微分几何与伴随着微分几何的发展

更新时间:2024-01-29 20:25:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

微分几何与伴随着微分几何的发展而创立的张量分析是掌握广义相对论的基础工具。也由于广义相对论的成功,使一向冷僻的微分几何成为数学的中心学科之一。

从微积分发明起,微分几何的萌芽就诞生了。但是Euler、Clairaut和Monge的工作才真正使微分几何成为独立学科。Euler在关于测地学的工作中逐步得出重要得研究,并对法曲率的计算得出著名的Euler公式。Clairaut研究了曲线的曲率和挠率,Monge发表了《分析应用于几何的活页论文》,将曲线与曲面的重要性质用微分方程表示,使得经典微分几何的发展到达一个高峰期。Gauss在测地学的研究中,经过繁杂的计算,于 1827年发现了曲面的两个主曲率乘积与它在外围的Euclidean空间中的形状无关,仅仅取决于其第一基本形式,这个结果被Gauss得意地称为是绝妙定理,从而创立了内蕴几何,把曲面的研究从外围空间中解脱出来,将曲面自身作为一个空间来研究。1854年Riemann作了《关于几何基础的假设》,推广了 Gauss在 2维曲面的内蕴几何,从而发展出n维Riemann几何,随着多复变函数的发展。一批优秀数学家将微分几何的研究对象扩展到复流形,再拓展到包含奇点的复解析空间理论。微分几何的每一步前进所面临的都不仅仅是知识的深化,更意味着知识领域的不断拓展。在这里,微分几何与多复变函数论、Lie群理论、代数几何以及PDE都彼此产生深刻的互相影响。数学在不断的分化,又不断交融。

多复变函数论与微分几何的结合闪耀着迷人的光辉,单位圆和上半平面(两者可以建立共形映射)上定义Poincare度规后,单复变函数论与微分几何的联系就历历可见。Poincare度规是共形不变量。著名的 Schwarz定理在引入Poincare度规后就可以解释为:单位圆上Poincare度规在解析映射下不增加,当且仅当此映射是分式线性变换时 Poincare度规不变。应用Poincare度规下的双曲几何可以轻松证明著名的Picard小定理。而Picard大定理的证明需要用到艰深的模函数理论,如果用微分几何观点,也可以以极其简明的方式证明。这里,微分几何深深渗透到复变函数论之中。在多复变函数论中,分析复仿射空间的区域定义度规后,接下来就实微分几何的曲率计算和其他一系列计算。在单复变情形,所有奇点离散分布,而在多复变情形,由于著名的Hartogs开拓现象,所有孤立奇点都被吞没,甚至于奇点形成的连续区域也经常被吞没,只有形成实余维数为1的流形才可以避免这个厄运。但是,即使这种情形也需要其他限制条件才可以“确保安全”。多复变函数论中奇点的这种奇特性质使得它们注定要成为流形。1922年Bergman引进著名的Bergman核函数,那个时代的多复变函数还是 Weyl所说的草创时代,除了Hartogs、Poincare、Levi和Cousin等几位前辈的著名研究外几乎没有任何实质性进展,Bergman 的工作无疑给这个死气沉沉的领域注入了一股活力。在多复变函数中的域上的Bergman度量,在一维情形就是单位圆和Poincare上半平面上的 Poincare度量,这注定了Bergman工作的重要性。

代数几何的基本研究对象是任意维仿射空间或者射影空间中的代数方程组(定义方程组)的公共零点(代数簇)的性质,代数簇的定义方程组的系数以及代数簇的点所在的域所在的域称为基域。不可约代数簇是其基域的有限次扩域。我们熟悉的数域上线性空间就是以数域为基域的扩域,线性空间维数就是扩张次数。从这个观点出发,代数几何可以看成是对有限扩域的研究。代数簇的性质和其基域关系极其密切。对于域上复仿射空间或者复射影空间中的代数簇,研究的过程中不仅有大量概念和微分几何及多复变函数论重合,而且在研究过程中运用到大量有关的相似工具。复流形以及复解析空间的每一步进展无不同时影响着这些学科。许多相关领域的大师,虽然看上去只研究某一领域,但是其结果却影响到其他领域。例如: Lerey研究代数拓扑得出得层论,在代数拓扑中影响不大,单却由于Serre,Weil和H? Cartan(E?Cartan长子)的引进,深刻影响了代数几何和多复变函数论。Chern研究Hermite空间的示性类,但同时影响了代数几何、微分几何和多复变函数论。H

ironaka研究代数几何中的奇点消解,但是他研究的复流形到复解析空间的修改与吹胀则影响了复解析空间理论。Yau证明了 Calabi猜想不仅影响了代数几何和微分几何同时影响了经典广义相对论。同时对于我们可以看出非线性常微分方程和偏微分方程在微分几何中的重要地位。 Cartan研究对称Riemann空间,得出了重要的分类定理,给出了1、2、3维空间中齐性有界域的完全分类,证明它们都是齐性对称域,同时他猜想:这种等价关系在n维情形也成立。1959年,Piatetski-Shapiro却在研究对称有界域的自守函数论的过程中找到了两个反例,在4维和5维的情形中各找出一个齐性有界域,它们不是齐性对称域,他将这些域命名为Siegel域,以纪念Siegel在1943年研究自守函数论方面的深刻工作。 Piatetski-Shapiro的这个结果深刻影响了多复变函数论和自守函数论,同时对于对称空间理论等一系列课题产生深远影响。正如我们知道的, Cartan将对称空间的研究化为Lie群和Lie代数的研究,这个观点直接受Klein的影响而又大大发展了Klein的初步想法。

当年也正是 Cartan发展了Levi-Civita联络的概念,发展出微分几何中的一般联络理论,通过流形上各点切空间的同构映射,实现了Klein的梦想,同时大大促进了微分几何的发展。同样是Cartan,断定和乐群在流形研究中的重要性,几经波折,终于在他去世后三十年左右才被证实是正确的。在这里,我们看到了微分几何的浩瀚优美。

正如我们熟知的,测地线联系着ODE(常微分方程),极小曲面和高维极小子流形联系着PDE(偏微分方程)。这些方程都是非线性方程,因此对于分析学有着极高的要求。单复变函数论中著名的Cauchy-Riemann方程组联结起PDE和复分析之间的联系,在多复变情形,Cauchy- Riemann方程组不仅空前深化了这个联系而且由于Cauchy-Riemann方程组的超定性(方程个数大于变量个数)导致了奇异的现象。这又使得 PDE与多复变函数论与微分几何紧密结合。

大多数学习微分几何的学者都被Gauss与Riemann的内蕴几何的无比深邃击晕,被Cartan的活动标架法的优美简洁倾倒,被Chern的示性类理论的博大精深折服,被Yau深厚精湛的几何分析功底震慑。当年年轻的 Chern面对整体微分几何时说自己就像面对一座闪耀金色光芒的山无比向往却一时无法攀到最高峰。但是后来他却赶在Hopf和Weil之前成为这个领域的一代宗师。

如果说Cartan发展的微分几何渐渐改变了广义相对论的几何模式的话,那么Chern等人的微分几何不仅在延续Cartan的影响而且以纤维丛的形式推动了规范场论的发展。微分几何仍然像Einstein时代那样和物理紧紧相连并且从物理中不断获取研究课题

为什么三维球无法赋予平坦度规却可以赋予共形平坦度规?因为三维球和其他维数的球一样无法与平坦空间建立等距映射,所以无法建立平坦度规;而n维球都是单连通常曲率空间,因此可以可以建立共形平坦度规。在微分几何中,等距的含义就是映射前后流形上对应点之间的曲线距离不变。一个流形与平坦空间等距时其 Riemann截面曲率恒为零。因为所有球面的曲率都为正的常数,所以n维球面以及其他的截面曲率非零的流形都无法赋予局部平坦度规。

但是还有局部共形平坦这个概念,对于流形上两个度规G和g,如果G=exp{ρ}?g,则称G与g之间的变换是共形变换。Weyl共形曲率张量在共形变换下保持不变,它是流形上的(1,3)型张量场。当Weyl共形曲率张量为零时,流形的曲率张量可以用Ricci曲率张量与数量曲率表示,所以 Penrose 总是强调曲率=Ricci+Weyl。

一个n维Riemann流形的度规张量g在局部上共形等价于平坦度规,则称为共形平坦流形。所有截面曲率为常数的流形(常曲率流形)都是共形平坦的,所以都可以赋予共形平坦度规。而所有维数的球面(当然包括三维球)都是常曲率流形,所以必定可以赋予共形平坦度规。反过来,共形平坦流形却未必是常曲率流形。但是有一个和Einstein流形有关的美妙结果可以弥补这个遗憾:3维以上的共形平坦 Einstein流形必定是常曲率流形。就是说要想让共形平坦流形却是常曲率流形,就必须要求Ric=λg,而这就是Einstein流形的定义。式中 Ric为Ricci曲率张量,g为度规张量,λ为常数。Einstein流形的数量曲率S=mλ为常数。而且如果S非零则其上面不存在非零的平行切向量场。Einstein引入宇宙学常数,使得他错失了预言宇宙膨胀的伟大成就,于是Hubble就飞黄腾达了;但是带有宇宙项的真空引力场方程却产生了 Einstein流形,这为数学家的展现才智提供了新舞台。

对于3维连通Einstein流形,即使不要求其共形平坦,它也自动是常曲率流形,其他维数不成立这个美妙性质,我是大一暑假学习张量分析时才知道这个结果的,感觉看到这个结果是一种享受。实流形中的截面曲率与Kahler流形中的全纯截面曲率是不一样的概念,因此也产生不一样的结果。全纯截面曲率为常数的Kahler流形,其Ricci曲率必定为常数,所以必定为 Einstein流形,称为Kahler- Einstein流形。Kahler流形为Kahler- Einstein流形当且仅当其作为Riemann流形时是Einstein流形。N维复向量空间,复射影空间,复环面以及复双曲空间都是Kahler- Einstein流形。Kahler-Einstein流形的研究成为几何学家的智力享受。

?

