2013年中考数学专题复习第三十讲:概率(含详细参考答案)

更新时间:2024-06-05 11:32:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2013年中考数学专题复习第三十讲 概率

【基础知识回顾】 一、 事件的分类:

1、确定事件:在一定条件下,有些事件发生与否是可以事先 这样的事件叫做确定事件,其中 发生的事件叫做必发事件 发生的时间叫做 事件 2、随机事件:在一定条件下,可能 也可能 的事件,称为随机事件 二、概率的概念:

一般地,对于一个随机事件A我们把刻画其发生可能性大小的 称为随机事件概发生的 记作

【名师提醒:1、概率从数上刻画了一个随机事件发生的可能性的大小

2、若A为必然事件,则P1 A1 = 若A为不可能事件,则P1 A1 = 若

A为随机事件,则 < P1 A1< 】 三、概率的计算:

1、较简单问题情景下的概率:

在一次试验中,有几种等可能的结果,事件A包含其中的几种结果,则事件A发生的概率P1 A1=

1、 两步或两步以上的实验事件的概率计算方法: 常用的方法有列举:例 画 等

【名师提醒:当实验包含两步时,可采用列举或列表,当然也可以画树形图,当实验包含三步或三步以上时,一般用】法】 四、 用频率估计概率

m 一般地,在大量重复实验中,如果事件A发生的频率会逐渐稳定在某个常数P附近,

n那么事件A发生的概率P1 A1=

【名师提醒:1、频率就等于概率,频率是通过多次 得到的数据,而概率是在理论上 出来的,只有当重复实验次数足够多时,可以用实验频率估计

2、要估计池塘中鱼的数目,可以先从中拿出m条做标记而后放回,待重分混

合后,再从中取出几条,若其中有标记的有a条,则可估计池塘中鱼的数目为 】 【典型例题解析】

考点一:生活中的确定事件和随机事件

例1 (2012?资阳)下列事件为必然事件的是( ) A.小王参加本次数学考试,成绩是150分 B.某射击运动员射靶一次,正中靶心

C.打开电视机,CCTV第一套节目正在播放新闻

D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球 考点:随机事件. 专题:计算题.

分析:根据事件的分类的定义及分类对四个选项进行逐一分析即可.

解答:解:A、小王参加本次数学考试,成绩是150分是随机事件,故本选项错误; B、某射击运动员射靶一次,正中靶心是随机事件,故本选项错误;

C、打开电视机,CCTV第一套节目正在播放新闻是随机事件,故本选项错误.

D、口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球是必然事件,故本选项正确; 故选D.

点评:本题考查的是随机事件,即在一定条件下,可能发生也可能不发生的事件,称为随机事件. 对应训练 1.(2012?孝感)下列事件中,属于随机事件的是( ) A.通常水加热到100℃时沸腾

B.测量孝感某天的最低气温,结果为-150℃

C.一个袋中装有5个黑球,从中摸出一个是黑球 D.篮球队员在罚球线上投篮一次,未投中 考点:随机事件.

分析:随机事件就是可能发生也可能不发生的事件,依据定义即可求解. 解答:解:A、C一定正确,是必然事件; B是不可能事件,

D、篮球队员在罚球线上投篮未中属于随机事件. 故选D.

点评:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.关键是理解随机事件是指在一定条件下,可能发生也可能不发生的事件.

