《神奇的莫比乌斯带》教学设计通用

更新时间:2023-03-30 23:17:01 阅读量: 办公软件 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

《神奇的莫比乌斯带》教学设计通用1

教学内容:

人教版实验教材四年级上册第77页。

教学目标:

1、动手操作将长方形纸条制成一个神奇的莫比乌斯带。

2、引导学生认识莫比乌斯带的特点和奇异性质。

3、培养学生大胆猜想、细心求证的精神。

4、在莫比乌斯带变化中感受数学的无穷魅力,拓展数学视野。进一步激发学生学习数学的兴趣,并获得成功的体验。

教学重点:

会制作一个神奇的莫比乌斯带;引导学生发现认识莫比乌斯带的特点和奇异性质。

教学难点:

莫比乌斯带面和边个数的验证。

教学具准备:

长方形纸条若干、剪刀、胶水、水彩笔。

教学过程:

课前谈话:老师给大家讲个故事(课件出示故事情节),你知道他是怎么做到的吗?今天我们就来学习这方面的知识。

一、创设情境,导入新课。

1、变魔术

教师出示一张白纸条,并让学生拿出自己的长方形纸条,问:这张纸条有几条边?几个面?

生:四条边,两个面。

教师拿着纸条,边比划边说:一个正面,一个反面。

师:现在我能变魔术,把它变得只有两条边,两个面。你会吗?

让学生尝试操作,教师展示将纸条变成纸圈。问:是不是两条边,两个面?

生:是。

师:你会吗?

生:会!(学生都尝试做成纸圈)

师:这样大家都会做,老师还能把它变成一条边、一个面。你会吗?

教师激发学生的学习兴趣,学生都在自主尝试操作。师:非常好,有同学在大胆尝试,太棒了!

教师把纸条放在背后操作,做成莫比乌斯带,然后展示莫比乌斯圈。

师:想想吧,是怎么做的?

2、做纸圈

教师让学生尝试做成纸圈,鼓励同桌互助完成,然后举起作品展示。

师:可以这样做(演示:将长方形纸条一端翻转拧成180°以后再首尾相连),再用胶水粘牢。

让全班同学都完成莫比乌斯圈的制作,教师巡视指导操作,并集体展示。

师:大家看自己的纸圈,想一想,是不是一条边、一个面?怎样检验呢?

学生思考、尝试,猜测结果:用手指沿着纸条的边和面各走了一圈。

师:我们一起动手检验。拿出水彩笔,在纸圈的中间画一条线,看看它是不是一个面。

教师展示,然后让学生也在自己的纸圈上画一条线。

生:真是一个面!

师:像这样没有里面和外面之分,只有一个面的,在数学上叫做单侧曲面(板书:单侧曲面)。

问:那么普通的纸圈有里外之分就叫?

生:双侧曲面。(教师板书:双侧曲面)

3、导课题

师:这样的怪怪的纸圈叫什么呢?有人知道吗?

生:莫比乌斯圈。

(教师导入并板书课题"莫比乌斯圈")。问:你是怎么知道的?

学生尝试回答。师:我来告诉大家,德国有一位数学家叫莫比乌斯,于1858年一个偶然的机会,他发现了这样一个奇妙的纸圈。所以,人们将它叫莫比乌斯圈。

二、自主探究,细心求证。

1、沿二分之一线剪

教师在莫比乌斯圈上沿着刚才画的那条线剪开,示范剪一段。

师:大家别忙着动剪子,想一想,我们沿着中间这条线剪开纸圈,结果会是怎样呢?

学生猜测,教师鼓励引导。师:我们应该大胆猜想。(板书:大胆猜想)

生1:会变成两个圈。

生2:会变成两个莫比乌斯圈。

生3:会不会变成三个圈。

师:要知道结果,怎么办?

生:剪一剪就知道了。

师:对,我们只要剪一下就能知道结果。

教师组织全班学生动手剪,完成后集体汇报。

生:不是两个圈,它还是连在一起的;……

问:是一个圈还是两个圈?(一个)

师:剪开后的这个圈中间有点扭起来了。我们通常会认为,剪开后会是两个圈,怎么不是呢?为什么呢?

