(含详答)2018年上海春考数学试卷
更新时间:2024-01-27 10:21:01 阅读量: 教育文库 文档下载
- 含锌高的食物有哪些推荐度:
- 相关推荐
2018年上海市普通高等学校春季招生统一文化考试
数学试卷
一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)
1.不等式|x|?1的解集为__________. 2.计算:lim3n?1?__________.
n??n?23.设集合A?{x|0?x?2},B?{x|?1?x?1},则A?B?__________. 4.若复数z?1?i(i是虚数单位),则z?2?__________. z5.已知{an}是等差数列,若a2?a8?10,则a3?a5?a7?__________.
6.已知平面上动点P到两个定点(1,0)和(?1,0)的距离之和等于4,则动点P的轨迹为
__________.
AB?3,BC?4,AA1?5, O是AC7.如图,在长方形ABCD?A1B1C1D1中,11的
第7题图 第12题图
8.某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、 四辩.若其中学生
甲必须参赛且不担任四辩,则不同的安排方法种数为__________.
99中点,则三棱锥A?AOB11的体积为__________.
2??a??9.设a?R,若?x2??与?x?2?的二项展开式中的常数项相等,则a?__________.
x??x??2210.设m?R,若z是关于x的方程x?mx?m?1?0的一个虚根,则|z|的取值范围
是__________.
11.设a?0,函数f(x)?x?2(1?x)sin(ax),x?(0,1),若函数y?2x?1与y?f(x) 1 / 7
的图象有且仅有两个不同的公共点,则a的取值范围是__________.
12.如图,正方形ABCD的边长为20米,圆O的半径为1米,圆心是正方形的中心,点
P、Q分别在线段AD、CB上,若线段PQ与圆O有公共点,则称点Q在点P的“盲
区”中.已知点P以1.5米/秒的速度从A出发向D移动,同时,点Q以1米/秒的速
度 从C出发向B移动,则在点P从A移动到D的过程中,点Q在点P的盲区中的时长约 为__________秒(精确到0.1)
二、选择题(本大题共有4题,满分20分,每题5分)
13.下列函数中,为偶函数的是( )
(A)y?x (C)y?x?12?2
(B)y?x (D)y?x
313
14.如图,在直三棱柱ABC?A1B1C1的棱所在的直线中,与直线BC1
异面的直线条数为( ) (A)1 (C)3
(B)2 (D)4
15.记Sn为数列{an}的前n项和.“{an}是递增数列”是“Sn为递增数列”的( )
(A)充分非必要条件 (C)充要条件
(B)必要非充分条件 (D)既非充分也非必要条件
????16.已知A、B为平面上的两个定点,且|AB|?2.该平面上的动线段PQ的端点P、Q,
????????????????????满足|AP|?5,AP?AB?6,AQ??2AP,则动线段PQ所形成图形的面积为( )
(A)36
(B)60
(C)81
(D)108
三、解答题(本大题共有5题,满分76分,第17~19题每题14分,20题16分,21题18分)
17.(本题满分14分,第1小题满分6分,第2小题满分8分)
已知y?cosx.
2 / 7
18. (本题满分14分,第1小题满分6分,第2小题满分8分)
(1)若f(?)?1?,且??[0,?],求f(??)的值;
33(2)求函数y?f(2x)?2f(x)的最小值.
x22已知a?R,双曲线?:2?y?1.
a(1)若点(2,1)在?上,求?的焦点坐标;
(2)若a?1,直线y?kx?1与?相交于A、B两点,且线段AB中点的横坐标为1,
求实数k的值.
19.(本题满分14分,第1小题满分7分,第2小题满分7分)
利用“平行于圆锥曲线的母线截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两
个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影出的抛
OC物线的平面图,图3是一个射灯的直观图,在图2与图3中,点O、A、B在抛物线上,
是抛物线的对称轴,OC?AB于C,AB?3米,OC?4.5米.
(1)求抛物线的焦点到准线的距离;
(2)在图3中,已知OC平行于圆锥的母线SD,AB、DE是圆锥底面的直径,求
圆锥的母线与轴的夹角的大小(精确到0.01°).
图1 图2 图3 20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)
设a?0,函数f(x)?1. x1?a?2 3 / 7
(1)若a?1,求f(x)的反函数f?1(x);
(2)求函数y?f(x)?f(?x)的最大值(用a表示);
(3)设g(x)?f(x)?f(x?1).若对任意x?(??,0],g(x)?g(0)恒成立,求a的
取值范围.
21.(本题满分18分,第1小题满分3分,第2小题满分6分,第3小题满分9分)
若{cn}是递增数列,数列{an}满足:对任意n?N*,存在m?N*,使得
am?cn?0,
am?cn?1则称{an}是{cn}的“分隔数列”.
(1)设cn?2n,an?n?1,证明:数列{an}是{cn}的“分隔数列”;
(2)设cn?n?4,Sn是{cn}的前n项和,dn?c3n?1,判断数列{Sn}是否是数列{dn}的分隔数列,并说明理由;
(3)设cn?aqn?1,Tn是{cn}的前n项和,若数列{Tn}是{cn}的分隔数列,求实数a、
q的取值范围.
4 / 7
参考答案
一、填空题
1.(??,?1)?(1,??)