再回头讲讲等距映射的一个重要结果。考虑两个 Riemann流形M和N间的等距映射以及其诱导的切空间之间的映射,取M上任意点p,在其切空间任选两个不共线的切向量,求出其截面曲率。在映射下p点及其切空间上的那两个切向量在映射下变成另两个切向量,也求出其截面曲率。如果这个映射是等距映射,则这两个截面曲率是相等的。或者含糊些说就是等距映射 不改变截面曲率。

反过来,如果任意点都成立截面曲率不改变的性质,那么映射是不是等距映射?答案是否定的。甚至在三维Euclidean 空间的曲面上都无法成立这个性质。在局部情形,必须加上测地线的限制,应用Jacobi场的性质才能作到这一点。这就是著名得Cartan等距定理。这个定理是Jacobi场的精彩应用。它的大范围推广是Ambrose和Hicks作出的,称为Cartan-Ambrose-Hicks定理。

微分几何就是充满无穷魅力。我们给pseudo-Riemannian空间分类,可以用Weyl共形曲率张量分类,可以用Ricci曲率张量分类,也可以用运动群进行分类得出9种Bianchi型。而这些东西都是可以归结到微分几何的研究,这里遥远的Riemann观点和稍近的Klein观点完美结合,这里可以看出Cartan的伟大智慧,这里可以看出Einstein的深远影响。

从Hermite对称空间到Kahler-Hodge流形,微分几何不仅与Lie群紧紧相连,也与代数几何和拓扑学血脉相通

想起 1895 年伟大的Poicare写伟大的《位置分析》创立组合拓扑时曾经毫不掩饰地说高维空间的微分几何是意义不大的学科,对此他说了句:“家有美景,何须远求。”(Chern译)拓扑就是家中美景,干吗要辛辛苦苦计算曲面甚至高维流形的曲率?可是这次这个全才数学家错了,但我们能不能说这位数学天才对微分几何没有大贡献?不能。看看今天微分几何与拓扑学的紧密相关我们就知道了。一个闭形式何时才是恰当形式?在同伦于点的区域(单连通区域)有Poicare引理之逆告诉我们这个自动成立。在非单连通区域有著名的de Rham定理告诉我们如何成立,那就是微分形式在所有闭链上的积分为零。

即使在Poicare所忽视的微分几何领域,他仍然以一种不经意的方式深深影响了这个学科,或者毋宁说是影响了整个数学。

任何一门学科创立后都寻求推广的性质,微分几何也是这样。从曲率上来说,平直的Euclidean空间曲率为零,几何学家推广到曲率为正常数(狭义的 Riemann空间)和负常数的空间(Lobachevskii空间),我们知道,非欧几何的伟大之处不仅在于它独立了第五公设而且用其他情况替代而导致新几何,更在于它的创立者能在其上进行三角分析。但是著名数学家Milnor所说,在微分几何进入非欧几何之前,非欧几何只是没手没脚的躯干而已。只有在定义了度规以后进行曲率的统一计算之后,非欧几何才焕发出生机。Riemann在1854年的演讲中只写下了一个公式,就是这一个公式统一了正曲率、负曲率和零曲率的几何。后人大都认为Riemann这个公式又是凭直觉想出来的,实际上后来人们发现了他计算这个公式用的草稿纸,才知道天才也是要勤奋的。 Riemann已经探索任意维数的任意曲率流形的曲率了,但定量的计算超越了那个时代的数学工具,他只能写出常曲率流形的统一公式。但是我们知道,即使到今天,这个结果仍然是重要的,微分几何的名目繁多的“比较定理”都是以常曲率流形为比较模本的。

当年Riemann曾经考虑了二次微分形式的二次方根,这就是我们都熟悉的Riemann metric,由此导出Riemannnian geometry,当时他特意提及另一个情形,就是用四次微分形式的四次方根(相当于四元乘积的和开四次方).这是两者的联系与区别。但他却说对于这种情况和前面一种情况在研究上并不要求实质上不同的方法。还说,这样的研究比较费时间并且对空间无法增加新的认识,计算的结果也缺乏几何意义。所以 Riemann只研究了现在称为Riemann metric的情形。为什么后世的Finsler热衷于推广Riemann不想研究的情形?可能是数学家好推广以致于成为癖好。Cartan当年在 Finsler几何方面作过努力,但成效不大,Chern对这种几何确实也寄予厚望同时也研究出一些成就.但我仍然和国际上的普遍看法一致,那就是 Finsler几何前途黯淡. 这也正是Finsler几何一直无法进入微分几何主流的本质原因,它没有真正值得几何学家去奋斗的优美性质,也没有什么大的应用价值.后来的K-展空间, Cartan空间也都没有成为主流,虽然它们都是Riemannnian geometry的推广,但是没有得到什么大的发展.

4楼

实际上, 有时候推广的东西能够得到的新内容不多,微分几何也是这样,不是研究的对象越平凡越好,而是应当适当的特殊才好。比如Riemann流形中,齐性 Riemann流形特殊,就具有更多优美的性质,齐性Riemann流形中,对称Riemann流形更特殊,所以性质更优美.这是从流形上Lie群的作用角度分析的。

从度规的角度分析,定向偶数维的Riemann流形上赋予复结构,形成复流形,性质就极其优美。近复流形只有在近复结构可积时才成为复流形。复流形必定可定向,因为可以很容易求出它的Jacobian必定非负,而实流形在一般情况下没有这个性质。再缩小范围,Kahler流形更加具有很好的性质, Kahler流形的所有复子流形都是Kahler流形,而且还是极小子流形(Wirtinger定理),这个优美的结果迷倒了多少微分几何学家和代数几何学家,因为其他更一般流形不成立这个优美结果。如果要求 (复)三维Kahler流形的第一Chern数为零,可以得出Calabi-Yau流形,这是理论物理学家极其有兴趣的流形。Calabi-Yau流形的镜流形同样是代数几何域微分几何共同的课题。流行上的Hodge结构至尽都是有着无尽吸引力的课题。

微分几何,一个道不尽的话题。就像代数几何中要求双有理等价是个奢求一样,微分几何中要求等距变换何尝不艰难。分类学是整个数学的永恒课题。群论中有单群分类,多复变函数论中有区域的分类,代数几何中有代数簇的分类,微分几何也有分类。

艰难的课题引起一批批年轻的几何学家和年老的学者的共同冲刺,微分几何的前景无比光明。 微分几何学以光滑曲线(曲面)作为研究对象,所以整个微分几何学是由曲线的弧线长、曲线上一点的切线等概念展开的。既然微分几何是研究一般曲线和一般曲面的有关性质,则平面曲线在一点的曲率和空间的曲线在一点的曲率等,就是微分几何中重要的讨论内容,而要计算曲线或曲面上每一点的曲率就要用到微分的方法。

在曲面上有两条重要概念,就是曲面上的距离和角。比如,在曲面上由一点到另一点的路径

是无数的,但这两点间最短的路径只有一条,叫做从一点到另一点的测地线。在微分几何里,要讨论怎样判定曲面上一条曲线是这个曲面的一条测地线,还要讨论测地线的性质等。另外,讨论曲面在每一点的曲率也是微分几何的重要内容。

在微分几何中,为了讨论任意曲线上每一点邻域的性质,常常用所谓“活动标形的方法”。对任意曲线的“小范围”性质的研究,还可以用拓扑变换把这条曲线“转化”成初等曲线进行研究。 在微分几何中,由于运用数学分析的理论,就可以在无限小的范围内略去高阶无穷小,一些复杂的依赖关系可以变成线性的,不均匀的过程也可以变成均匀的,这些都是微分几何特有的研究方法。

