithcement.Thesuperplasticiserwasaddedtothewaterandmixedtogether.Mixingtimewasmeasuredfromwhenthelimestonepowder(the rstsolidcomponent)wasaddedintothemixofwaterandsuperplasticiser.Finally,themixofcementandviscosityagentwasaddedandallcomponentsweremixedfor7minfromthestartof
Table2
Chemicalandphysicalpropertiesofcementandlimestonepowder
Cement
LimestonepowderSiO220.8–Al2O35.0
–Fe2O3
3.2–CaO63.7–MgO2.6
0.2Na2Oeq.0.39–FreeCaO1.6–LOI0.65–CaCO3–99Relativedensity3.142.65Speci csurfacearea385
–
(m2/kg)
Standardcompressivestrength(MPa)Age(d)Cement741.528
57.8
measuringtime.Thegrouttemperaturefollowingtheendofmixingwasmaintainedat20Æ2°C.
Followingtheendofmixing,thepropertiesofthefreshcementgroutweremeasured.Thefollowingtestsofthefreshcementgroutwerecarriedout(the guresinbracketsshowtherangeoftimeswhentheindividualtestsstartafter nishingofmixing):mini-slumptest(1–2min),Marshcone(4–5min),Lombardiplatecohesionmeter(10–15min),coaxialcylinderrotationviscometer(10–20min),inducedbleedingtest(20–30min)andunitweight.Threecylinderswith50Â55-mmdiameterandheightwerecasttodetermine7and28dayscompressivestrength.
Themini-slumptestisbasedonthemeasurementofthespreadofgroutplacedintoacone-shapedmould.Themini-slumpconehasanupperdiameterof19mm,alowerdiameterof38.1mm,andaheightof52.7mm.Theconeisplacedinthecentreofasmoothplateandthespreaddiameterofthegroutafterliftingoftheconeismeasured.
TheMarshconetestisbasedonmeasuringthetimenecessaryforthe owofaparticularvolumeofgroutthrougha ow-cone.Nowadays,di erenttypesof ow-coneareused.Aplasticfunnelwithacapacityof1200mlwasusedinthiscase.Onehalfoftheupperpartofthefunnelwascoveredwithasieve.Thegroutwasplacedinthefunnelthroughthissieve,whichpreventedlargeparticlesblockingtheoutlet.Thefunnelwaswet-tedbeforeeachtest.Avolumeof1100mlofthegroutwasplacedintheconewiththeoutletsealedandthenthetimeforthe owofeach100mlofgroutwasre-corded.The owtimeofMarshconeat700mlwasevaluated.
740L.Svermovaetal./Cement&ConcreteComposites25(2003)737–749
ThecohesivenessofthegroutwasmeasuredwithaLombardiplatecohesionmeter[15].Theapparatusconsistsofathinsteelplate(100mmÂ100mmÂ1mm),onwhichthegroutcanstick,andanelectronicscale.Thecleandryplatewasweighedandthensub-mergedonceintothegrout.Theplatewasthenwith-drawnandweighedagainafteranydroppingofgroutstopped(Fig.1).
Thespeci cweightofthegroutwasmeasuredbyamudbalance.Thismudbalanceconsistsofaconstant-volumesamplecupwithlidconnectedtoabalancearm.Areaderismovedalongthebalancearmtoindicatethescalereading.Thereisaknifeedgeattachedtothearmnearthebalancecupandabubblelevelbuiltintothisknifeedgeforlevellingthearm.Itwaspossibletocal-culatethethicknessofgroutoneachsideoftheplatefromtheunitweightandtheamountofgroutstickingtothesteelplate.
Theresistanceofthefreshgrouttoinducedbleedingwasevaluatedusingapressure lter.Theequipmentconsistsofapressurevessel, lterpaper,whichisplacedonasieve,andagraduatedcylinder.A200mlgroutsampleisplacedinthepressurevessel.Afterclosingthecell,thegraduatedcylinderisplacedundertheoutletofthecell.Thecellispressuredbycompressedairto0.55MPa.Thevolumeofwatergoingoutthroughtheoutletonthebottomofthecellisrecordedat15and30s,thenateveryminuteupto10min,andthenatevery5minupto30min[16].Theresultsofthistestarepresentedasareaundercurveresponsetimevs.volumeofwater(Fig.2).
Theviscosityofcementgroutisdeterminedusingacoaxialrotatingcylinderviscometer(smoothcylinders,noserration)thatenabledthedeterminationofapparentviscosityatdi erentshearrates[17].Thetestiscon-tainedintheannularspacebetweenanoutercylinder(rotor)withradiusof18.415mmandabobwithradiusof17.245mmandheightof3.80cm.Therotorandthebobareplungedintoacupwhichcontains350mlofsample(Fig.3)[17].Viscositymeasurementsaremade
Fig.1.Platecohesionmeterapparatus[15].W=B¼0:35,SP¼1:2%,VA¼0:02%,LSP¼
45%.