2.3
3.(0,1)
4.2
5.15
x2y2??1 6.4311.(
7.5
8.180 9.4
10.(3,??) 311?19?,] 66提示:2x?1?x?2(1?x)sin(ax)?x?1?2(1?x)sin(ax)?sin(ax)??1 2?ax?7?11?7?11?7?11?,,?2?,?2?,?4?,?4?,? 666666?0?ax?a ?11?7??a??2? 6640 312.4.4
提示:以A为原点建立坐标系,设时刻为t,则P(0,1.5t),Q(20,20?t),0?t?则lPQ:x?0y?1.5t?,化简得(8?t)x?8y?12t?0
20?020?t?1.5t点O(10,10)到直线PQ的距离|(8?t)?10?80?12t|(8?t)2?83?1,化简得3t2?16t?128?0
即
?8?7?8?87?8?87?8?87,则0?t??t???t??4.4
3333二、选择题
13.A 16.B
提示:建系A(0,0),B(2,0),则P(x,y)的轨迹为线段x?3,?4?y?4,AP扫过的三角形面积为12,则利用相似三角形可知AQ扫过的面积为48,因此和为60
14.C
15.D
三、解答题
17.(1)
1?223;(2)?
26 5 / 7
18.(1)(?3,0);(2)19.(1)
5?1. 21;(2)9.59?. 41?x1?1(0?x?1);20.(1)f(x)?log2(2)ymax?(x?0时取最值); x1?2a?a2(3)(0,2] 提示:g(x)?11?a1?a?2x?1?a?2x?1?a2?2x?22x?3a
?a,(t?2x?(0,1])a2?t?2t?3a 因为-a<0,所以当x=0,t=1时,分母取到最小值从而分式值取到最小值,
a22此时t?t?t?2a2?1?0?a?2 21.(1)证明:存在m?2n,此时?n?N*,cn?2n?am?2n?1?cn?1?2n?2(2)不是.反例:n?4时,m无解; (3)??a?0?q?2. 提示:因为{aqn?1}为递增数列,因此??a?0?a?0?q?1或者??0?q?1
①当??a?00?q?1时,??n?N*,cn?0,因此??T3?T2?T1?c1?c2?c3??
因此不存在c2?Tm?c3,不合题意。
②当??a?0时,?q?1cn?1qm?1n?Tm?cn?1?q?q?1?qn? qn?1(q?1)?1?qm?qn(q?1)?1?qn?1[(q?1)?1qn?1]?qm?qn[(q?1)?1qn]两边同时取对数得:n?1?logq[(q?1)?1qn?1]?m?n?logq[(q?1)?1qn] 6 / 7
证毕
1],x?0 xq记f(x)?logq[(q?1)?则n?1?f(n?1)?m?n?f(n) 下面分析函数f(n?1),f(n)的取值范围:
显然q?1时,f(x)?logq[(q?1)?1],x?0为减函数, xq因此f(??)?f(x)?f(0),即logq(q?1)?f(x)?1
(Ⅰ)当q?2时,logq(q?1)?0,因此总有0?f(n)?f(n?1)?1 此时??n?1?f(n?1)?n?1?1
?n?f(n)?n+0因此总存在m?n符合条件,使得n?1?f(n?1)?n?m?n?f(n)成立
(Ⅱ)当1?q?2时, logq(q?1)?0, 根据零点存在定理,并结合f(x)的单减性可知: 存在唯一正整数k使得f(k)?0?f(k?1)
此时??k?1?f(k?1)?k?1
?k?f(k)?k即k?1?k?1?f(k?1)?m?k?f(k)?k 显然不存在满足条件的正整数m 综上:a?0,q?2
7 / 7
正在阅读:
(含详答)2018年上海春考数学试卷01-27
格列夫游记之大小人国08-26
1205企培二级理论知识试卷01-25
山东省郯城县红花镇初级中学人教版七年级生物下册 - 6.4激素调节 教案11-28
挑战杯创业计划竞赛国赛12-07
2011年党务考试习题(挂网 含答案)01-27
《厉害了,我的国》观后感12-11
联合国宪章(英文版)05-30
实验八 使用规则实现数据完整性11-25
《魏玛共和国时期的德国》小记08-20
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 海春
- 数学试卷
- 2018
- 国标热镀锌钢管规格、尺寸理论重量表
- 星安企业车辆GPS管理方案 - 图文
- 结构实体检测方案
- 连续梁 - 支架现浇
- 2017连云港继续教育《专业技术人员职业道德与创新能力》考试题库
- 数电课后答案康华光 - 图文
- “外国文学名著选读”学习提纲(全)
- 上海耀华 XK3190-D2+说明书 - 图文
- 变电所的类型
- 双瑞滨河花园幼儿园
- 新人教版五年级上册数学全册教案及每单元教学反思
- 圆柱的表面积和体积练习题精选
- (最新版)直流电动机转速自动控制系统实验报告
- 支付中心个人工作总结
- 六年级数学上册典中点 - 图文
- 2015届高考英语一轮复习精品资料(译林牛津版) - 模块一Unit 1 检测篇(习题版)
- 计算机硬件基础实验报告 - 图文
- 基础知识
- 长沙房地产市场周报(1.30-2.3)
- 罗宾斯管理学课后习题答案