近代由于对高维空间的微分几何和对曲线、曲面整体性质的研究,使微分几何学同黎曼几何、拓扑学、变分学、李群代数等有了密切的关系,这些数学部门和微分几何互相渗透,已成为现代数学的中心问题之一。

微分几何在力学和一些工程技术问题方面有广泛的应用,比如,在弹性薄壳结构方面,在机械的齿轮啮合理论应用方面,都充分应用了微分几何学的理论。 其它数学分支学科

算术、初等代数、高等代数、数论、欧式几何、非欧几何、解析几何、微分几何、代数几何学、射影几何学、拓扑学、分形几何、微积分学、实变函数论、概率和数理统计、复变函数论、泛函分析、偏微分方程、常微分方程、数理逻辑、模糊数学、运筹学、计算数学、突变理论、数学物理学

应用微分学来研究三维欧几里得空间中的曲线、曲面等图形性质的数学分支。差不多与微积分学同时起源于17世纪。单变量函数的几何形象是一条曲线,函数的导数就是曲线切线的斜率。函数的积分在几何上则可理解为一曲线下的面积等等。这种把微积分应用于曲线、曲面的研究,实质上就是微分几何学的开端。L.欧拉、G.蒙日、J.L.拉格朗日以及A.-L.柯西等数学家都曾为微分几何学的发展作出过重要贡献。与此同时,曲面内蕴几何等崭新的思想也在不断地产生并积累着。在此基础上,C.F.高斯奠定了曲面论基础,并使微分几何学成为一门新的数学分支。按F.克莱因变换群几何的分类方法来看,微分几何学应属于运动群,所以也称为运动几何学或初等微分几何学。

微分几何学的研究对数学其他分支以及力学、物理学、工程学等的影响是不可估量的。如:伪球面上的几何与非欧几何有密切关系;测地线和力学、变分学、拓扑学等有着深刻的联系,是内容丰富的研究课题。这方面有以J.阿达马、H.庞加莱等人为首的优异研究。极小曲面是和复变函数论、变分学、拓扑学关系极为深刻的研究领域,K.魏尔斯特拉斯、J.道格拉斯等人作出过卓越贡献。

微分几何学的研究工具大部分是微积分学。力学、物理学、天文学以及技术和工业的日益增长的要求则是微分几何学发展的重要因素。尽管微分几何学主要研究三维欧几里得空间中的曲线、曲面的局部性质,但它形成了现代微分几何学的基础则是毋庸置疑的。因为依赖于图形的直观性及由它进行类推的方法,即使在今天也未失其重要性

今天很高兴能够在各位面前讲讲我做学问的经验,可以供大家参考一下。我讲「如何学好微分几何」的题目,主要是想跟大家讲讲有关于从前我做学问的态度,因为我是做几何的,所以我就讲做微分几何。很明显的,大部份的同学不会选几何,不过没有关系,其实就是讲讲我做学问的态度。

首先,讲讲我从前的一些经验。我从前在香港长大,在香港念中学、大学,然后到美国念研究所,所

以至少在前一半跟大家的经验应该差不了太远,不过是时代有点不同。我在多年前念数学,你们现在念数学,看法上已经有许多不相同,事实上我也不太了解你们现在的想法。不过基本上,我们都是中国文化出生的,所以我想仍有一部份共同的地方。基本上我们是要讲怎么作科学研究,也就是纯科学的研究,我们要看的是我们的志向是怎样的。假如我们想做一个好的科学家,当然我讲的是怎么做一个好的数学家。先说我自己的经验,我从前在香港培正中学念中学的时候,就开始对数学有兴趣。当然还有一些其它的课程,我对数学有兴趣,一方面是受到我家庭的影响,我父亲是做哲学的,所以对于念数学一直都相当鼓励,到了中学以后,我父亲去世了。不过也因此对于自然科学有很浓厚的兴趣。另一方面受老师的影响也很大。我想很重要的当我们开始要做一个学问,尤其是你真的要做一个出色的科学家,跟你的兴趣和你一开始所立下的志向有很大的关系。就是说,开始的时候你期望能够做到什么。假如说开始的时候你根本不想做一个好的科学家,那么你就永远也不可能做一个好的科学家。从前有位大学老师跟我讲说:「假如你不买马票,你永远也中不了。」倒不是说我鼓励你们去买马票,是说假如你不准备做好的科学家,就永远也做不了一个好的科学家。不过是不是讲,你想做一个好的科学家,你就可以做个好的科学家呢?当然不是,你还要有很多其它的因素在里面,我想第一点是要你将做人的目标先决定。

我在国外二十多年了,也教了不少的学生,有些在世界上算是很出名,但有些不是太行。从这方面来讲,比较好的学生和不好的学生我可以晓得不同的经验。我想好的学生大部份一开始就决定他要做到什么程度的科学家,从很早就可以看得出来,因为有了志向以后,才晓得怎么去用功、怎么去花时间在上面。这看起来倒是老生常谈,因为你从小学、中学到大学,大概很多老师都跟你讲同样的意见,可能你听多了都觉得没有什么意思,但是事实上这是成功的第一个因素。我的一位老师跟我讲,你要决定以后你想做什么,讲明了,不是为名就是为利。当时我很惊讶,老师为什么讲这一句话。我们不能否定大部份的想法不是为名就是为利,同时这个想法也推动了不少科学的研究。不过我们也晓得,单是为名为利不可能将科学达到最高峰的研究,我们一定要对这个科学有浓厚的兴趣。我们应当晓得,做科学,我们有一个很纯正的想法,就是对真理的追寻,在真理的背后有一个很漂亮的境界在里面,我们到了一个境界以后,对我们追求学问的人来讲,是无法抗拒的,就算是没有名没有利,我们也希望能够将这个真理搞清楚。举例来讲,如果你喜欢下棋的话,有时你会晓得下到一半的时候,结局会是怎样,你非为名也非为利,当然可以讲说你是为了好胜,但是有时候你总是想追求,想晓得怎么解决这个问题。在科学上来讲我们要追求的是比这个高的境界。我为什么讲为名为利这个事实呢?举例来讲,我们这几年在哈佛大学里教了几个在大学里念数学念得很好的学生,可是到了毕业的时候,我晓得他们明明对数学有很大的兴趣,但是他们选取了完全不同的途径,他们有些人宁愿选取做生意或是到银行里面做事。我并不反对你们去做生意、赚大钱,我失望的缘故是因为这些学生明明是对做学问兴趣特别大,但是他们没有办法去抗拒赚钱的引诱而放弃了继续做学问的前途,有些人甚至过了几年赚了钱,又想重新再做学问,但问题是无论你资质有多好,一般来讲你将做学问的机会放弃以后,再想重新做起将会遇到许多困难。并不是说不可能,也曾有这种情形发生过,但是真正能够达到的情形,几乎是绝无仅有,做学问是不能中断的。我遇见过很多朋友,有些甚至是很有名的数学家,他们有些人会讲我现在一方面做行政的工作,一方面可以做学问,可是事实上,这是没有办法可以达到两者兼顾的情形。我们晓得做学问几乎是全心全意的工作,当对证明追寻的时候,很难说受到其它外界的打扰,仍能够达到很高的成功的。以我的经验来讲,在想问题的时候,晚上睡觉也在想这个问题,躺在床上也在想,早上起床第一件事就是想这个问题。我并不是讲你们也要这样子,我是希望你们在遇到一个问题要解决的时候,你要全力以赴,不可能在中间慢慢想一点而在其它也可以花点功夫,这样精神不集中的态度是不可能做好学问的。我想对大家做个建议,假如你想做个真正的好科学家的话,就不能够再往回走,假如你想做生意,那干脆一开始就不要想这个问题,并不是你要做个好的教员就要照我刚才讲的,要花这么多功夫,倒是要念好科学这是很重要的,所以这是第一点,立志很重要。

第二点我要讲的,我在国外多年,遇见过许多很出名的数学家,甚至许多有名的物理学家我也见过许多。在我认为并没有一个是真正的像一般报纸上所讲的是天才,在我所亲身认识的大科学家,都是经过很大的努力,才能够达到他所达到的成就。我的学生问我:「为什么你做的比我好?」,我说很简单,我比你用功。我在办公室或是在家里边,我天天在想问题,你们在外面玩,而我花了功夫在解决想了很久的问题,我总比你不想、不花时间成就大一点。你可能去听个大科学家或大数学家演讲,你会觉得漂亮得不得了,怎么一个人能够讲得这么好!这个人是个天才!可是你有没有想到,他在后面准备花了多少时间想这个问题?大概你们听过最出名的科学家费因曼,《费因曼物理》注1漂亮得不得了,所有出名的物理学家都这么讲,去听的人不是学生,都是老师或物理学家。费因曼在准备费因曼物理的时候是什么事都不做,就只有脑子在花功夫,整天在想这个问题,跟许多学生不停的在谈这个问题。费因曼是个有名的天才,可是他准备这个研究也花了许多不同的功夫。我想很多出名的科学家在有所表现出不同的时候,你会觉得他是天才,事实上他用在后面的功夫都是很不少的。