Fig.3.Coaxialrotatingcylinderviscometer[17].
whentheoutercylinder,rotatingataknownspeed,causesaviscousdragtobeexertedbythe uid.Thisdragcreatesatorqueonthebob,whichistransmittedtoaprecisionspringwhereitsde ectionismeasuredandthencomparedwiththetestconditionsandtheinstru-mentÕsconstants.Themeasurementismadefor12speedsofrotorfrom0.9to600rpmwhenthevaluesofviscometerreading¼harerecorded.Thevalueofshearstress¼s(Pa)iscalculatedbyincludingk1¼torsionconstantofspringperunitde ection(Ncm/deg.),k2¼shearstressconstantforthee ectivebobsurface(cmÀ3)andk3¼shearrateconstant(sÀ1/rpm)[17].
Thespeedofrotorwasincreasedstepbystepfrom0to600rpmandreadingonviscometerwithincreasingrotatingspeedwasrecorded.Thereadingofhwastakenwhentheneedleintheviscometerwasstabilised,or30safterthechangeofspeedincaseswhentheneedlehasnotstabilisedwhichwascausedbythethixotropyofthecementgrout.Themeasurementofthereadingbyde-creasingrotatingspeedstepbystepallowedtheassess-mentofthethixotropyofgroutbetweentheascendinganddescendinglegsoftheshearstress–shearraterheo-grams.Theupcurvewaschosenfor nalevaluation
for
L.Svermovaetal./Cement&ConcreteComposites25(2003)737–749741
betterdescriptionofrheologicalbehaviourofthegroutsincludingastructuralbreakdownphenomenonofinnerforcesamongparticles[18,19].
Thevaluesofyieldstressandplasticviscosityareobtainedfrommodi edBinghammodel[20],whichisdescribedbytheequation:_þcc_2s¼s0þlpc
wheres0¼yieldstress(Pa),lp¼plasticviscosity(Pas),
_¼shearrate(sÀ1),c¼constant.c
Thevalueoftheconstantcismostlyabout10À3andless,whichismuchsmallerthanthevalueofplasticviscositylpandyieldstresss0,andforthisreasonthisconstantisconsideredtoequalzero.
Thecompressivestrengthwasdeterminedon55Â50-mmcylinders(diameterÂheight).Thespecimensweredemouldedonedayaftercastingandwerestoredinwateruntiltestingat7and28days.4.Testresultsanddiscussion4.1.Derivedstatisticalmodels
ThetestresultsformixesinvestigatedinthisstudyaregiveninTable3.Thevariousresponseswhichresultedfromthedesignedexperimentalprogrammewereanal-ysedandplottedusingastatisticalsoftwarepackage[14].Thederivedstatisticalmodelsforallthesetestsresultswithcorrelationcoe cient,Prob:>jtjvaluesandprospectivetransformationwereshowninTable4.Theestimatesforeachparameterrefertothecoe cientsofthemodelfoundbyaleast-squaresapproach.The
Prob:>jtjistheprobabilityofgettinganeventgreatertstatistic,inabsolutevalue,thattestswhetherthetrueparameteriszero.Probabilitieslessthan0.05areoftenconsideredassigni cantevidencethattheparameterisnotzero,i.e.thatthecontributionoftheproposedparameterhasahighlysigni cantin uenceonthemeasuredresponse.
ThepresentationinTable4enablesthecomparisonofvariousparametersaswellastheinteractionsofthemodelledresponses.Forthemajorityofparameters,theprobabilitiesthatthederivedcoe cientsofthevariousparametersin uenceeachresponsearelimitedto5%.Thissigni esthatthereislessthan5%chance,or95%con dencelimit,thatthecontributionofagivenpa-rametertothetestedresponseexceedsthevalueofthespeci edcoe cient.Anegativeestimatesigni esthatanincreaseofthegivenparameterresultsinareductionofthemeasuredresponse.