生1:因为莫比乌斯圈有一条边,一个面,剪开以后还是整的,是一个大圈。

生2:因为是粘着的,我觉得剪完还是一个整体。

师:很好的回答!大家都可以猜想,究竟是为什么?你可以继续研究。

教师板书"细心求证"。师:科学的进步,需要细致的验证!大家仔细地观察(教师出示剪成的大圈),它还像刚才一样,只有一个面吗?

生:应该是一个面。

师:这是我们以为的,要知道准确的结果,怎么办?

生:用笔画线。

师:请拿起笔,在纸带中间画线,再看看是一个面还是两个面?

学生回答(1个)后,教师继续提问:两个面是不是都被画上了线?

生:不是,只画了一面,另一面没画。

问:这个纸圈是单侧曲面吗?(不是)

师:对,现在是双侧曲面。我们在想数学问题时,不能想当然,要动手做一做,细心地求证。现在纸圈中间又画了一条线,如果再沿着这条线剪开,结果是怎样呢?

生:还是一个圈;两个圈;……

师:实践出真知!大家剪一剪就知道了。

师生一起动手剪一剪,完成后汇报。生:是两个套着的圈。

师:这次有同学猜对了,真的是两个圈,但是它们是套在一起的。现在,你有什么想法?

生:还能剪;为什么是套在一起的;其它想法。

师:这样的纸圈很奇妙,值得我们去探究。

2、沿三分之一线剪

教师组织学生拿出三等分的长方形纸条,把它再圈成一个莫比乌斯圈。问:能沿着线把这个莫比乌斯圈剪开吗?(能)

沿三分之一线剪

师:如果沿着三等分线把这个莫比乌斯圈剪开的话,需要几次?

生:两次。

师:剪完以后会是什么样子呢?

生:一个圈;两个圈套在一起;三个圈套在一起。

师:这些都是我们的猜测,那结果究竟是怎样的,我们还是剪一剪吧!

教师组织学生动手剪,完成后集体汇报。生:剪一次就可以了。

师:明明是两条线,怎么剪一次就可以了?剪成了几个圈?

生:两个;一个大圈套着一个小圈。

师:两个圈有区别吗?

学生用前面的方法画线验证,得出:小圈是单侧曲面(莫比乌斯圈),大圈是双侧曲面。

3、其它剪法

师:刚才我们将一根普通的纸条拧、粘、剪(板书:拧、粘、剪),感受到莫比乌斯圈的神奇。下面,请发挥你的聪明才智,拿出另一张长方形纸条,自己设计制作。

提示:①刚才我们拧了180°,还可以拧成多少度?②刚才我们沿二分之一、三分之一线剪,能不能沿四分之一、五分之一线剪呢?

要求:完成后要求汇报自己的创意。

组织学生独立尝试操作,教师巡视指导;让学生同桌相互交流、欣赏,说说是怎么做的、怎么翻转、怎么剪开的;最后选择1-2个有代表性的作品上台展示。

说明:把纸条一端旋转180°的奇数倍做的圈是单侧曲面,而旋转180°的偶数倍做成的圈是双侧曲面。

师:真了不起!我们不但动手做,还动脑筋思考,我们探索的规律是否正确,还需要实验求证,并且从理论上去证明。课后,大家可以继续探究。现在来为我们的精彩表演鼓掌吧!

谈话:今天这节课,你最大的感受是什么?

《神奇的莫比乌斯带》教学设计通用5

【教学目标】

1、动手操作,验证交流,经历探索和认识莫比乌斯带的过程,积累数学活动经验

2、在动手操作、对比探索中认识莫比乌斯带,学会将长方形纸条制作成莫比乌斯带,初步体会莫比乌斯带的特征。

3、在数学活动中经历猜想与探索的过程,感受莫比乌斯带魔术般的神奇变化,感受数学的无穷魅力,进一步激发学生学习数学的兴趣和好奇心。

【教学准备】

每位学生若干张长方形纸条、剪刀、固体胶、水彩笔。

【教学过程】

一、魔术引入,揭示课题

1、魔术引入,激发学生对纸条的兴趣

师:老师手里有一张纸条和两个回形针,一会儿老师可以利用纸条变个魔术,让两个回形针手牵手,你信吗? 如果我做到了你们要送给我掌声。

师:准备好双手,请瞪大你们的眼睛仔细看,鉴证奇迹的时刻到了……

师:看来这小小的纸条看似普通,其实还真是挺不简单的!今天我们这节课就和纸条有关,这节课的名字叫做?