有许多很聪明很厉害的人可能是研究生甚至是教授,往往你给他一个问题,他可以很快给你一个答案,同时是很不错的一个答案。可是很多这样出色的学生或是教授,过了很久以后,你总会觉得他没有做出很好的成绩出来。问题是,你解决的问题太容易了;没有再花很多精神去考虑这个问题。尤其在我们中国人最缺乏的,就是在做中学生或是大学生的时候,没有将一个问题从头到尾仔细考虑清楚,并没有真正的全部了解,这是个很重要的问题。从一个很小的问题,我们可以引发很多不同而且有意思的问题。思考要自己训练,不单是在联考或在大学的时候,老师出个题目,你考了一百分就完了,假如这样的话,你很容易就满足你自己,你不觉得问题有什么意思。往往出名的研究是在很平凡的问题里面,不停的思考所找出来的,很多人因为很快将问题解决了,便不愿再想下去,所以不能够再启发新的东西。科学的研究,不是解决人家已经晓得的问题。当一个科学家问一个好的问题的时候,即是成功的一半。因为科学的推动是从不断的找寻新的问题,新的方向出来的,解决从前的问题虽是个重要的推动方向,可是我们还要找出新的方向,而不单是解决从前的问题。我们知道在物理上解决问题的时候,往往大的或出名的公式是将前面固定的理论推翻,而找出新的路子。为什么大数学家或大物理学家能够做到这个地步呢?因为他们不断的问问题。有时候在一般人来讲很明显的问题,在出名的科学家看起来,就不见得很明显。为什么不明显呢?因为我们有不同层次的问题要一路考虑下去。问问题的能力是一个很重要的训练,并不是花很多功夫就可做到,我想在我们中国的小学、中学或大学里都没有很好的做到这一点,我想从小应该做到这一点的。

现在我们来看数学跟其它物理、化学或生物等实验科学有那些不同?物理或化学等科学是从一般实验、现象界所找的题目,最后再经过实验的证实,才能算是个成功的理论。理论物理学家可以发展很多不同漂亮的理论,但最后假如不能够在实验里做出来的话,对物理学家来讲就是一篇废话。数学家有个好处。就是说,我们做了学问,一方面大部份是从一般的科学里面产生给我们的,一方面可以当作文学作品来欣赏。我们的取材多采多姿,一方面是比较基本的,从自然界或物理上的基本粒子、广义相对论、重力场去拿出很多基本的大自然的问题。这方面对近代几何学上的影响很大,另一方面可从比较没那么基本的理论里发生出来。所谓不基本,并不是说不重要。我们要了解到我们有些问题是从工业界来的,譬如说做飞机、做螺丝,甚至做流体变动的问题,都是可产生许多有趣的几何问题或是数学问题。例如说机械人手怎么去拿东西?这都可以看做是基本的几何问题,物理学家不一定有兴趣,可是数学家却有很大的兴趣。另外我们也可以对与实际问题不相近的问题产生兴趣,我们对一个图画得漂不漂亮,我们也可以在数学上研究。几何在数学上的取材有三个不同方向:第一是从基本自然界里产生的问题。从基本粒子、重力场到电磁波基本上如何产生的种种重要几何问题,从表面上你看不出来为什么它跟几何有关,但事实上近代物理将很多这种基本场论的问题变成几何问题,对微分几何来讲有很大的贡献。第二是刚才所讲,工业界与古典力学出了很多很重要的几何问题。第三就是纯粹从美的观点来找问题。举例来讲,从数论里面找了许多很漂亮的问题,尤其是近十或二十年来,大部

份重要的数论问题大多是用几何的方法来解决的,这是几何在数学上三个重要的取材方向。

我为什么讲取材的问题呢?因为很多中学生或大学生在念几何或是某些数学课程的时候,认为我们念那个学科就念那个学科就够了,而不要念其它的学问,这是个很错误的观念。因为数学里面每一门的学问都有密切关联的,不单是数学,其实所有的理论科学中间都有很密切的关系。例如我们刚刚所讲的,高能物理与数学的关系,或是化学甚至生物都跟数学有很大的关系,所以我想怎么学几何呢?第一点是当你决定好要做一个好的几何学家时,你一定要广泛的学不同的学问,基础要比较广,如微分方程、代数、物理学以及其它学科,至少在心理上有个准备,就是说这些学科将来是对你有帮助的。你听起来会觉得这是很困难的事情,你不可能学会这么多种不同的学问。这主要的分别就是你要有一个层次,你的专科是那一方面,就要多学一点,但不可忘掉其它的学科。有时在某个意义下,我们可以很惊讶的看到同一个学问、同一个命题,在两个不同的学科里面,可以以不同的方法出现,就是说以不同的方法证明。我想主要的原因是根本上这两个学科的分别并不是很大。在几十年前有个出名的物理学家说数学有不可思议的力量。为什么数学能够在物理上有这么大的影响呢?因为从物理学家的看法,数学家祇是在玩一些简单的符号,纯粹是在家里想一些自己的问题,与自然界的关系好像不大,其实这是个错误的想法。我们数学家研究的问题是很具体的,只是有不同的层次,所以有点不同而已。举例来说我们研究微分几何上一个最简单的图形-圆球,这圆球可以说是一个抽象的观念,我们也可以说它是自然界很具体的一部份。也就是说我们将所研究的圆球视为自然界的一部份,其实跟物理的现象差不了太远的。尤其在现代的高能物理里,我们研究基本粒子,尤其到了量子力学的观念以后,因为能量已经到了很高的地步,所以有很多根本没有办法做实验,所以基本上也是在家里或课堂里或办公室里用纸笔来算,这跟数学家想象的差不了太远。假如物理学家可以这么做,表示数学家也能够坐在家里面而对自然界达到某种程度的了解。

为什么我要讲这些呢?这些与微分几何有什么关系呢?我要讲的是你在选题的时候,我们虽然有个自由度对于选题与自然界无关,但是我们也有一个限度在里面,假如我们选的问题与现实相差太远,最后我们的命题会被淘汰掉。在历史上出现很多不同的研究,过了十年、二十年后就完全被淘汰的。你看现在的图书馆里面有许多的文章出现,不过再过个十年八年以后,我想大部份的文章是会被淘汰掉的,根本在整个数学历史上起不了任何作用。这是因为很多的文章实在没有解决问题,其次是对我们研究的对象没有产生任何效果。所以虽然我们数学界不用时间来做证明,可是我们有某种程度的测试。一般来讲,证的很好的数学,二十年或五十年内都可以看到它在现实里出现帮助。我们晓得在这个二十年以来,从前许多不重要的问题,在今日的工程上发生很大的影响。举例来讲,从前在数论里对于质数的搜查这个问题,这完全是一个无聊的命题。就是说一个很大的数,你怎么将它因子分解得很快。近十多年来,在国防科学上这问题变成一个重要的命题,有许多国防科学家在做这方面的研究,所以说数学上的选题很重要。为什么因子分解很重要呢?表面上看来跟真正的用途好像没有什么关联,可是它是一个很自然的问题,一个很大的整数它怎么分解,很快地,表面上并不重要,但可以帮助我们了解质数的分布情形,所以我说选题是一个很重要的问题。我记得从前我们在做大学生的时候,花了很多功夫去念一些文章与参考书,有些对数学来讲是很无意义的,可是反过来说因为花了很多功夫,所以可以了解到有些问题比较重要,有些问题比较不重要,所以花的功夫并没有白费。

其次我们讲做一个学生应该是怎么一个看法。对于做数学或做微分几何来讲,我觉得研究的气氛很要紧,尤其在中国的环境里,好像是不太容易培养出这种气氛来。假如你旁边的朋友或同学跟你谈的都是其它的问题,譬如说股票涨了或跌了或其它问题,久而久之,你大概对于做学问也没有很大的兴趣,所以培养做学问的态度与你交的朋友、跟的老师的关系很大。如果你们时常讨论学术上的问题,你就不会觉得自己很孤单,能够激励你对数学上有更大的兴趣。假如你自暴自弃,就是说你认为自己不能够在数学上做研究,不能够在数学上达到贡献的话,你永远也达不到,而且同时也影响到你旁边的朋