Transformationwasusedforstabilisingofthemodelintwocases.Forexample,thetransformationofnaturallogarithmwasusedforplatecohesionmeterandplasticviscosity.Inordertoillustratethemethod,assumethatresponsesY1andY2arefunctionsofW/B,dosagesofSPandVA,andtheproportionofLSP,thenLinearmodel:Y1¼a0þa1W=Bþa2SPþa3LSPþa4VAþa5W=BSPþa6W=BLSPþa7W=BVAþeNaturallogarithm:
lnY2¼a0þa1W=Bþa2SPþa3LSPþa4VA
þa5W=BSPþa6W=BLSPþa7W=BVAþe
Table3
ResultsoftestingmethodsusedforindividualmixesMix
Mini-slump(mm)77.061.577.0179.564.5118.0142.0172.5113.0126.0116.0111.5150.5104.5134.0142.0117.0
Flowtime(s)
Cohesionmeter(mm)1.3501.4091.0680.0821.7420.5700.0790.1640.4450.3620.3180.2710.1440.4300.2210.1530.296
ViscometerYieldvalue(Pa)11.188.4010.771.814.4311.262.555.4610.9810.189.819.096.1510.259.776.479.00
Plasticvis-cosity(Pas)0.520.401.170.110.790.170.170.130.350.330.270.290.190.240.200.160.31
Inducedbleeding(Lmin)1.091.220.930.510.921.291.291.401.241.301.251.251.281.521.011.321.35
fc07days(MPa)40.326.738.329.723.017.025.517.735.029.132.327.829.934.824.230.034.4
fc028days(MPa)47.534.739.233.531.423.726.820.037.939.234.133.540.045.328.933.842.5
1234567891011121314151617NMNMNM81.4NM184.3174.3197.5321.7295.9474.2566.961.0NM>20min242.4702.4
NM:notmeasurable.
742L.Svermovaetal./Cement&ConcreteComposites25(2003)737–749
Table4
Parameterestimatesofsevenstatisticalmodels
Mini-slump(mm)R2¼0:99EstimateProb:>jtj
a1a2a3a4a5a6a7a8
TransformInterceptW/BSPLSPVAW/BSPW/BLSPW/BVA
none111.50
21.370.0031.250.0012.750.00)17.630.0011.880.00––––
Platecohe-sionmeter
(mm)R2¼0:97EstimateProb:>jtjnaturallog)0.77)0.370.01)0.930.00)0.320.020.560.00––0.270.04––
Yieldvalue
(Pa)R2¼0:97EstimateProb:>jtjnone6.98
)0.250.37)1.840.00)1.060.010.280.31)1.260.012.680.00––
Plasticvis-cosity(Pas)R2¼0:97Estimate
Prob:>jtjnaturallog)1.18)0.560.00)0.280.01)0.280.010.420.00––––)0.160.06
Induced
bleeding(Lmin)R2¼0:99EstimateProb:>jtjnone1.08
0.0240.08)0.0480.010.140.000.0380.02)0.10.000.10.000.170.00
fc07days
(MPa)R2¼0:91EstimateProb:>jtjnone27.28)4.500.00––)6.480.00––––––––
fc028days
(MPa)R2¼0:93EstimateProb:>jtjnone32.10)4.130.00)2.230.03)6.630.00––––––––
wherea0denotestheoverallmean;coe cientsanrep-resentmodelconstants(contributionofindependent
variablesontheresponse),andeistherandomerrortermrepresentingthee ectsofuncontrolledvariables.Thethirdorderinteractionisusuallyneglected.
Forexample,mini-slump,platecohesionmeter,yieldvalue,plasticviscosity,inducedbleedingandfc0at28daysaregiveninEqs.(1)–(6),respectively.Mini-slumpðmmÞ¼111:5þ31:3SPþ21:4W=B
À17:6VAþ12:75LSPþ11:9W=BSP
lnPlatecohesionmeterðmmÞ
¼À0:77À0:93SPþ0:56VAÀ0:37W=BÀ0:32LSPþ0:27W=BLSP
YieldvalueðPaÞ¼7þ2:7W=BLSPÀ1:8SP
À1:3W=BSPÀ1:1LSPþ0:3VAÀ0:3W=B
lnPlasticviscosityðPasÞ¼À1:2À0:56W=B
þ0:42VAÀ0:28SPÀ0:28LSPÀ0:16W=BVA
InducedbleedingðLminÞ
¼1:1þ0:17W=BVAþ0:14LSPÀ0:1W=BSPþ0:1W=BLSPþ0:05SPÀ0:04VAþ0:03W=B
0fC
ð1Þ
ð2Þ
ð3Þ
ð4Þ
plasticviscosity,inducedbleedingandcompressivestrengthat7and28daysare0.99,0.97,0.97,0.97,0.99,0.91and0.93,respectively.Thehighcorrelationcoe -cientofmostresponsesdemonstratesexcellentcorrela-tionwhereitcanbeconsideredthatatleast95%ofthemeasuredvaluescanbeaccountedforwiththeproposedmodels.
Table5indicatestheaveragemeasuredresponseofthefourreplicategrouts,coe cientofvariation,estimatederrorwith95%con dencelimit,aswellasrelativeerrorforeachofthemeasuredproperties.Theestimatederrorofcementgroutformini-slump,platecohesionmeter,yieldvalue,plasticviscosity,inducedbleeding,andcompressivestrengthsat7and28dayswereÆ6.6mm,Æ0.08mm,Æ0.80Pa,Æ0.04Pas,Æ0.026Lmin,Æ3.3,andÆ2.9MPa,respectively.