考点二:概率的计算() 例2 (2012?永州)如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有正三角形、圆、平行四边形和正五边形.小明将这四张纸牌背面朝上洗匀后随机摸出一张,则摸出的图形是中心对称图形的概率是 . 考点:概率公式;中心对称图形. 分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 解答:解:共有4张牌,正面是中心对称图形的情况有2种,即B、C,所以摸出的图形是中心对称图形的纸牌的概率是:故答案:21?. 421. 2点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= m. n例4 (2012?遵义)如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张. (1)用树状图(或列表法)表示两次摸牌出现的所有可能结果; (2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率. 考点:列表法与树状图法;平行四边形的判定. 分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果; (2)由(1)求得能判断四边形ABCD是平行四边形的情况,利用概率公式即可求得答案. 解答:解:(1)画树状图得: 则共有12种等可能的结果; (2)∵能判断四边形ABCD是平行四边形的有:①②,①③,②①,②④,③①,③④,④②,④③共8种情况, ∴能判断四边形ABCD是平行四边形的概率为:82?. 123点评:此题考查的是用列表法或树状图法求概率的知识.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 对应训练 2.(2012?新疆)在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为( ) A.

3315 B. C. D. 168416

考点:概率公式;三角形的面积.

分析:按照题意分别找出点C所在的位置:当点C与点A在同一条直线上时,AC边上的高为1,AC=2,符合条件的点C有2个;当点C与点B在同一条直线上时,BC边上的高为1,BC=2,符合条件的点C有2个,再根据概率公式求出概率即可. 解答:解:可以找到4个恰好能使△ABC的面积为1的点, 则概率为:4÷16=故选:C. 1. 4 点评:此题主要考查了概率公式,解决此题的关键是正确找出恰好能使△ABC的面积为1的点. 3.(2012?山西)小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E、F分别是矩形ABCD的两边AD、BC上的点,EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是( ) A. 1213 B. C. D. 3324 考点:几何概率. 分析:将图形分为四边形ABFE和四边形DCFE两部分,可得四边形ABFE内阴影部分是四边形ABFE面积的一半,四边形DCFE内阴影部分是四边形DCFE面积的一半,从而可得飞镖落在阴影部分的概率. 解答:解:∵四边形ABFE内阴影部分面积=1×四边形ABFE面积,四边形DCFE内阴影21×四边形DCFE面积, 21∴阴影部分的面积=×矩形ABCD的面积, 21∴飞镖落在阴影部分的概率是. 2部分面积=故选C. 点评:此题考查同学的看图能力以及概率计算公式,从图中找到题目中所要求的信息.用到的知识点为:概率=相应的面积与总面积之比. 4.(2012?镇江)学校举办“大爱镇江”征文活动,小明为此次活动设计了一个以三座山为背景的图标(如图),现用红、黄两种颜色对图标中的A、B、C三块三角形区域分别涂色,一块区域只涂一种颜色.

(1)请用树状图列出所有涂色的可能结果;

(2)求这三块三角形区域中所涂颜色是“两块黄色、一块红色”的概率. 考点:列表法与树状图法. 专题:图表型. 分析:(1)根据树状图的画法画出即可; (2)根据树状图求出所有可能的情况数,以及恰好是“两块黄色、一块红色”的情况数,然后根据概率公式列式计算即可得解. 解答:解:(1)画树状图法如下: 所有可能为:(黄,黄,黄),(黄,黄,红),(黄,红,黄),(黄,红,红),(红,黄,黄), (红,黄,红),(红,红,黄),(红,红,红); (2)从树状图看出,所有可能出现的结果共有8种, 恰好“两块黄色、一块红色”的结果有3种, 所以这个事件的概率是3. 8点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.

考点三:用频率估计概率 例5 (2012?宿迁)绿豆在相同条件下的发芽试验,结果如下表所示: 每批粒数n 发芽的粒数m 发芽的频数 100 96 0.960 300 282 0.940 400 382 0.955 600 570 0.950 1000 948 0.948 2000 1912 0.956 3000 2850 0.950 m n则绿豆发芽的概率估计值是 ( ) A.0.96 B.0.95 考点:利用频率估计概率.

C.0.94 D.0.90

大于5的情况,然后利用概率公式求解即可求得答案. 解答:解:列表得: 1 2 3 4 1 - 1+2=3 1+3=4 1+4=5 2 2+1=3 - 2+3=5 2+4=6 3 3+1=4 3+2=5 - 3+4=7 4 4+1=5 4+2=6 4+3=7 - ∵共有12种等可能的结果,这两个乒乓球上的数字之和大于5的有4种情况, ∴这两个乒乓球上的数字之和大于5的概率为:41?. 123故选B. 点评:此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 9.(2012?青岛)用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( ) A.