课题:“神奇的莫比乌斯带”。

2、揭示课题“神奇的莫比乌斯带”

师:看了这个课题,你们有什么想问的吗?

生1:莫比乌斯带是什么样子的?

生2:莫比乌斯带有什么神奇的地方?

生3:为什么叫莫比乌斯带啊?

生4:什么是莫比乌斯带?

师:啊,大家有这么多的疑问,是啊,说莫比乌斯圈是神奇的,它神奇在哪儿呢?

二、认识“莫比乌斯圈”

(一)莫比乌斯圈的形成过程

师:要想研究这个问题,一切都要从这张小小的纸条说起。

师:请同学们拿出学具里的一张纸条

师:请同学们观察这个纸条,它有几个面,几条边?

生:(齐)两个面,四条边。

板书:纸条:两个面四条边

师:像这样粘到一起后呢?几个面?几条边?你们也来做一下,

板书:纸环:两个面,两条边

师:如果纸环里有面包屑,小蚂蚁不经过纸环的边缘,也不打洞能吃到面包屑吗?看视频,为什么吃不到呢?

(因为小蚂蚁在外侧面,面包屑在内侧面不在一个面)

师:看来在这个纸环里小蚂蚁是吃不到面包屑了。我们继续看视频。

师:在这个莫比乌斯圈上,不管小蚂蚁从哪一点出发,都可以不必爬过边缘就能吃到面包屑,什么感觉? (这真是个神奇的纸环)

师:想不想亲自动手做一个这样的纸环?再看视频,可以一边看视频,一边动手做

师:你的莫比乌斯带做好了吗?

(二)、验证

师:先看你手中的普通纸环,拿出水彩笔,像这样从一点开始涂色,我们再来看看神奇的纸环,也这样从一点开始涂色,笔尖不离开纸面一直画一圈,你会有哪些发现?(一个面)

师:我们用手指沿着纸圈的边走一圈,又回到了起点

你又发现了什么?

生:它只有一条边。板书(莫比乌斯带:一个面一条边)

师:一张普通的纸条,从两个面四条边变成一个面一条边,你觉得莫比乌斯带神奇吗?

生:有点儿神奇

师:莫比乌斯圈的神奇之处可不止这些,我们接着来研究。

三、“莫比乌斯圈”的特点

1、用剪刀沿着纸圈的中线剪开

师:莫比乌斯带诞生以后,引起了很多人的关注,有人就想,如果沿着纸圈的中线剪开,会是什么样子的呢? 教师示范:我们先剪普通的纸环,两个纸环

同学们,让我们来猜一猜。

生1:它会变成两个圈。

生2:交叉在一起的两个圈……

师:为了不把它剪断,先看老师是怎样开始剪的?注意安全。

学生动手沿着中线剪开,有什么发现

生:发现剪开之后变成了一个大的纸环。

师:那么,这个大的纸环是不是“莫比乌斯带”呢?

师:学到了这里,你对莫比乌斯带有了怎样的感觉呢?

生:太神奇了! 我也想剪一剪,

师:请你们亲自动手试试看。

2、师:那么把纸条平均分成三份,也做成神奇的纸环,再沿虚线剪开,又会是什么样子呢?

师:动手前,先猜测一下结果, 有困难的同学可以跟同桌合作 动手操作,显示学生作品

师:把莫比乌斯圈沿四分之一,五分之一的宽度剪开,又会有什么新的发现呢?意犹未尽的同学们课后先猜一猜,再动手试一试,最后验证你们的猜测。

四、师:那么莫比乌斯带在生活中有哪些应用呢,我们来看一段视频看来莫比乌斯带在生活中的应用也是很广泛的。

五、总结:这节课就研究到这,谁能说说这节课你有什么收获最后谢谢同学们的配合,感谢各位的'倾听,谢谢大家!