Therelativeexperimentalerrorsformini-slump,yieldvalue,plasticviscosityandcompressivestrengthareshowntobelimitedto2–12%.Ontheotherhand,therelativeerrorfortheplatecohesionmeterwas22%.Thisvalueisexpectedtodecreasewiththeincreaseinrelativecohesionplatevalue,sincethemeanofcohesionplatevalueofthegroutcorrespondingtothecentralpointswasslightlylow.
The owtimemodelisnotgivenastheresultsoftheMarshconecouldnotbeusedfor nalevalua-tionbecausethegroutswithhighlevelofviscosityagent(0.07%)hadsuchhighviscositythattheywereunableto owthroughthe5-mm-outletofthefunnel.Inthiscase,anoutletbiggerthan5mmisrecom-mended.
4.2.Accuracyoftheproposedmodels
Theaccuracyofthestatisticalmodelswasdeterminedbycomparingaveragevaluesofpredicted/measuredratioformixesofgroutwhichwereproducedforveri -cationoftwo-levelfractionalfactorialdesign.Theaver-
ð5Þ
at28daysðMPaÞ¼32:1À6:6LSPÀ4:1W=B
À2:2SP
ð6Þ
Thecorrelationcoe cientsoftheproposedmodelsformini-slumptest,platecohesionmeter,yieldvalue,
L.Svermovaetal./Cement&ConcreteComposites25(2003)737–749
Table5
Repeatabilityoftestparameters
Mini-slump
Mean(n¼4)
Coe cientofvariation(%)Estimatederror(95%con dencelimit)Relativeerror(%)
116.6mm5.66.6mm5.7
Platecohesionmeter0.35mm21.30.08mm21.7
ViscometerYieldvalue10.0Pa7.90.80Pa8.0
Plasticviscosity0.31Pas12.30.04Pas12.5
Inducedbleed-ingin30min1.26Lmin2.0
0.026Lmin2.1
fc07days31.1MPa10.43.3MPa10.6
743
fc028days36.2MPa7.8
2.9MPa7.9
agepredicted/measuredratiosformini-slumptest,platecohesionmeter,yieldvalue,plasticviscosity,inducedbleedingtest,andcompressivestrengthsat7and28daysaresummarisedinTable6.
Theratiosbetweenpredictedandmeasuredproper-tiesofcementgroutrangedbetween0.83and1.05,thusindicatinggoodaccuracyforestablishedmodelstopredictthemini-slumptest,yieldvalue,plasticviscosity,inducedbleeding,andcompressivestrengthat7and28days.Ingeneral,theproposedmodelstopredictmini-slump,yieldvalue,plasticviscosity,inducedbleedingandcompressivestrengthappeartobesatistifactoryinpredictingthe uidity,rheology,inducedbleedingandcompressivestrength.Ontheotherhand,theaveragevalueofpredicted/measuredratioofplatecohesionmeterwasslightlyhigher(1.45).
4.3.Isoresponsesoftheproposedmodelsofthekeyvariables
4.3.1.Mini-slump
Theproposedstatisticalmodelscanthereforebeusedtoevaluatethee ectofagroupofvariablesonthepropertiesa ectingthequalityofcementgrout.Thispermittedthecalculationoftheisoresponsecurvesfromtheparametersunderstudyovertheexperimentaldo-mainandtheoptimisationoftheire ects.AsshowninTable4,themini-slumpisin uenced,inorderofsig-ni cance,bythedosageofSP,W/B,thedosageofVA,theproportionofLSPandtheinteractione ectofW/BSP.ThedosageofSPisshowntoexhibitthegreateste ectonthemini-slump.TheincreaseinSPhasap-proximately1.8and1.5timesgreaterin uenceonin-creasingmini-slumpthanthedecreaseinthedosageofVAandtheincreaseinW/B,respectively(31.3vs.)17.6and21.4).Forexample,thee ectofincreasingW/Bratioonmini-slumpvs.theproportionofLSP,whendosagesofSPandVAwere xedat0.75%and0.05%,respectively,orvs.dosageofSPof0.75%andtheproportionofLSPof28.5%,respectively,orvs.thedosageofVAof0.05%andtheproportionofLSPof28.5%,isshowninFig.4.ForanygivenW/BratioanddosagesofSPandVA xedat0.75%and0.05%,re-spectively,themini-slumpincreasedsigni cantlywhentheproportionofLSPincreased(Fig.4(a)).Sim-ilarly,themini-slumpincreasedwhenthedosageofSPincreasedwhilethedosageofVAandtheproportionofLSPwere xed(Fig.4(c)).Ontheotherhand,the
Table6
Predicted/measuredratiosformixesofestablishedmodelsTestingmethodVeri cationpoints
Mini-slump0.97
Cohesionmeter1.45
ViscometerYieldvalue0.85
Plasticviscosity1.05
0.87
0.87
0.83
Inducedbleeding
fc07days
fc028days
744L.Svermovaetal./Cement&ConcreteComposites25(2003)737–749
mini-slumpreducedwhenthedosageofVAincreasedwhilethedosageofSPandtheproportionofLSPwerekeptconstant(Fig.4(b)).