1311 B. C. D. 4432 考点:列表法与树状图法. 分析:由于第二个转盘不等分,所以首先将第二个转盘中的蓝色部分等分成两部分,然后画树状图,由树状图求得所有等可能的结果与可配成紫色的情况,再利用概率公式即可求得答案. 解答:解:如图,将第二个转盘中的蓝色部分等分成两部分, 画树状图得: ∵共有6种等可能的结果,可配成紫色的有3种情况, ∴可配成紫色的概率是: 1. 2故选D. 点评:此题考查的是用列表法或树状图法求概率的知识.注意所选每种情况必须均等,注意概率=所求情况数与总情况数之比. 10.(2012?东营)小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x、乙立方体朝上一面朝上的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y= A.

6上的概率为( ) x1111 B. C. D. 181296 考点:列表法与树状图法;反比例函数图象上点的坐标特征. 分析:首先根据题意列出表格,然后由表格求得所有等可能的结果与点P落在双曲线y= 上的情况,再利用概率公式即可求得答案. 解答:解:列表得: 甲 乙 1 2 3 4 5 6 1 2 3 4 5 6 6x(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) ∵∴一共有36种结果,每种结果出现的可能性是相同的,点P落在双曲线y=6),(2,3),(3,2),(6,1), ∴点P落在双曲线y=6上的有(1,x641上的概率为:?. x369故选C. 点评:此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 11.(2012?聊城)我市初中毕业男生体育测试项目有四项,其中“立定跳远”“1000米跑”“肺活量测试”为必测项目,另一项“引体向上”或“推铅球”中选一项测试.小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的概率是 . 考点:列表法与树状图法.

分析:首先分别用A,B代表“引体向上”与“推铅球”,然后根据题意画树状图,继而求得所有等可能的结果与小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的情况,利用概率公式即可求得答案.

解答:解:分别用A,B代表“引体向上”与“推铅球”,画树状图得: ∵共有8种等可能的结果,小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的有2种情况, ∴小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的概率是:故答案为:21?. 841. 4点评:此题考查了树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 12.(2012?烟台)如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为 . 考点:几何概率. 分析:计算出黑色区域的面积与整个图形面积的比,利用几何概率的计算方法解答即可. 解答:解:∵黑色区域的面积占了整个图形面积的所以飞镖落在黑色区域的概率为故答案为:1, 31; 31. 3点评:此题考查了几何概率,一般地,对于古典概型,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有 P(A)= m. n 13.(2012?菏泽)口袋内装有大小、质量和材质都相同的红色1号、红色2号、黄色1号、黄色2号、黄色3号的5个小球,从中摸出两球,这两球都是红色的概率是 . 考点:列表法与树状图法. 分析:首先根据题意列出表格,然后根据表格求得所有等可能的情况与这两球都是红色的情况,利用概率公式即可求得答案.