【板书设计】

神奇的莫比乌斯带

纸条:4条边2个面

纸环:2条边2个面

莫比乌斯带:1条边1个面

《神奇的莫比乌斯带》教学设计通用6

学情分析

莫比乌斯带属于“拓朴学”的内容,这个内容对于教师来说不容易组织教学,但莫比乌斯带又是一个能拓宽学生视野的好题材,可以让学生感受到学习数学的乐趣,进而激发学生学习数学兴趣,六年级的学生有一定的空间思维能力和动手操作能力,在教学中要引导学生在动手操作的过程中,仔细观察,自主发现“莫比乌斯带”的奥秘。

教学目标

1、让学生认识“莫比乌斯带”,学会将长方形纸条制成莫比乌斯带。

2、引导学生通过思考操作发现并验证“莫比乌斯带”的特征,培养学生大胆猜测、勇于探索的精神。

3、在“莫比乌斯带”魔术般的变化中感受数学的无穷魅力,拓展数学视野,进一步激发学生学习数学的兴趣,培养学生良好的数学情感。

教学重难点

重点:让学生认识“莫比乌斯带”,学会将长方形纸条制成“莫比乌斯带”。

难点:引导学生通过思考操作发现并验证“莫比乌斯带”的特征,培养学生大胆猜测、勇于探索的精神

课前准备

课件、剪刀、双面胶、长方形纸条

教学过程

第一项:“三个一”习惯养成课程

主持人:“三个一”习惯养成课程现在开始!

主持人:第一项:说背就背,日积月累

口号:知识点,脑中藏,口齿清,声音亮,记忆大王我来当。

内容:圆柱的侧面积=底面周长X高圆柱的表面积=底面积X2+侧面积圆柱的体积=底面积X高圆锥的体积=底面积X高X(预设评价:大家口齿清,声音亮,名副其实的记忆大王呀)

主持人:第二项:说练就练,举一反三

口号:动手练,争第一,细心算,脑子转,计算能手我来干。

内容:口算练习(主持人安排开火车回答)3、14X4=210X3=2、5X4=1、25X1000=3、14X6=90X0、5=2、2X4=3、5X20xx年德国的数学家莫比乌斯一次偶然的机会发现了这样一个神奇的纸圈,只有一条边,一个面的圈。所以就用他的名字命名叫莫比乌斯圈或莫比乌斯带。看到这个莫比乌斯带,你还想研究什么呢?你有什么想法?

预设学生回答:

1、为什么这个纸条能变成只有一条边一个面的圈?(我非常佩服你,有时候我们就应该去问为什么?)

2、怎么求它的面积和周长?太棒了,大家提了这么多的好问题,每一个问题都提到我的心里面去了。我们先来看,本来这个纸条是四条边和两个面的,为什么会变成一条边和一个面的?

大家再拿一张纸条做做看这个莫比乌斯带,一边做一边想想,为什么变成一个面和一条边?学生再次动手操作,然后找同学说一说。当你知道怎么做,再追问为什么的时候,你就会理解的更深入。

(意图:从纸条到普通纸圈再到“莫比乌斯带”,学生经历了一个从熟悉到陌生,从普通到神奇的知识形成过程,这个过程对学生来说是新鲜、有趣的,它指引着学生一步步揭开“莫比乌斯带”的神秘面纱。)

三、讨论·解疑

这个纸条神奇吗?莫比乌斯带还有更神奇的呢!下面我们就用“剪”的办法来研究。探究一:沿二分之一线剪师:(展示普通纸圈)如果我沿着纸带的中间剪下去,会变成什么样呢?

生:会变成2个同样大小的纸圈。师:是吗?请同学们认真观察老师是怎么剪的。(师示范)还真是。

师:(展示一个莫比乌斯带)刚才你们不是在这个莫比乌斯带中间画了一条线吗?如果我们沿着这条线把这个纸圈剪开的话?会怎么样呢?(学生猜测)

师:要知道究竟是什么样的,应该怎么办呢?

生:动手剪一剪。师:是啊,实践出真知!(学生动手剪)学生汇报生:在我剪完后,不像刚才同学说的那样是两个圈,是连在一起。

师:是一个圈还是两个圈?

生:一个圈。师:我们都认为从中间剪开应该是两个圈,结果是一个圈,这就是莫比乌斯的神奇之处,

(展示剪开后的纸圈)这个还是一个面的吗?现在你们验证一下,用笔画一画,说说你的发现。

生:画完之后只画了一个面,还有一个面没画上。师:那么是莫比乌斯带吗?