4.3.2.Platecohesionmeter
AsshowninTable4,platecohesionmeterisin u-enced,intheorderofsigni cance,bythedosagesofSPandVA,theW/BandtheproportionofLSP.Thein-creaseinW/Bhasafairlysimilarin uenceontheplatecohesionmeterastheincreaseintheproportionofLSP()0.37vs.)0.32).Bycomparingthee ectofSPandVAdosagesontheplatecohesionmeter,theincreaseofdosageofSPcanthenbeinterpretedtohaveapproxi-mately1.7timesgreaterin uenceonthereductionoftheplatecohesionvaluethantheincreaseinVA,giventhattheW/BandtheproportionofLSPareheldcon-stant.Fig.5showsanexampleofisopresponsecurvesoftheplatecohesionmetervs.W/Bfor xedvaluesofSPandVAorSPandLSPorLSPandVA.For xedvaluesofSPandVAat0.75%and0.045%,respectively,theplatecohesionmeterdecreasedwhentheW/BincreasedortheproportionofLSPincreased(Fig.5(a)).Thein-creaseofthedosageofSP,foranygivenW/Band xedLSPproportionandVAdosage,ledtoareductionintheplatecohesionmeter(Fig.5(c)).
4.3.3.Yieldvalue
AsshowninTable4,thequadratice ectofW/BLSPisshowntoexhibitthegreateste ectontheyieldvaluefollowingbythedosageofSP(2.7and)1.8).Thein-
creaseofW/BandtheproportionofLSPreducedtheyieldvalue.Themodel(Eq.(3))showsthattheincreaseofthedosageofSPismoree cientinreducingyieldvaluethananincreaseintheproportionofLSP()1.8vs.)1.1).Forexample,thee ectofincreasingW/Bratioonyieldvaluevs.theproportionofLSP,whendosagesofSPandVAwere xedat0.75%and0.05%,respectively,orvs.dosageofSPof0.75%andtheproportionofLSPof28.5%,respectively,orvs.thedosageofVAof0.05%andtheproportionofLSPof28.5%,isshowninFig.6.TheyieldvalueseemedtodecreasewithincreasedW/Bup0.40,thentendedtoincreasebeyondthisthresholdvalue(Fig.6(a)).For xeddosagesofSPandVA,theyieldvalueincreasedsigni cantlyuptoabout0.40ofW/BandhigherproportionofLSP(upto29%).AtlowerproportionsofLSP,however,adecreaseofyieldvaluewasobservedwithanincreaseinW/B(Fig.6(a)).4.3.4.Plasticviscosity
Plasticviscosityisin uenced,inorderofsigni cance,bytheW/B,thedosageofVA,thedosageofSPandtheproportionofLSP.TheW/Bisshowntohavethegreateste ectontheplasticviscosity(Eq.(4)).TheincreaseofW/Bhasapproximately1.3timesgreaterin uenceonreducingtheplasticviscositythanthede-creaseinthedosageofVA()0.56vs.0.42).Themodel(Eq.(4))showsthatthee ectofchangingthedosageofSPontheplasticviscosityissimilartothatofthepro-portionofLSP()0.28vs.0.28).Bycomparingthee ectsofSPandVAontheplasticviscosity,itcanbe
observed
L.Svermovaetal./Cement&ConcreteComposites25(2003)737–749745
thatthee ectofVAishigherthanthatofSP(0.42vs.)0.28).Forexample,thee ectofincreasingW/Bratioonplasticviscosityvs.theproportionofLSP,whendosagesofSPandVAwere xedat0.75%and0.05%respectively,orvs.dosageofSPof0.75%andthepro-portionofLSPof28.5%,respectively,orvs.thedosageofVAof0.05%andtheproportionofLSPof28.5%,isshowninFig.7.TheincreaseinW/Band/orthepro-portionofLSPledtoareductioninplasticviscosity(Fig.7(a)).