友,使得大家都不能向前走。我们晓得许多出名的数学家甚至在牢里也可以写一些出名的文章,倒不是你永远关在牢里就能做好的文章,是说人在最困难的时候也可以做研究。除了气氛很重要外,你也需要得到先进的支持,从前我们念中学的时候,念了很多关于做学问的方法,从前觉得很好笑,以后念书念得多了以后就觉得这些很重要,事实上这些是很重要的经验。有句话说「学而不思则罔,思而不学则怠」,你单是学而不想是不行的,你单是想而不学也是不行的,这两句话看起来很简单,其实就是怎么分配你的学习跟思想,这是一个很微妙很重要的问题。一个人无论你多用功多天才,你假如不将前人做过的东西去体验去学习,是不可能做好的。这道理很简单,一个人的智慧有限,我们不可能与前面十年、五年所有人做过的加起来的智慧相比,我们要靠前人的经验,要靠他们的启发,才能够向前迈进,虽然有人自夸的讲比他们加起来都行,我不相信这种情形,也没见过这种情形。所以出名的贡献如爱因斯坦、牛顿的贡献,也是在前人的成果方面再向前走一大步或一小步。所以学是一定要的,可是如果你学过这个东西以后而不去思考,不去消化,就算你可以考第一,考一百分,但是你不想是绝对没有用的。我们看过很多出名的天才,十二岁就拿到学士学位,甚至拿了很高分,可是往往我们看不出他以后的成就。为什么很多所谓的天才在以后的科学发展里没有任何的贡献?这是因为他们没有思考,没有思考在科学上完全不会引起任何的波澜、任何的贡献,对于整个科学完全没有好处。所以学了以后一定要思考,怎么分配你的学习跟思考就往往要有导师的帮忙或是同学的帮忙。所谓的帮忙并不是说老师跟你讲你应当这么做或应当怎么做,这样往往是没有很大的效果,所以我刚刚讲的气氛很重要。从人家用功的程度或是讲话的态度的启发,或是讲话的时候能够去听,追根出什么东西来,从它而得到很大的帮助。从前我到柏克莱去念研究所时,我花了很多功夫去听很多不同的科目,有些人觉得很奇怪,为什么我会去听那些课?我觉得这些课对我有好处,过了几十年后我还是觉得有好处。有些课在我去听的当时可能不懂,可是听了还是觉得有好处,因为一个人的脑袋的想法并不是那么简单的,有时候某些东西当时可能不懂,可是慢慢的就能领悟很多东西。我举例来讲,我做博士论文的时候,我刚好要用到群论的东西,当时我问过许多专家,但是都不懂,我突然想到从前在某一课上听过一个有关这方面的论文,我忘了当时讲什么课,但我记得大概在那里可以找这方面的文章,所以我花了2天的时间在图书馆,结果给我找到差不多是我所要的文章。假如当初不去听这门课的话,我完全没有这个机会,所以有时候听一门不懂的课,有很多不同的帮助,所以很多研究生我跟他们讲,你们去听课不一定要懂,你坐在那边总比不坐在那边好,你不坐在那边的话,你完全不可能知道有其它的方法。

我想最后还是你对整个学问有多大兴趣的问题,假如你对这个学问兴趣不大的话,你没办法长年累月的坐在图书馆,坐在办公厅里,或是坐在一个课堂上听课,所以你一定要先决定你对这学问的兴趣有多大,当然做研究还有许多其它方面比较复杂的原因,以后有机会我们再讲下去。我想现在你们在大学的阶段,最要紧的是决定以后你要做什么东西,其它的可能就容易做到了。

分几何学是运用数学分析的理论研究曲线或曲面在它一点邻域的性质,换句话说,微分几何是研究一般的曲线和曲面在“小范围”上的性质的数学分支学科。

微分几何的产生

微分几何学的产生和发展是和数学分析密切相连的。在这方面第一个做出贡献的是瑞士数学家欧拉。1736年他首先引进了平面曲线的内在坐标这一概念,即以曲线弧长这以几何量作为曲线上点的坐标,从而开始了曲线的内在几何的研究。

十八世纪初,法国数学家蒙日首先把微积分应用到曲线和曲面的研究中去,并于1807年出版了它的《分析在几何学上的应用》一书,这是微分几何最早的一本著作。在这些研究中,可以看到力学、

物理学与工业的日益增长的要求是促进微分几何发展的因素。

1827年,高斯发表了《关于曲面的一般研究》的著作,这在微分几何的历史上有重大的意义,它的理论奠定了现代形式曲面论的基础。微分几何发展经历了150年之后,高斯抓住了微分几何中最重要的概念和带根本性的内容,建立了曲面的内在几何学。其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲面的长度、两条曲线的夹角、曲面上的一区域的面积、测地线、测地线曲率和总曲率等等。他的理论奠定了近代形式曲面论的基础。

1872年克莱因在德国埃尔朗根大学作就职演讲时,阐述了《埃尔朗根纲领》,用变换群对已有的几何学进行了分类。在《埃尔朗根纲领》发表后的半个世纪内,它成了几何学的指导原理,推动了几何学的发展,导致了射影微分几何、仿射微分几何、共形微分几何的建立。特别是射影微分几何起始于1878年阿尔方的学位论文,后来1906年起经以威尔辛斯基为代表的美国学派所发展,1916年起又经以富比尼为首的意大利学派所发展。

随后,由于黎曼几何的发展和爱因斯坦广义相对论的建立,微分几何在黎曼几何学和广义相对论中的得到了广泛的应用,逐渐在数学中成为独具特色、应用广泛的独立学科。

微分几何学的基本内容

微分几何学以光滑曲线(曲面)作为研究对象,所以整个微分几何学是由曲线的弧线长、曲线上一点的切线等概念展开的。既然微分几何是研究一般曲线和一般曲面的有关性质,则平面曲线在一点的曲率和空间的曲线在一点的曲率等,就是微分几何中重要的讨论内容,而要计算曲线或曲面上每一点的曲率就要用到微分的方法。

在曲面上有两条重要概念,就是曲面上的距离和角。比如,在曲面上由一点到另一点的路径是无数的,但这两点间最短的路径只有一条,叫做从一点到另一点的测地线。在微分几何里,要讨论怎样判定曲面上一条曲线是这个曲面的一条测地线,还要讨论测地线的性质等。另外,讨论曲面在每一点的曲率也是微分几何的重要内容。

在微分几何中,为了讨论任意曲线上每一点邻域的性质,常常用所谓“活动标形的方法”。对任意曲线的“小范围”性质的研究,还可以用拓扑变换把这条曲线“转化”成初等曲线进行研究。

在微分几何中,由于运用数学分析的理论,就可以在无限小的范围内略去高阶无穷小,一些复杂的依赖关系可以变成线性的,不均匀的过程也可以变成均匀的,这些都是微分几何特有的研究方法。

近代由于对高维空间的微分几何和对曲线、曲面整体性质的研究,使微分几何学同黎曼几何、拓扑学、变分学、李群代数等有了密切的关系,这些数学部门和微分几何互相渗透,已成为现代数学的中心问题之一。

微分几何在力学和一些工程技术问题方面有广泛的应用,比如,在弹性薄壳结构方面,在机械的齿轮啮合理论应用方面,都充分应用了微分几何学的理论。

\最初研究的是三维空间中的曲线、曲面。Gauss于1827年写了一本50页左右 的小书,研究曲面的微分几何,包括大学学的微分几何的主要内容。这本书标志 着微分几何学的诞生。Gauss当时主持一项土地测量的的项目,他写这本是为了

给这项工作一个理论基础。Gauss也是非欧几何学(non- Euclidean geometry) 的创始人之一。需要指出的是Gauss工作的主要领域是数论。

同Gauss一样,Riemann工作的主要领域也不是几何学,而是单复变函数,但 他是现代微分几何与解析数论的创始人。在他为取得大学教授资格的公开讲演中, Riemann提出了微分几何学发展的新思想,其中包括流形、Riemann度量、 Riemann曲率等重要概念。简单的说,就是用局部坐标和坐标变换来描述一个空 间,用Riemann度量做最基本的几何量,空间的几何性质如弯曲程度由度量用特 定方式决定。

Riemann的工作由Christoffel、Ricci、Levi-Civita等人发展,后来成为 Einstein创立的广义相对论的数学基础。简单的说,广义相对论将物理量解释为 几何量。具体的说,空间和时间结合在一起由一个流形描述:不同的参照系给出 不同的局部坐标;不同参照系之间的关系即是坐标变换。时空流形的度量由所谓 Lorentz度量给出,象Riemann几何一样计算出曲率等几何量。Einstein方程说: 时空的物理量(能量动量张量)等于时空的几何量(Ricci曲率张量)。 Einstein的工作激发了数学家对微分几何的兴趣,从而极大地促进了这门学 科的发展。数学家和物理学家当时关心的自然的问题是Maxwell的电磁理论的几 何化和引力理论与电磁理论的统一。Einstein后期致力于大统一理论的研究没有 取得有意义的进展,一个重要的原因可能是他没有利用广义相对论出现以后发展 的几何学。