解答:解:列表得: 红1,黄3 红1,黄2 红1,黄1 红1,红2 - 红2,黄3 红2,黄2 红2,黄1 - 红2,红1 黄1,黄3 黄1,黄2 - 黄1,红2 黄1,红1 黄2,黄3 - 黄2,黄1 黄2,红2 黄2,红1 - 黄3,黄2 黄3,黄1 黄3,红2 黄3,红1 ∵共有20种等可能的结果,这两球都是红色的有2种情况, ∴从中摸出两球,这两球都是红色的概率是:故答案为:21?. 20101. 10点评:此题考查了列表法或树状图法求概率.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,注意概率=所求情况数与总情况数之比. 14.(2012?烟台)第三届亚洲沙滩运动会服务中心要在某校选拔一名志愿者.经笔试、面试,结果小明和小颖并列第一.评委会决定通过抓球来确定人选.抓球规则如下:在不透明的布袋里装有除颜色之外均相同的2个红球和1个绿球,小明先取出一个球,记住颜色后放回,然后小颖再取出一个球.若取出的球都是红球,则小明胜出;若取出的球是一红一绿,则小颖胜出.你认为这个规则对双方公平吗?请用列表法或画树状图的方法进行分析. 考点:列表法与树状图法. 分析:根据题意列表,再根据概率公式分别求出都是红球和一红一绿的概率,即可求出答案. 解答:解:根据题意,用A表示红球,B表示绿球,列表如下: 由此可知,共有9种等可能的结果,其中,两红球及一红一绿各有4种结果, 4, 94P(1红1绿球)=, 9P(都是红球)=因此,这个规则对双方是公平的. 点评:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验. 15.(2012?潍坊)田忌赛马的故事为我们熟知.小亮与小齐学习概率初步知识后设计了如下游戏:小亮手中有方块10、8、6三张扑克牌, 小齐手中有方块9、7、5三张扑克牌.每人从各自手中取出一张牌进行比较,数字大的为本“局”获胜,每次取得牌不能放回. (1)若每人随机取手中的一张牌进行比赛,求小齐本“局”获胜的概率; (2)若比赛采用三局两胜制,即胜2局或3局者为本次比赛获胜者.当小亮的三张牌出牌顺序为先出6,再出8,最后出10时,小齐随机出牌应对,求小齐本次比赛获胜的概率. 考点:列表法与树状图法. 分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小齐本“局”获胜的情况,利用概率公式即可求得答案; (2)据题意,小明出牌顺序为6、8、10时,小齐随机出牌的情况有:(9,7,5),(9,5,7),(7,9,5),(7,5,9),(5,9,7),(5,7,9),又由小齐获胜的情况只有(7,9,5)一种,利用概率公式即可求得答案. 解答:解:(1)画树状图得: ∵每人随机取一张牌共有9种情况,小齐获胜的情况有(8,9),(6,9),(6,7)共3种, ∴小齐获胜的概率为P1=31?; 93 (2)据题意,小明出牌顺序为6、8、10时, 小齐随机出牌的情况有6种情况:(9,7,5),(9,5,7),(7,9,5),(7,5,9),(5,9,7),(5,7,9),7 分 ∵小齐获胜的情况只有(7,9,5)一种, ∴小齐获胜的概率为P2=1. 6点评:此题考查的是用列表法或树状图法求概率与列举法求概率的知识.此题难度适中,注意理解题意是解此题的关键,注意概率=所求情况数与总情况数之比. 16.(2012?青岛)某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下: 奖券种类 出现张数(张) 紫气东来 500 花开富贵 1000 吉星高照 2000 谢谢惠顾 6500 (1)求“紫气东来”奖券出现的频率; (2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由. 考点:利用频率估计概率. 分析:(1)根据概率的求法,找准两点: ①、符合条件的情况数目; ②、全部情况的总数. 二者的比值就是其发生的概率. (2)算出每张奖券获得的购物券金额的平均数,与10比较即可. 解答:解:(1) 5001或5%; ?1000020