4.3.5.Inducedbleeding
Thein uencesoftheproportionofLSPandthedosagesofSPandVAarehighlysigni cantonthein-ducedbleedingaccordingtotheANOVA.Thepropor-tionofLSPisshowntoexhibitthegreateste ectasaprimaryvariableontheinducedbleedingcomparedtothedosagesofSPandVA(0.14vs.)0.05or0.04).However,theANOVAshowsthatthetwo-factorin-teractionofW/BVAishighlysigni cantandhasthegreateste ectoninducedbleeding.TheinteractionsbetweenW/BSPandW/BLSParesigni cantandhaveoppositee ect()0.1vs.0.1).TheincreaseinSPdosagehasagreaterin uenceonreducingtheinducedbleedingthantheincreaseinVAdosage()0.05vs.0.04).Forexample,thee ectofincreasingW/Bratiooninducedbleedingvs.theproportionofLSP,whendosagesofSPandVAwere xedat0.75%and0.05%,respectively,orvs.dosageofSPof0.75%andtheproportionofLSPof28.5%,respectively,orvs.thedosageofVAof0.05%andtheproportionofLSPof28.5%,isshowninFig.8.
For xeddosageofVAandtheproportionofLSP,theincreaseinSPledtoanincreaseininducedbleedingforlowerW/Bupto0.38.However,forhigherW/B(be-tween0.38and0.42),theincreaseofthedosageofSPresultedinareductionintheinducedbleeding(Fig.8(c)).Thisisduetotheimproveddispersionandpack-ingofcementgrainsassociatedwithgreaterSPdosage.Theresultingincreasein uidity(Fig.4)andparticlepacking(versus occulatedcementgrainsthathavealowerpackingdensity)cansubstantiallyreducethetendencyofwatertopercolateamongcementgrainsunderagivenhead,whichre ectsthepermeabilityofthefreshgrout.Theseresultsconcurwiththe ndingsofotherresearchers[3,4].ForlowerW/B(lowerthan0.38),theincreaseinVAdosageexhibitedareductionintheinducedbleeding,howeverforhigherW/Bbeyond0.39,theinducedbleedingseemedtoincreaseasthedosageofVAincreased(Fig.8(b)).
pressivestrength
TheANOVAsgiveninTable4showthatthee ectofW/Bishighlysigni cantoncompressivestrengthat7and28daysandhasthegreateste ectonstrength.Thecompressivestrengthdecreased,asW/Bincreased.TheproportionofLSPandthedosageofSParealsohighlysigni cantoncompressivestrength.TheincreaseoftheproportionofLSPorthedosageofSPledtoareductionincompressivestrengthat28days.Thee ectoftheproportionofLSPoncompressivestrengthwasgreaterthanthatofW/BandSP
dosage.
746L.Svermovaetal./Cement&ConcreteComposites25(2003)737–749
4.4.Trade-o betweenSPandVA
Contourresponsesshowingthein uenceofSPandVAdosagesonmini-slumpandplatecohesionmeter,andmini-slumpandyieldvalueforgroutsmadewith xedW/Bof0.35and12%ofLSParepresentedinFig.9.Asexpected,foragivenSPdosage,thecontourdia-gramsofFig.9(a)indicatethattheincreaseinVAdosagereducesthemini-slumpwhiletheplatecohesionmeterincreases.Forexample,formini-slumpof90mm,amixgroutwith0.6%ofSPand0.02%ofVAcanen-surethe uidityof90mm.TheincreaseinVAdosageto0.042%resultedinareductionofmini-slumpto75mm.However,byincreasingtheSPfrom0.6%to0.97%,themini-slumpcanbere-establishedto90mm.Forthesamemix,with0.6%ofSPand0.02%ofVA,thein-creaseinVAdosageto0.042%increasedtheplateco-hesionmeterfrom0.9to1.4mm.Theplatecohesionmetercanbere-establishedto0.9mmbyincreasingSPdosageto0.84%.
ForagivenVAdosage,theresultsfromFig.9(b)indicatethattheincreaseinSPledtoanincreaseinmini-slumpandareductionintheyieldvalue.Forex-ample,agroutmadewith0.05%ofVAand0.3%ofSPhadmini-slumpof60mmandyieldvalueof11.5Pa.TheincreaseofSPto1%resultedinanincreaseofmini-slumpto90mmandareductionofyieldvalueto10.6Pa.However,byreducingtheVAfrom0.05%to0.02%forthesameSPof0.3%,themini-slumpincreasedto75mmandtheyieldvaluedecreasedto11.25Pa.