数学家Hilbert、Weyl和Cartan都对以上问题做过研究。他们的工作突出了 流形上联络的重要性,他们都对数学上用来描述连续对称性的Lie群的研究做出 过重大贡献。Cartan的工作为现代微分几何的发展奠定了基础。他引进的微分形 式理论是研究流形的代数拓扑的基本工具,纤维丛及其联络成为几何学的基本研 究对象。Weyl提出的规范原理后来被杨振宁等人发展为规范场论,成为各种统一 理论的基础。杨振宁先生上一世纪五十年代提出规范场论时并不清楚与几何学的 关系,后来他们逐渐认识到了它与几何学的一致性,引发了理论物理和微分几何 的深入交流,产生了Donaldson理论,Seiberg-Witten理论、 Gromov-Witten理 论等。

陈省身先生的工作建立了流形的局部几何性质与整体的拓扑性质的关系。他 引进的陈示性类是几何学发展的一个里程碑,以后的重要进展无不建立在其基础 上,例如高维Riemann-Roch定理、指标理论等等。陈先生1984年度的Wolf奖的证 书上写到:‘他在整体微分几何上的卓越成就,其影响遍及整个数学。’\ (《微分几何学历史简介》,清华大学基础数学研究所 周坚)

微分几何学,数学的一个分支学科,主要是以分析方法来研究空间(微分流形)的几何性质。

微分几何的产生

微分几何学的产生和发展是和数学分析密切相连的。在这方面第一个做出贡献的是瑞士数学家欧拉。1736年他首先引进了平面曲线的内在坐标这一概念,即以曲线弧长这以几何量作为曲线上点的坐标,从而开始了曲线的内在几何的研究。

十八世纪初,法国数学家蒙日首先把微积分应用到曲线和曲面的研究中去,并于1807年出版了它的《分析在几何学上的应用》一书,这是微分几何最早的一本著作。在这些研究中,可以看到力学、物理学与工业的日益增长的要求是促进微分几何发展的因素。

1827年,高斯发表了《关于曲面的一般研究》的著作,这在微分几何的历史上有重大的意义,它的理论奠定了现代形式曲面论的基础。微分几何发展经历了150年之后,高斯抓住了微分几何中最重要的概念和带根本性的内容,建立了曲面的内在几何学。其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲面的长度、两条曲线的夹角、曲面上的一区域的面积、测地线、测地线曲率和总曲率等等。他的理论奠定了近代形式曲面论的基础。

1872年克莱因在德国埃尔朗根大学作就职演讲时,阐述了《埃尔朗根纲领》,用变换群对已有的几何学进行了分类。在《埃尔朗根纲领》发表后的半个世纪内,它成了几何学的指导原理,推动了几何学的发展,导致了射影微分几何、仿射微分几何、共形微分几何的建立。特别是射影微分几何起始于1878年阿尔方的学位论文,后来1906年起经以威尔辛斯基为代表的美国学派所发展,1916年起又经以富比尼为首的意大利学派所发展。

随后,由于黎曼几何的发展和爱因斯坦广义相对论的建立,微分几何在黎曼几何学和广义相对论中的得到了广泛的应用,逐渐在数学中成为独具特色、应用广泛的独立学科。

微分几何学的基本内容

微分几何学以光滑曲线(曲面)作为研究对象,所以整个微分几何学是由曲线的弧线长、曲线上一点的切线等概念展开的。既然微分几何是研究一般曲线和一般曲面的有关性质,则平面曲线在一点的曲率和空间的曲线在一点的曲率等,就是微分几何中重要的讨论内容,而要计算曲线或曲面上每一点的曲率就要用到微分的方法。

在曲面上有两条重要概念,就是曲面上的距离和角。比如,在曲面上由一点到另一点的路径是无数的,但这两点间最短的路径只有一条,叫做从一点到另一点的测地线。在微分几何里,要讨论怎样判定曲面上一条曲线是这个曲面的一条测地线,还要讨论测地线的性质等。另外,讨论曲面在每一点的曲率也是微分几何的重要内容。

在微分几何中,为了讨论任意曲线上每一点邻域的性质,常常用所谓“活动标形的方法”。对任意曲线的“小范围”性质的研究,还可以用拓扑变换把这条曲线“转化”成初等曲线进行研究。

在微分几何中,由于运用数学分析的理论,就可以在无限小的范围内略去高阶无穷小,一些复杂的依赖关系可以变成线性的,不均匀的过程也可以变成均匀的,这些都是微分几何特有的研究方法。

近代由于对高维空间的微分几何和对曲线、曲面整体性质的研究,使微分几何学同黎曼

几何、拓扑学、变分学、李群代数等有了密切的关系,这些数学部门和微分几何互相渗透,已成为现代数学的中心问题之一。

微分几何在力学和一些工程技术问题方面有广泛的应用,比如,在弹性薄壳结构方面,在机械的齿轮啮合理论应用方面,都充分应用了微分几何学的理论。

黎曼几何学的提出

在三维欧氏空间E3中,与曲线相比,曲面有着重要得多的性质。设x1,x2,x3为E3的笛氏坐标,则曲面S的参数方程为

(1)

曲面S的几何性质完全由被称为曲面的第一、第二基本形式的两个二次微分形式所决定。

1827年德国数学家C.F.高斯的论文《弯曲曲面的一般研究》在微分几何学的历史上有重大的意义。微分几何发展经历了150年之后,高斯抓住了微分几何中最重要的概念和带有根本性的内容,他在论文中建立了曲面的内在几何学,其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲线的长度、两条曲线的夹角、曲面上一区域的面积、测地线、测地曲率和总曲率等等,称之为曲面的内在性质。

高斯之前的几何学家,在研究曲面时总是把曲面与外围空间E3相联系,找出曲面上一点的主方向,再计算两曲率线的法曲率的乘积,这是欧拉的研究。高斯证明了由曲面的第一基本形式就确定了曲面的总曲率,这就是高斯方程,所以总曲率通常也称为高斯曲率,这是高斯的著名发现,被称为“极妙定理”。他说:“如果一个弯曲的曲面可展开到任何另外的曲面上去,则每点的曲率是保持不变的。”这里,“可展”表示了映射是1-1(一一)且保持距离的。高斯建立的内在几何学有着深远的影响,是在微分几何上的一关键而重大的突破,但当时并未被人们所认识。

更重要的发展属于德国数学家(G.F.)B.黎曼。1854年他在格丁根大学发表了题为《论作为几何学基础的假设》的就职演讲,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧氏空间中的一个几何实体。他发展了空间的概念,首先提出了n维流形(当时称为多重广延量)的概念,其中的点用n个实数(x1,x2,?,xn)作为坐标来描述,他定义了流形上无限邻近两点(xi)与(xi+dxi)(i=1,2,?,n)的距离

, (2)

并以此作为几何学的出发点。后来称(2)为黎曼度量,这里(gij)是正定对称阵。黎曼认识到度量(2)是加到流形上去的一个结构,因此,同一流形可以有众多的黎曼度量。黎曼以前的几何学家只知道外围空间E3的度量赋予曲面S以诱导度量

, (3)

即第一基本形式,而并未认识到曲面S还可以独立于E3而定义,可以独立地赋予度量结构。黎曼意识到这件事是非凡的重要,他把诱导度量与独立的黎曼度量两者分开来,从而开创了以(2)为出发点的黎曼几何。这种几何以种种非欧几何作为其特例。例如,这时可以把

(α 是常数) (4)

作为两个无限邻近点的距离,当α>0时,就是球面几何或椭圆几何(又称为正常曲率空间的几何),α=0时就是欧氏几何,α<0时就是罗巴切夫斯基几何或双曲几何,又称负常曲率空间的几何。

黎曼几何中的一个基本问题是微分形式的等价性问题。在两个不同坐标系x1,x2,?,xn与x1',x2',?,xn' 中,给定两个二次微分形式 与 ,

求存在坐标变换(i=1,2,?,n)将一个微分形式变到另一个的条件,这个问题1869年由E.B.克里斯托费尔与R.(O.S.)李普希茨解决。克里斯托费尔的解包含了以他的名字定名的记号,即第一类克里斯托费尔记号[jk,l]和第二类克里斯托费尔记号[]:

, (5)

及协变微分的概念。在此基础上,1887~1896年间G.里奇发展了张量分析方法,这在广义相对论中起了基本的作用。里奇和他的学生T.列维-齐维塔在研究报告《绝对微分法及其应用》(1901)中对里奇计算法作了详细的综述。