生:不是(板书:大胆猜想,小心求证)来,一起读这句话!师:现在在中间又画一条线,如果再沿着这条线剪开,想想,又会是什么结果?生1:还是一个圆。

生2:我觉得是两个圆。

师:大家做做看(学生动手操作,教师也动手操作)汇报结果生:是两个套着的圈。哇,又是你没想到的,是不是很神奇?

探究二:沿三分之一线剪

师:我们继续来感受这个纸圈的神奇,好吗?请同学们再拿出画有三等分线的纸条,把中间的部分涂上你喜欢的颜色,两面都涂再做成莫比乌斯带。

师:好,现在你们有什么想法?

生:能沿着线把这个莫比乌斯带剪开吗?师:可以的,如果我们沿着三等分的线把这个莫比乌斯带剪开的话,需要剪几次呢?生:两次。

师:剪完以后会是什么样呢?

生1:可能会是三个圈套在一起。

生2:会变成一个大圈。师:真佩服你们的想象力,那究竟会怎样,还是动手做一做吧!指名回答(剪一次,两个圈套在一起)小结:一个大圈套着一个小圈。师:这个大圈和小圈是莫比莫斯带吗?(生:不是)请用刚才的方法证明一下。

师:小圈就是原来长方形纸条的哪一部分?学生汇报(通过让学生动手沿二分之一,三分之一线剪,使学生经历了一个从猜测到验证的过程,不仅满足了学生的好奇心,也向学生初步渗透了猜测、验证、探索等数学思想,并引导孩子们寻找生活中的“莫比乌斯带”,发挥想象看到能否创造性地用上它,这让孩子们体会到,数学来源于生活,又回到生活。)四、生活中的应用师:一个看似简单的小纸圈竟如此神奇(板书课题:神奇的)

莫比乌斯带可不光好玩有趣,还被应用到生活的方方面面,让我们跟随莫比乌斯带一起走进生活中去吧,欣赏图片(课件出示)(1)过山车(2)莫比乌斯爬梯(3)可回收标志(4)工厂传送带(5)20xx年级上册70页《神奇的莫比乌斯带》

二、活动目标:

1、知识与技能

引导学生在对比探究中认识“莫比乌斯带”,并会制作“莫比乌斯带”,初步体会莫比乌斯带的特征。

2、过程与方法

组织学生动手操作,验证交流,让学生经历“猜想—验证—结论”的过程,掌握观察、猜想、验证、归纳概括发现的数学结论等探索方法,从中获得一些数学活动的经验。

3、情感态度与价值观

经历猜想与现实的冲突,感受“莫比乌斯带”的神奇变化,感受数学的无穷魅力,拓展数学视野,培养创新精神。

三、教学重难点

【教学重点】经历“猜想—验证—结论”的过程,掌握观察、猜想、验证等探索方法。

【教学难点】探索、发现莫比乌斯带的特征。

四、活动准备:

每位学生若干张长方形纸条,剪刀,固体胶(双面胶)、水彩笔。

五、活动过程:

(一)魔术引入,激发兴趣

同学们,喜欢看魔术表演吗?卢老师也会变魔术,你想看吗?看,老师手里有一张纸条和两个回形针,一会儿老师可以利用纸条变个魔术,让两个回形针手牵手,你们信吗?

魔术表演确实很吸引人,今天老师让每一个同学都来当一回魔术师,好不好?

1、观察:请同学们拿出手中的纸条,“今天我们变魔术的道具就是这张普通的长方形纸条,仔细观察,它有几条边,几个面?”