Contourresponsesshowingthein uenceofSPandVAdosagesonplasticviscosityandinducedbleedingwithmixmadewith0.35ofW/BandLSPof12%and0.42ofW/BandLSP¼45%,arepresentedinFig.10(a)and(b),respectively.ForgivenVAandSPdosages,theincreaseofW/BandtheproportionofLSPresultedinanincreaseininducedbleedingandareductioninplasticviscosity.Forexample,forgroutmadewith0.42W/Band45%ofLSP,plasticviscosityandinducedbleedingof0.145Pasand1.40Lminareobtainedwith0.66%ofSPand0.052%ofVA.TheincreaseofSPto0.97%resultedinareductionofplasticviscosityandinducedbleedingto0.12Pasand1.30Lmin,respec-tively.With0.050%and0.3%ofVAandSP,agroutmadewith0.35ofW/Band12%ofLSPhadaplasticviscosityandinducedbleedingofapproximately0.9Pa
s
L.Svermovaetal./Cement&ConcreteComposites25(2003)737–749747
and0.95Lmin,respectively.TheincreaseofW/BandLSPto0.42and45%,respectively,wouldresultinadropofplasticviscosityto0.17Pasandanincreaseininducedbleedingto1.50Lmin.4.5.Correlationoftestingmethods
The owofgroutisverysensitivetoitsshearhistory.Theabovetestswerecarriedoutwithextremecareinordertokeeptheshearhistory,theexperimentalpro-ceduresandtheirtimingasconstantaspossible.Hence,itisinterestingtoassessthevariouspossiblecorrelationsbetweenthedi erenttestscarriedout.
Fig.11showstherelationshipbetweenthreerheo-logicalvalueswhicharecharacteristicofthegroutatlowshearrates:mini-slump,platecohesionmeterandyieldvalue.Thecoe cientofcorrelationR2betweenmini-slumpandplatecohesionmeter,andthemini-slumpandyieldvalueare0.95and0.56,respectively.Therelationshipseemedtofollowpolynomialsecond-ordermodelandshowedthatwhenthemini-slumpincreasestheplatecohesionmeterandtheyieldvaluedecrease.Therelationshipbetweenmini-slumpandtheplatecohesionmeterwasverygood.Fig.12(a)and(b)illustratethecorrelationsbetweenrheologicalcharac-teristicsofgroutsatlowandhighshearrates:theplatecohesionmeterandplasticviscosity,mini-slumpandplasticviscosity.Thecoe cientsofcorrelationbetweenplatecohesionmeterandplasticviscosity,andthemini-slumpandplasticviscosityare0.80and0.75,respec-tively(R2¼0:80wasobtainedwithouttheresultofmix3).Fig.12showsthattheincreaseinplasticviscosityledtoanincreaseinplatecohesionmeterandareductioninmini-slump.
InFig.13(a)and(b),therelationshipbetweenin-ducedbleedingandmini-slump,andinducedbleed-ingandplasticviscosityarepresented.Itseemsthatthereisnocorrelationbetweenmini-slumpandinducedbleeding.However,Fig.13(b)showsagoodrelation-shipbetweeninducedbleedingandplasticviscosity(R2¼0:85,withouttakingaccountoftheresultsfrommixes3,4and15).Theinducedbleedingwas
inversely
748L.Svermovaetal./Cement&ConcreteComposites25(2003)737–749
proportionaltotheplasticviscosity.This ndingcon- rmswhathasbeenreportedbyNedhietal.[12].
5.Conclusions
Thein uenceofdi erentW/B,dosageofSP,theproportionoflimestonepowderandthedosageofvis-cosityagentcombinationsonrheologybehaviourofcementgroutwereinvestigated.Basedontheresultspresentedinthispaper,thefollowingconclusionscanbedrawn:
(1)TheW/Bratioisshowntoexhibitagreate ect
onmini-slump,plasticviscosityandcompressivestrength.TheincreaseinW/Bratiohasanin uenceonincreasingmini-slumpandinducedbleeding,anddecreasingplasticviscosity,platecohesionmeterandcompressivestrength.
(2)Themini-slump,platecohesionmeter,andyield
valueofgroutsaredominatedprimarilybythedos-ageofSP.TheincreaseintheSPdosageledtoanincreaseinmini-slumpandareductioninplatecohesionmeter,yieldvalue,andplasticviscosity.However,theinducedbleedingseemedtoincreasewhentheSPdosageincreasedforlowW/B,andreducedwithhigherW/B.
(3)Theviscosityagentsigni cantlya ectedthemea-suredpropertiesofthisstudy,exceptcompressivestrength.TheincreaseinVAdosageisshowntoex-hibitareductioninmini-slumpandanincreaseinplatecohesionmeterandplasticviscosity.ForlowW/B,theincreaseinVAdosagereducedtheinducedbleeding,andincreaseditwhenW/Bishigher.
(4)ForagivenW/B,anddosagesofSPandVA,the
mini-slumpandinducedbleedingincreasedwhentheproportionofLSPincreased,whiletheplateco-hesionmeter,yieldvalue,plasticviscosityandcom-pressivestrengthreduced.TheLSPreplacementofcementhadagreatere ectoncompressivestrengththanthechangeofW/Bratio.