《埃尔朗根纲领》对微分几何的影响

比克里斯托费尔、李普希茨解决二次微分形式的相互转换问题稍迟一些,1872年(C.)F.克莱因在德国埃尔朗根大学作就职演讲时,阐述了《埃尔朗根纲领》,这就是把几何学定义为研究变换群所作用的空间,例如欧氏空间具有刚体运动群,所研究的对象是在刚体运动群下不变的性质。射影空间具有射影变换群,仿射空间与共形空间分别具有仿射变换群与共形变换群等等。这样就用变换群对已有的几何学进行了分类。这些几何学中所研究的对象是在相应变换群下不变的性质。这种用群论统一几何学的思想把几何学与李群结合起来了。在《埃尔朗根纲领》发表后的半个世纪内,它成了几何学的指导原理,推动了几何学的发展,导致了射影微分几何、仿射微分几何、共形微分几何的建立。特别是射影微分几何起始于1878年阿尔方的学位论文,后来1906年起为E.J.威尔辛斯基为代表的美国学派所发展,1916年起为以G.富比尼为首的意大利学派所发展。20世纪30年代起中国苏步青及其学生们以及苏联С.∏.菲尼科夫等进一步发展了射影微分几何。

另一方面,克莱因的《埃尔朗根纲领》与狭义相对论完美地相配合,狭义相对论中的一个原理是洛伦茨群下场方程的不变性,这导致了克莱因成为狭义相对论的最早支持者之一。洛伦茨结构在相对论中起了基本的作用。

当克莱因制定《埃尔朗根纲领》时,已观察到黎曼几何并不包括在内,因为一般的黎曼空间,除恒等变换外,并不含有其他等长变换。经过W.K.J.基灵,é.(-J.)嘉当的努力,使得李群成为微分几何的有力工具,而李群本身也成为微分几何的研究对象,它的推广就是齐性流形即容有可迁变换群的微分流形,这就给出了埃尔朗根纲领中所设想的几何空间的最一般形式。在齐性流形中,具有正定黎曼度量的齐性黎曼流形,特别是对称空间,显得特别重要。

广义相对论的产生及其对几何学的影响

黎曼几何的建立对近代物理学产生了巨大的影响。黎曼对引力论很有兴趣,曾对牛顿的引力论发生怀疑,牛顿的引力是一种超距作用,而黎曼认为引力作用应通过接触来传递,但他并没有把黎曼几何用于引力论。50年后,爱因斯坦创立了新的引力理论──广义相对论,黎曼几何(严格地说是洛伦茨几何,这时(2)中所定义的ds2是非正定的二次微分形式)及其运算方法(里奇计算法)成为广义相对论有效的数学工具。爱因斯坦引进了约定求和这一很有用的符号。广义相对论的产生对微分几何的影响是令人震动的。当时黎曼几何成为研究的

中心课题,斯考顿、列维-齐维塔、é.嘉当及艾森哈特等人的关于黎曼几何的权威著作几乎都出现在1924~1926年期间。

爱因斯坦在狭义相对论中,把时间与空间作为相关的量一起来考虑,构成了一个四重广延量,这显示了时空概念的一个根本性变化。这时,时空中两点(xi),(xi+dxi)(i=1,2,3,4)的距离由非正定的二次形式 (6)

所描述,其中x4=сt,с是光速,t是时间。这种具体形式是闵科夫斯基空间,或称闵科夫斯基四维时空,简称四维时空,它是洛伦茨流形中的一个特例。

广义相对论采用的是洛伦茨流形,这时ds2是非正定的,它的特点是在任何一点的小邻域中和闵科夫斯基时空性质相近似。引力论的基本问题是要说明质点在引力作用下的运动轨线问题,在广义相对论中运动轨线为流形上类时(即“弧长”平方为负)的测地线,类时意味着质点的速度低于光速,测地线是变分

(7)

所得微分方程的解。

爱因斯坦的引力场方程是一个关于gij的二阶偏微分方程

(8)

式中Rij 称为里奇张量,是由gij的一、二阶导数构成的;,其中 由所确定;Tij是描述物质分布的能量动量张量。特别,真空中的引力场方程由Rij=0所表述。如果弯曲空间化为平直空间,则表示引力场不存在,这时质点作匀速运动。

爱因斯坦的广义相对论的思想来自物理学的研究,但值得注意的是从欧几里得几何学到黎曼几何学经历了二千多年时间,而从闵科夫斯基时空到洛伦茨流形只经过十年时间,这是因为黎曼几何学的张量分析已为此作了一切数学上的准备。爱因斯坦在建立广义相对论的过程中得益于数学家M.格罗斯曼,在发展广义相对论过程中他和é.嘉当进行了许多的讨论,D.希尔伯特也参加建立场方程的研究。

把黎曼几何应用于广义相对论时,列维-齐维塔平行移动的概念具有相当的重要性。(C.H.)H.外尔在1918年的名著《时间,空间,物质》中引进了仿射联络的概念,它是黎曼流形中列维-齐维塔平行移动的推广。在流形上可以用仿射联络作为出发点来定义平行移动和协变微分等结构,这样,仿射联络就不必从黎曼结构来得出。外尔所给出的联络是无挠率的(即对称的)。流形上定义了仿射联络,就得到仿射联络流形。

é.嘉当在他的主要论文《仿射联络流形及广义相对论理论》(1923~1924)中给出仿射联络的权威性论述,并将仿射联络这一概念推广到有挠率的情况。文中主要说明为什么爱因斯坦引力论是牛顿引力论的推广,后来他更进一步建立了各种联络理论,例如射影联络、共形联络等。

黎曼几何还有另外的推广,P.芬斯勒以一般的出发建立了一种度量的几何学,F只是dxj的正齐二次函数而不必要求它为二次型,也就是说gij除依赖于x之外,还是dx的正齐0次函数。对这种空间也引进了联络、曲率等等概念,从而得到芬斯勒几何。随后,还有很多的推广,得到的空间通称为一般空间。

曲线和曲面的整体性质

在古典的曲线论和曲面论中,人们所研究的问题已可分为两种类型:局部问题与整体问题。曲线或曲面在一点充分小邻近成立的性质是局部性质。例如,曲线在一点的切线、法平面、曲率、挠率,曲面的切平面、法线以及各种曲率的概念都是局部性质。整体性质则是考虑整个曲线或曲面上的性质,它与局部性质所得出的定理时常是极不相同的。例如,平面凸闭曲线成立四顶点定理,即它的曲率至少有四个极值点。又如,对任何曲面,局部来说,两邻近点之间有且仅有惟一的测地线弧相连结,但从整体来说,这个问题就相当复杂。例如,欧氏空间的测地线是直线,任意两点之间有且只有一条直线段相连结,球面上的测地线是大圆弧,球面上任意两点A、B(如果不是对顶点),可有两条测地线弧(优弧与劣弧)相连结,A、B是对顶点时,它们之间则有无限条测地线弧相连结。如果考虑闭测地线,则可看到欧氏空间没有闭测地线,而球面上任何测地线(即大圆)都是闭的。至于一般曲面有可能存在闭测地线,也有可能不存在闭测地线,可有许多情况,讨论闭测地线的存在性就是一个整体性质。

又如,欧氏空间的曲面由第一、第二基本形式所决定。如果两个曲面小片S1,S2,它们的第一基本形式相同,第二基本形式不同,则称S1与S2是互为变形的。三维欧氏空间的一小曲面片总有无穷个曲面与它相变形,然而这个性质整体上是不成立的,例如球面以及一般的凸闭曲面不存在与之变形的曲面,这称为球面的刚性定理及凸闭曲面的刚性定理。讨论小曲面片的变形问题是局部性质,讨论曲面的变形问题则是整体性质。曲面上测地线弧的指标(它表示测地线弧的两端固定时,使其长度得到缩短的变形的维数)是一个整体的不变量。

曲面的整体性质的一个重要结果是高斯-博内定理,它指明,在闭曲面S上,总曲率K的积分除以2π就是曲面的欧拉数。等于1减去曲面上洞的个数,是个拓扑不变量,因而这个定理建立了曲面的微分几何量与曲面的拓扑量之间的重要联系。

此外,希尔伯特还发现,双曲平面(二维的双曲几何)不能在三维欧氏空间中完整地实现,尽管它在三维欧氏空间中局部地实现对于双曲几何(即罗巴切夫斯基几何)的被承认起了重大的作用。

曲面和曲线的整体性质的研究激起了人们对整体微分几何的巨大兴趣。

整体微分几何的兴起

现代微分几何学所研究的对象是微分流形,其上还配有附加的结构。例如,微分流形上引进黎曼度量、洛伦茨度量、辛尺度这些结构后,就分别成为黎曼流形、洛伦茨流形和辛流形,相应地也就丰富了几何内容。