2、思考:接下来你们来变魔术,能不能把它变成只有2条边、2个面试试看(学生自主思考,尝试)。

3、操作:引导学生将纸条首尾相连围成一个纸圈。

4、验证:教师带领学生一起验证纸圈只有2条边2个面。

自主制作,验证特征

活动一:制作莫比乌斯带(验证特征)

1、你能不能再变,把它变得只有1条边,1个面再试试看。

先请找到方法的学生讲解示范,然后视频播放制作方法。请同学们用手中的纸条制作出这个只有1条边1个面的纸圈。

2、面对这样一个纸圈,你有什么疑问吗

学生提出疑问:

预设1:这个纸圈真的只有1条边1个面吗

预设2:为什么变成1条边1个面了

预设3:这个纸圈有名字吗

预设4:这个图形在哪里可以用得着

接下来我们就带着这些疑问来探索这个纸圈。

3、这个纸圈真的只有1条边1个面吗

(1)验证纸圈只有1个面。

师:首先验证只有一个面,你有什么方法请学生上台借助教具模型演示。

教师强化方法:借助彩笔,先定一个起点,再沿着纸圈画线,最后又回到了起点。(强调必须经过所有的面。)

(2)验证纸圈只有1条边。

验证只有一条边,你又有什么方法学生上台借助教具模型演示,教师强化方法后,全班自主验证。(强调必须经过所有的边。)

师:它真的只有1条边,1个面,神奇吗

4、验证总结,揭示课题。

纸圈为什么从2条边2个面变成1条边1个面了呢学生先尝试解释,教师后补充演示说明。

这个神奇的纸圈有个名字,有同学知道吗借用课件介绍莫比乌斯带的历史起源。(板书课题)播放3D视频,感受神奇。

【设计意图】从纸条到普通纸圈再到“莫比乌斯带”,学生经历了一个从熟悉到陌生,从普通到神奇的知识形成过程,这个过程对学生来说是新鲜、有趣的,它指引着学生一步步揭开“莫比乌斯带”的神秘面纱。

(三)合作探究,体验神奇

活动二:我的“怪圈”我做主(动手剪一剪)

1、同学们请看,一个普通圈,沿二分之一线剪开是这个样子的,那莫比乌斯圈沿二分之一线剪开是什么样的呢?

教师示范操作方法:先对折纸圈,剪开一个小口,再把剪刀穿进去,然后沿着虚线剪。(强调只要前面还有虚线,就继续剪。)

2、请看大屏幕,老师这里有1号(1/2线),2号(1/3线),3号(1/N线)三种纸条,任意选择你们想玩的一种,小组合作,根据活动报告单上的提示,动手剪一剪,看看会有什么更有趣的发现。

小组活动汇报单:

我们组选择的是X号纸条。

①猜想:先把它做成莫比乌斯圈,然后大胆猜测一下,如果我们沿着莫比乌斯圈的X分之一线剪开,莫比乌斯圈会变成什么样得到的这一个圈或几个圈还是莫比乌斯圈吗?

②验证:说一说你们是用什么方法验证的。

③结论:验证后得到的结果是X。

3、请小组展示并汇报活动成果。

【设计意图】通过让学生动手沿二分之一,三分之一,N分之一线剪,使学生经历了一个从猜测到验证的过程,不仅满足了学生的好奇心,也向学生初步渗透了猜测、验证、探索等数学思想,并从中获得一些数学活动经验。

(四)了解应用,欣赏创造

老师常说:“数学来源于生活,同时又服务于生活。”那么莫比乌斯带除了好玩有趣,它在生活中又有哪些应用?(课件展示)

1、传输带、传动带如果设计成莫比乌斯圈,正反两面交替使用,轮流磨损,就不会只磨损一面,从而延长使用寿命。

打印机的色带就是莫比乌斯圈,这样就节约了油墨。

2、过山车:有些过山车的跑道采用的就是莫比乌斯原理。

3、中国科技馆的大厅里耸立着一个巨型的三叶纽结.这个三叶纽结就是莫比乌斯带的原理设计的。

(五)布置作业

一张普通的长方形纸条,经过翻转、粘、剪,变成了这么多神奇的纸圈,就像在变魔术一样。你还能想出其它的玩法吗?有兴趣的同学可以在课下继续探索,研究。如果是你自创的新的玩法以你自己的名字命名,将研究的结果写成数学日记,下节课在全班交流。

【设计意图】引导学生寻找生活中的“莫比乌斯带”,发挥想象看能否创造性地用上它,这让学生们体会到,数学来源于生活,又回到生活。

(六)课堂小结,反馈提高

通过这节课,你有什么收获吗

(七)板书设计

神奇的莫比乌斯带

(猜想验证结论)

一个面

一条边

本文来源:https://www.bwwdw.com/article/fw0l.html

Top