(5)Theproposedmethodcanbeusedwithothersetsof
materialssuchas yashorgroundgranulatedblast
slagasreplacementofcement,topredicttherheo-logicalpropertiesandcompressivestrengthofgroutbutthedi erencesbetweenthepredictedandmea-suredvalueswillthenindicatethee ectofthenewmaterialsontheaccuracyoftheproposedmodels.References
[1]KhayatKH,BallivyG.High-performancecementgroutforunderwatercrackinjection.In:MalhotraVM,editor.Proceed-ingsofThirdCANMET/ACIInternationalConferenceonPerformanceofConcreteinMarineEnvironment.1996.p.138–162.
[2]HoulsbyAC.Constructionanddesignofcementgrouting.In:Aguidetogroutinginrockfoundations.NewYork:JohnWileyandSons;1990.p.442.
[3]KhayatKH,YahiaA,Du yP.High-performancecementgroutforpost-tensioningapplications.ACIMaterJ1999;96(4):471–7.[4]KhayatKH,YahiaA.E ectofwelangum-high-rangewaterreducercombinationsonrheologyofcementgrout.ACIMaterJ1997;94(5):365–72.
[5]GhioVA,MonteiroPJM,DemsetzLA.Therheologyoffreshcementpastecontainingpolysaccharidegums.CemConcrRes1994;24(2):243–9.
[6]BuryJR,boratoryevaluationofauniqueanti-washoutadmixturesingrouts.In:MalhotraVM,editor.Pro-ceedingsofFifthCANMET/ACIInternationalConferenceonSuperplasticizersandotherChemicalAdmixturesinConcrete,ACISP-173,Rome,1997.p.445–473.
[7]SonebiM.Factorialdesignmodellingofmixproportionparam-etersofunderwatercompositecementgrouts.CemConcrRes2001;31(11):1553–60.
[8]SonebiM.Experimentaldesigntooptimizehigh-volumeof yashgroutinthepresenceofwelangumandsuperplasticizer.MaterStruct2002;35(250):373–80.
[9]YahiaA,KhayatKH.Experimentdesigntoevaluateinteractionofhigh-rangewater-reducerandantiwashoutadmixtureinhigh-performancecementgrout.CemConcrRes2001;31(5):749–57.[10]KhayatKH,YahiaA.Simple eldteststocharacterize uidity
andwashoutresistanceofstructuralcementgrout.CemConcrAggregates1998;20(1):145–56.[11]NehdiM,MindessS,A
正在阅读:
Influence of mix proportions on rheology of cement grouts containing limestone powder06-10
九年级数学教师第二学期总结05-29
中国人民解放军第64军 军史及沿革01-28
主机板维修手册-06-02
慢病工作实施方案(1)02-03
informix安装心得04-26
2016.4下校调研报告(商俊兵)10-28
- 1Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon
- 2Degradationbehaviorof Mg-based biomaterials containing different long-period stacking ordered phases
- 3中质油脱焦粉 Pilot Test on the Removal of Coke Powder from Q
- 4China&39;s_Economic_Growth_and_Its_World_Influence
- 5Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon
- 6Degradationbehaviorof Mg-based biomaterials containing different long-period stacking ordered phases
- 7The Influence of Confucianism on Chinese Political Culture儒学对中国政治文化的影响
- 8vita-mix维他美仕简体中文使用说明书
- 9Chap_32The Influence of Monetary and Fiscal Policy on Aggregate Demand(江西财大,王秋石)(英文版)
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- proportions
- containing
- Influence
- limestone
- rheology
- cement
- grouts
- powder
- mix
- 什么是中风后遗症
- 13. 《打电话》说课稿
- (13)第13章 时间序列分析和预测2
- 调研简报:主业发展稳定,新产业布局即将成型
- 2012国家公务员考试申论热点
- 车辆维修管理制度
- 等肢角钢格构柱设计
- 电脑文秘求职简历
- 2012届高三生物二轮复习课时作业:3-6细胞的分化、衰老、凋亡和癌变
- 2013初级会计职称考试试题《经济法基础》历年解析精选 5
- 2011大学计算机基础考试样题(学生练习)
- 月经不调的病因都有哪些
- 20072008学年度第一学期七年级期末生物试题
- 重庆海韵豪园营销策划
- 2012会计从业资格考试《初级会计电算化》模拟试卷及答案解析(一)
- 亲身使用过最好免费英语学习网站大全
- _并励直流电动机的机械特性
- 第三章第一节树立正确的人生观
- 浅谈SMW工法的施工管理与应用
- 黑龙江省大庆市大庆中学2021届高三上学期期中考试化学试题