外微分形式、德·拉姆定理与霍奇定理

微分流形上的外微分形式是一个微分几何量,对它可进行外微分运算,这在几何上十分重要。外微分形式实际上是多重积分的积分元。一个外微分形式的外微分如等于零,则称它为闭形式,微分流形上r次闭形式全体构成一个线性空间。一个r次外微分形式如果是另一个(r-1)次外微分形式的外微分,则称之为正合形式。正合形式是闭形式,它所构成的线性空间是闭形式所构成的线性空间的子空间。闭形式可以划分为一些类,称为上同调类,两个r次闭形式当且仅当它们之差是一个正合形式时属于同一个上同调类。这些上同调类全体构成一个线性空间──上同调空间Hr。以瑞士数学家德·拉姆而命名的著名定理说明:对于紧致流形,上同调类空间Hr必是有限维的,并且维数恰等于微分流形上第r个贝蒂数。贝蒂数是流形的拓扑不变量,它描述流形上有关连通的性质。在流形上引进了黎曼度量后,霍奇引进了调和形式的概念,并证明了著名的霍奇定理:在一个定向、紧致黎曼流形上,每一上同调类中有惟一的调和形式。这个定理是复变函数理论中紧致黎曼面的一些基本结果的一个重大的推广,它在代数几何中有重要作用。这两个定理提供了流形上局部性质与整体性质的联系,建立了流形上微分结构、拓扑结构及黎曼结构的深刻的制约关系,具有十分重要的意义。

黎曼流形的完备性

在黎曼流形的研究中,完备性是一个很重要的概念。在黎曼流形上,两点之间可以定义距离,因而可成为一个度量空间,这个度量空间在拓扑意义下的完备与任一测地线均可无限延伸(依弧长或仿射参数)这一性质相等价,从而形成了完备黎曼流形的概念。特别,紧致黎曼流形是完备的黎曼流形。霍普夫与里诺给出了下述结果:完备黎曼流形上每二点均可用一极小测地线相连结,其长度就等于二点的距离。

引进了完备性这一概念后,也推进了对三维欧氏空间曲面论的整体性质的研究。例如:

对于曲率为常数的曲面的完备性的研究有:1959年P.哈特曼与L.尼伦伯格证明了完备的可展曲面必为柱面,迈尔斯与李卜曼证明了正常数曲率定向的完备曲面必为球面。

曲率与拓扑

黎曼流形的曲率是微分几何中最重要的几何量之一,曲率和流形的拓扑结构之间的联系是一个十分重要的问题。美国数学家C.B.艾伦多弗和法国数学家A.韦伊与陈省身用不同的方法将紧致曲面上的高斯-博内公式扩充到高维曲面和紧致黎曼流形上去,这是微分几何上很重大的一项进展。另外,J.(-S.)阿达马和é.嘉当发现:单连通的、曲率非正的完备黎曼流形必同胚于欧氏空间Rn。这也是极富有启发性的成果。

对于黎曼流形来说,有三种不同层次的曲率,一种是截面曲率,它相应于在每点某一平面方向所相应的曲率。另一种是里奇曲率,它是由截面曲率以适当的形式作和而成。第三种是数量曲率,它是里奇曲率的迹。这三种曲率和流形的拓扑性质之间有很强的相互制约作用,这方面的研究成果非常丰富,而且是微分几何主要研究方向之一。

等距嵌入

嵌入问题是指一个具有某种结构的流形是否可以作为高维欧氏空间的子流形的问题。当只涉及微分结构时,惠特尼在1936年证明了每一个n维的微分流形均可以嵌入到一个2n+1维的欧氏空间中,美国另一数学家C.B.莫利证明了对紧致的实解析流形这个结果也成立。

等距嵌入是研究一黎曼流形是否能与高维欧氏空间的子流形成等距对应的问题。对于局部的等距嵌入,瑞士数学家L.施勒夫利很早就作了下述预测:n维的黎曼流形总可等距嵌入到 维欧氏空间中去。1926年法国数学家H.约尼和é.嘉当在黎曼流形上添上解析这一条件时证明了这个预测。因此,作为特例,一个二维的解析黎曼度量总可局部地作为三维欧氏空间中某个曲面的第一基本形式。当流形非解析时,情况相当复杂,至今还是一个研究课题,当曲率K在曲面上变号时,任一个二维黎曼流形是否可局部地等距嵌入到三维欧氏空间,已经有若干结果。

黎曼流形的整体等距嵌入定理于1954~1956年由J.纳许等所给出:n 维黎曼流形总可等距嵌入到欧氏空间E,如流形为紧致时,则可嵌入到E;如果只考虑C1等距嵌入,则n维黎曼流形可嵌入于E;如果M紧致则可嵌入到E。纳许的方法后来对非线性分析和非线性偏微分方程的求解产生了重要影响。

纤维丛

在整体微分几何发展中,纤维丛及其上的联络论的产生和发展,占有显著的地位。基本

的纤维丛有向量丛和主丛,前者包括切丛、余切丛、张量丛及一般性的推广,后者是由标架丛抽象而成。在黎曼几何研究中所产生的列维-齐维塔联络被推广为仿射联络、射影联络、共形联络、??然后形成了一般向量丛或纤维丛上的联络论,它以优美的形式把几何学的群的结构和流形上的微分结构有机地结合起来,陈省身-外尔映射用代数的方法通过联络和曲率作出了底流形上的一些上同调类,这种上同调类称为示性类包括陈示性类,欧拉示性类,庞特里亚金示性类等,它们都能表示纤维丛的拓扑性质。

纤维丛上的联络论成为理论物理学家的有力工具,杨振宁和米尔斯所提出的规范场理论是在物理学中形成的纤维丛上的联络论,不仅如此,他们对纤维丛上的联络提出了一个过去数学家没有想到过的偏微分方程(后称为杨-米尔斯方程),这个方程不仅对物理学,而且对纯粹数学发生了重大影响。此外,联络论中的一些示性类和示性数,也得到了物理学上的解释,成为物理学中的各种“粒子”数,如“磁单极”数、瞬子数等等。由于这些事实,微分几何和理论物理的关系就更其密切了,可以说是在爱因斯坦广义相对论后的一个新的高潮。

微分几何和分析学新的结合

微分几何的研究与发展离不开微分方程,达布的《曲面论》一书就包含了丰富的古典微分方程的内容。é.嘉当和凯勒所发展的外微分方程理论,对于解析函数领域的一大类局部微分几何问题,给出了一般的有效的方法。

整体微分几何的发展,需要运用更深入的,现代化的分析工具,特别是偏微分方程理论以及与之有关的非线性分析。

在线性理论中,一个突出的成果是阿蒂亚和辛格的指标定理,紧致微分流形上的一个线性椭圆算子的零空间的维数与象空间的维数都是有限数,其差称为指标,这个定理指出,这种指标可以表示为和流形(或纤维丛)及椭圆算子有关的拓扑不变量,而过去的黎曼-罗赫定理,希策布鲁赫的指标定理等都是它的特殊情形。这个定理对于确定杨-米尔斯方程的解的存在性和其自由度,起了重要作用。此外,流形上的拉普拉斯算子的特征值的研究也是一个重要方面。

微分几何学所遇到的偏微分方程大多是非线性的,调和函数的概念被推广成黎曼流形间的调和映射,它联系于一个推广的狄利克雷积分的变分问题,其欧拉方程是非线性的椭圆型方程组,J.伊尔斯等人用了多种分析的技巧证明了各种存在性和不存在性定理,近年来,R.舍恩和K.K.乌伦贝克又对广义解的奇性作了深入的分析。极小曲面理论近年来得到更深入的发展,研究范围日趋广泛,而且对流形的拓扑以及广义相对论中的数学问题均有重要应用。在调和映射、极小曲面,以及其他许多微分几何问题上,大范围变分方法成了重要工具,非线性泛函的极小元素或临界元素的正则性和存在性起了很大作用。如果考虑洛伦茨流形到黎曼流形的调和映射,就归结为双曲型偏微分方程的整体解的存在性问题,这方面成果国际上较少,谷超豪证明了闵科夫斯基平面到完备黎曼流形的调和映射的柯西问题的整体存在性定理,某些调和映射在物理学中称为非线性σ模型,是物理学家独立地提出的。

有些微分几何学问题还必须求解“真正”非线性偏微分方程,这是比拟线性方程的非线

性程度更高的偏微分方程,其难度更大,突出的事项是丘成桐解决了由卡拉皮所提出的一个猜想,证明了某种爱因斯坦-凯勒流形的存在定理,这需要求解复的蒙日-安培方程,它的非线性程度更高,需要有高度的分析技巧。丘成桐还解决了一系列的其他的与非线性偏微分方程有关的几何问题。

具有复结构的微分流形特别是凯勒流形在多元复变函数和代数几何中起着重要的作用。

本文来源:https://www.bwwdw.com/article/fv4w.html

Top