(含详答)2018年上海春考数学试卷

更新时间:2024-01-27 10:21:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2018年上海市普通高等学校春季招生统一文化考试

数学试卷

一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)

1.不等式|x|?1的解集为__________. 2.计算:lim3n?1?__________.

n??n?23.设集合A?{x|0?x?2},B?{x|?1?x?1},则A?B?__________. 4.若复数z?1?i(i是虚数单位),则z?2?__________. z5.已知{an}是等差数列,若a2?a8?10,则a3?a5?a7?__________.

6.已知平面上动点P到两个定点(1,0)和(?1,0)的距离之和等于4,则动点P的轨迹为

__________.

AB?3,BC?4,AA1?5, O是AC7.如图,在长方形ABCD?A1B1C1D1中,11的

第7题图 第12题图

8.某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、 四辩.若其中学生

甲必须参赛且不担任四辩,则不同的安排方法种数为__________.

99中点,则三棱锥A?AOB11的体积为__________.

2??a??9.设a?R,若?x2??与?x?2?的二项展开式中的常数项相等,则a?__________.

x??x??2210.设m?R,若z是关于x的方程x?mx?m?1?0的一个虚根,则|z|的取值范围

是__________.

11.设a?0,函数f(x)?x?2(1?x)sin(ax),x?(0,1),若函数y?2x?1与y?f(x) 1 / 7

的图象有且仅有两个不同的公共点,则a的取值范围是__________.

12.如图,正方形ABCD的边长为20米,圆O的半径为1米,圆心是正方形的中心,点

P、Q分别在线段AD、CB上,若线段PQ与圆O有公共点,则称点Q在点P的“盲

区”中.已知点P以1.5米/秒的速度从A出发向D移动,同时,点Q以1米/秒的速

度 从C出发向B移动,则在点P从A移动到D的过程中,点Q在点P的盲区中的时长约 为__________秒(精确到0.1)

二、选择题(本大题共有4题,满分20分,每题5分)

13.下列函数中,为偶函数的是( )

(A)y?x (C)y?x?12?2

(B)y?x (D)y?x

313

14.如图,在直三棱柱ABC?A1B1C1的棱所在的直线中,与直线BC1

异面的直线条数为( ) (A)1 (C)3

(B)2 (D)4

15.记Sn为数列{an}的前n项和.“{an}是递增数列”是“Sn为递增数列”的( )

(A)充分非必要条件 (C)充要条件

(B)必要非充分条件 (D)既非充分也非必要条件

????16.已知A、B为平面上的两个定点,且|AB|?2.该平面上的动线段PQ的端点P、Q,

????????????????????满足|AP|?5,AP?AB?6,AQ??2AP,则动线段PQ所形成图形的面积为( )

(A)36

(B)60

(C)81

(D)108

三、解答题(本大题共有5题,满分76分,第17~19题每题14分,20题16分,21题18分)

17.(本题满分14分,第1小题满分6分,第2小题满分8分)

已知y?cosx.

2 / 7

18. (本题满分14分,第1小题满分6分,第2小题满分8分)

(1)若f(?)?1?,且??[0,?],求f(??)的值;

33(2)求函数y?f(2x)?2f(x)的最小值.

x22已知a?R,双曲线?:2?y?1.

a(1)若点(2,1)在?上,求?的焦点坐标;

(2)若a?1,直线y?kx?1与?相交于A、B两点,且线段AB中点的横坐标为1,

求实数k的值.

19.(本题满分14分,第1小题满分7分,第2小题满分7分)

利用“平行于圆锥曲线的母线截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两

个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影出的抛

OC物线的平面图,图3是一个射灯的直观图,在图2与图3中,点O、A、B在抛物线上,

是抛物线的对称轴,OC?AB于C,AB?3米,OC?4.5米.

(1)求抛物线的焦点到准线的距离;

(2)在图3中,已知OC平行于圆锥的母线SD,AB、DE是圆锥底面的直径,求

圆锥的母线与轴的夹角的大小(精确到0.01°).

图1 图2 图3 20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)

设a?0,函数f(x)?1. x1?a?2 3 / 7

(1)若a?1,求f(x)的反函数f?1(x);

(2)求函数y?f(x)?f(?x)的最大值(用a表示);

(3)设g(x)?f(x)?f(x?1).若对任意x?(??,0],g(x)?g(0)恒成立,求a的

取值范围.