(2)平均每张奖券获得的购物券金额为 100×500100020006500+50×+20×+0×=14(元) 10000100001000010000∵14>10 ∴选择抽奖更合算. 点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= m,易错点是获得购物券得到金额的n平均数. 17.(2012?德州)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数. (1)请画出树状图并写出所有可能得到的三位数; (2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由. 考点:游戏公平性;列表法与树状图法. 分析:(1)首先根据题意画出树状图,由树状图即可求得所有可能得到的三位数; (2)由(1),可求得胜与乙胜的概率,比较是否相等即可得到答案. 解答:解:(1)画树状图得: 所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,,413,421,423,431,432.…(5分) (2)这个游戏不公平. ∵组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个, 81?, 24316而乙胜的概率为, 24∴甲胜的概率为∴这个游戏不公平. 点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平. 18.(2012?日照)周日里,我和爸爸、妈妈在家都想使用电脑上网,可是家里只有一台电脑啊,怎么办?为了公平起见我设计了下面的两种游戏规则,确定谁使用电脑上网. (1)任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,妈妈使用电脑;若一枚正面朝上一枚反面朝上,则我使用电脑. (2)任意投掷两枚骰子,若点数之和被3整除,则爸爸使用电脑;若点数之和被3除余数为1,则妈妈使用电脑;若点数之和被3除余数为2,则我使用电脑. 请你来评判,这两种游戏规则哪种公平,并说明理由噢! 考点:游戏公平性;列表法与树状图法. 分析:(1)首先根据题意列出表格,然后根据表格求得两枚正面都朝上、两枚反面都朝上、一枚正面朝上一枚反面朝上的概率,比较大小,即可求得此游戏是否公平; (2)首先根据题意列出表格,然后根据表格求得点数之和被3整除、点数之和被3除余数为1与点数之和被3除余数为2的概率,比较大小,即可求得此游戏是否公平. 解答:解:(1)列表得: 正面朝上 反面朝上 正面朝上 正面朝上 正面朝上 正面朝上 反面朝上 反面朝上 反面朝上 正面朝上 反面朝上 反面朝上 ∵两枚硬币都是正面朝上的概率为:两枚硬币都是反面朝上的概率为:1; 41; 41; 2两枚硬币一正面朝上一反面朝上的概率为:∴“我”使用电脑的概率大; (2)列表得: 1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6 7 8 9 10 11 12 121?; 363121点数之和被3除余数为1的概率为:?; 363121点数之和被3除余数为2的概率为:?; 363∵点数之和被3整除的概率为:∴三种情况的概率相等. ∴第一种游戏规则不公平,第二种游戏规则公平. 点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平. 【备考真题过关】 一、选择题 1.(2012?张家界)下列不是必然事件的是( ) A.角平分线上的点到角两边的距离相等 B.三角形任意两边之和大于第三边 C.面积相等的两个三角形全等

D.三角形内心到三边距离相等 考点:随机事件.

分析:必然事件就是一定发生的事件,即发生的概率是1的事件.据此判断即可解答. 解答:解:A、为必然事件,不符合题意; B、为必然事件,不符合题意;

C、为不确定事件,面积相等的三角形不一定全等,符合题意; D、为必然事件,不符合题意. 故选C.

点评:本题主要考查必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.

用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 2.(2012?泰州)有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是( ) A.事件A、B都是随机事件 B.事件A、B都是必然事件

C.事件A是随机事件,事件B是必然事件 D.事件A是必然事件,事件B是随机事件 考点:随机事件.

分析:必然事件就是一定发生的事件,即发生的概率是1的事件.首先判断两个事件是必然事件、随机事件,然后找到正确的答案.

解答:解:事件A、一年最多有366天,所以367人中必有2人的生日相同,是必然事件; 事件B、抛掷一枚均匀的骰子,朝上的面点数为1、2、3、4、5、6共6种情况,点数为偶数是随机事件. 故选D.

点评:该题考查的是对必然事件的概念的理解;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 3.(2012?绵阳)下列事件中,是随机事件的是( ) A.度量四边形的内角和为180° B.通常加热到100℃,水沸腾

C.袋中有2个黄球,共五个球,随机摸出一个求是红球 D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上 考点:随机事件.

分析:随机事件是指在一定条件下,可能发生也可能不发生的事件,利用定义即可判断. 解答:解:A、是不可能事件,故选项错误; B、是必然事件,故选项错误; C、是不可能事件,故选项错误; D、是随机事件,故选项正确. 故选D.