21.(本题满分18分,第1小题满分3分,第2小题满分6分,第3小题满分9分)

若{cn}是递增数列,数列{an}满足:对任意n?N*,存在m?N*,使得

am?cn?0,

am?cn?1则称{an}是{cn}的“分隔数列”.

(1)设cn?2n,an?n?1,证明:数列{an}是{cn}的“分隔数列”;

(2)设cn?n?4,Sn是{cn}的前n项和,dn?c3n?1,判断数列{Sn}是否是数列{dn}的分隔数列,并说明理由;

(3)设cn?aqn?1,Tn是{cn}的前n项和,若数列{Tn}是{cn}的分隔数列,求实数a、

q的取值范围.

4 / 7

参考答案

一、填空题

1.(??,?1)?(1,??)

2.3

3.(0,1)

4.2

5.15

x2y2??1 6.4311.(

7.5

8.180 9.4

10.(3,??) 311?19?,] 66提示:2x?1?x?2(1?x)sin(ax)?x?1?2(1?x)sin(ax)?sin(ax)??1 2?ax?7?11?7?11?7?11?,,?2?,?2?,?4?,?4?,? 666666?0?ax?a ?11?7??a??2? 6640 312.4.4

提示:以A为原点建立坐标系,设时刻为t,则P(0,1.5t),Q(20,20?t),0?t?则lPQ:x?0y?1.5t?,化简得(8?t)x?8y?12t?0

20?020?t?1.5t点O(10,10)到直线PQ的距离|(8?t)?10?80?12t|(8?t)2?83?1,化简得3t2?16t?128?0

?8?7?8?87?8?87?8?87,则0?t??t???t??4.4

3333二、选择题

13.A 16.B

提示:建系A(0,0),B(2,0),则P(x,y)的轨迹为线段x?3,?4?y?4,AP扫过的三角形面积为12,则利用相似三角形可知AQ扫过的面积为48,因此和为60

14.C

15.D

三、解答题

17.(1)

1?223;(2)?

26 5 / 7

18.(1)(?3,0);(2)19.(1)

5?1. 21;(2)9.59?. 41?x1?1(0?x?1);20.(1)f(x)?log2(2)ymax?(x?0时取最值); x1?2a?a2(3)(0,2] 提示:g(x)?11?a1?a?2x?1?a?2x?1?a2?2x?22x?3a

?a,(t?2x?(0,1])a2?t?2t?3a 因为-a<0,所以当x=0,t=1时,分母取到最小值从而分式值取到最小值,

a22此时t?t?t?2a2?1?0?a?2 21.(1)证明:存在m?2n,此时?n?N*,cn?2n?am?2n?1?cn?1?2n?2(2)不是.反例:n?4时,m无解; (3)??a?0?q?2. 提示:因为{aqn?1}为递增数列,因此??a?0?a?0?q?1或者??0?q?1

①当??a?00?q?1时,??n?N*,cn?0,因此??T3?T2?T1?c1?c2?c3??

因此不存在c2?Tm?c3,不合题意。

②当??a?0时,?q?1cn?1qm?1n?Tm?cn?1?q?q?1?qn? qn?1(q?1)?1?qm?qn(q?1)?1?qn?1[(q?1)?1qn?1]?qm?qn[(q?1)?1qn]两边同时取对数得:n?1?logq[(q?1)?1qn?1]?m?n?logq[(q?1)?1qn] 6 / 7

证毕

1],x?0 xq记f(x)?logq[(q?1)?则n?1?f(n?1)?m?n?f(n) 下面分析函数f(n?1),f(n)的取值范围:

显然q?1时,f(x)?logq[(q?1)?1],x?0为减函数, xq因此f(??)?f(x)?f(0),即logq(q?1)?f(x)?1

(Ⅰ)当q?2时,logq(q?1)?0,因此总有0?f(n)?f(n?1)?1 此时??n?1?f(n?1)?n?1?1

?n?f(n)?n+0因此总存在m?n符合条件,使得n?1?f(n?1)?n?m?n?f(n)成立

(Ⅱ)当1?q?2时, logq(q?1)?0, 根据零点存在定理,并结合f(x)的单减性可知: 存在唯一正整数k使得f(k)?0?f(k?1)

此时??k?1?f(k?1)?k?1

?k?f(k)?k即k?1?k?1?f(k?1)?m?k?f(k)?k 显然不存在满足条件的正整数m 综上:a?0,q?2

7 / 7

本文来源:https://www.bwwdw.com/article/fskw.html

Top