点评:本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事

件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 4.(2012?岳阳)下列说法正确的是( ) A.随机事件发生的可能性是50%

B.一组数据2,2,3,6的众数和中位数都是2

C.为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生作为样本

D.若甲组数据的方差S甲2=0.31,乙组数据的方差S乙2=0.02,则乙组数据比甲组数据稳定 考点:可能性的大小;抽样调查的可靠性;中位数;众数;方差.

分析:根据事件发生可能性的大小和概率的值的大小的关系以及中位数、众数、方差的定义分别进行判断即可.

解答:解:A、随机事件发生的可能性是大于0,小于1,故本选项错误; B、一组数据2,2,3,6的众数是2,中位数是2.5,故本选项错误;

C、为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生的中考数学成绩作为样本,容量太小,故本选项错误;

D、若甲组数据的方差S甲2=0.31,乙组数据的方差S乙2=0.02,则乙组数据比甲组数据稳定,故本选项正确; 故选D.

点评:此题考查了可能性大小,用到的知识点是可能性的大小、中位数、众数、方差等,解题的关键是根据有关定义判断出每一项的正误. 5.(2012?河北)掷一枚质地均匀的硬币10次,下列说法正确的是( ) A.每2次必有1次正面向上 B.可能有5次正面向上 C.必有5次正面向上 D.不可能有10次正面向上 考点:可能性的大小. 分析:本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式. 解答:解:因为一枚质地均匀的硬币只有正反两面, 所以不管抛多少次,硬币正面朝上的概率都是1, 2所以掷一枚质地均匀的硬币10次, 可能有5次正面向上; 故选B. 点评:本题考查了可能性的大小,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比. 6.(2012?杭州)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是( ) A.摸到红球是必然事件 B.摸到白球是不可能事件

C.摸到红球比摸到白球的可能性相等 D.摸到红球比摸到白球的可能性大 考点:可能性的大小;随机事件.

分析:利用随机事件的概念,以及个数最多的就得到可能性最大分别分析即可. 解答:解:A.摸到红球是随机事件,故此选项错误;

B.摸到白球是随机事件,故此选项错误; C.摸到红球比摸到白球的可能性相等,

根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项错误;

D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项正确; 故选:D.

点评:此题主要考查了随机事件以及可能性大小,利用可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等得出是解题关键. 7.(2012?厦门)某种彩票的中奖机会是1%,下列说法正确的是( ) A.买一张这种彩票一定不会中奖 B.买1张这种彩票一定会中奖 C.买100张这种彩票一定会中奖

D.当购买彩票的数量很大时,中奖的频率稳定在1% 考点:概率的意义. 分析:由某种彩票的中奖机会是1%,即可得中奖的概率是1%,机会较小,但也有可能发生,即可求得答案,注意排除法在解选择题中的应用. 解答:解:A、因为中奖机会是1%,就是说中奖的概率是1%,机会较小,但也有可能发生,故本选项错误; B、买1张这种彩票中奖的概率是1%,即买1张这种彩票会中奖的机会很小,故本选项错误; C、买100张这种彩票不一定会中奖,故本选项错误; D、当购买彩票的数量很大时,中奖的频率稳定在1%,故本选项正确. 故选D. 点评:此题考查了概率的意义.此题难度不大,注意概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生,注意概率是大量实验出现时,频数的一个稳定的数值. 8.(2012?湘潭)“湘潭是我家,爱护靠大家”.自我市开展整治“六乱”行动以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为 那么他遇到绿灯的概率为( ) A.

11,遇到黄灯的概率为,391245 B. C. D. 33991,遇到3考点:概率公式. 分析:根据十字路口有红、黄、绿三色交通信号灯,他在该路口遇到红灯的概率为1由概率之和为1得出他遇到绿灯的概率即可. 911解答:解:∵他在该路口遇到红灯的概率为,遇到黄灯的概率为, 39黄灯的概率为

本文来源:https://www.bwwdw.com/article/fxi6.html

Top