新人教A版必修三《3.3.1几何概型》强化练习及答案
更新时间:2023-09-13 07:20:01 阅读量: 综合文库 文档下载
- 新人教选择性必修三英语推荐度:
- 相关推荐
新教材适用·高中必修数学
高中数学 3.3.1 几何概型强化练习 新人教A版
必修3
一、选择题
1.如下四个游戏盘(各正方形边长和圆的直径都是单位1),如果撒一粒黄豆落在阴影部分,则可中奖.小明希望中奖,则应选择的游戏盘是( )
[答案] A 3
[解析] P(A)=,
8
P(B)==,
π1-
4π
P(C)==1-,
14
2163
P(D)=. 则P(A)最大,故选A.
2.如图,在正方形围栏内均匀撒米粒,一只小鸡在其中随意啄食,此刻小鸡正在正方形的内切圆中的概率是( )
1A. 41C. 3[答案] B
[解析] 设事件A={小鸡正在正方形的内切圆中},则事件A的几何区域为内切圆的面积S=πR(2R为正方形的边长),全体基本事件的几何区域为正方形的面积,由几何概型的πRππ概率公式可得P(A)=,即小鸡正在正方形的内切圆中的概率为. 2=
(2R)44
3.在正方体ABCD-A1B1C1D1内随机取点则该点落在三棱锥A1-ABC内的概率是( )
2
2
1
π
πB.
4πD.
3
1A. 31C. 2[答案] B
[解析] 体积型几何概型问题.
1B. 61D. 4
VA1-ABC1P==. VABCD-A1B1C1D16
4.如图,在一个边长为a、b(a>b>0)的矩形内画一个梯形,梯形上、下底边分别为与,高为b.向该矩形内随机地投一点,则所投的点
32落在梯形内部的概率为( )
1A. 125C. 12[答案] C [解析] S矩形=ab.
1B. 47D. 12
aa??S梯形=?a+a?b=ab. 2?32?12
故所投的点落在梯形内部的概率为
5ab12
1115
S梯形5P===. S矩形ab12
5.(2013~2014·山东济南模拟)在区间[0,1]内任取两个数,则这两个数的平方和也在[0,1]内的概率是( )
πA. 4πC. 20[答案] A
[解析] 设在[0,1]内取出的数为a,b,若a+b也在[0,1]内,则有0≤a+b≤1. 如右图,试验的全部结果所构成的区域为边长为1的正方形,满足1π41
a2+b2在[0,1]内的点在单位圆内(如阴影部分所示),故所求概率为=41π
. 4
2
2
2
2
πB. 10πD. 40
6.某人从甲地去乙地共走了500 m,途中要过一条宽为x m的河流,他不小心把一件物品丢在途中,若物品掉在河里就找不到,物品不掉在河里就能找到,已知该物品能被找到24
的概率为,则河宽为( )
25
A.16 m C.8 m [答案] B
[解析] 物品在途中任何一处丢失的可能性是相等的,所以符合几何概型的条件.找到24111的概率为,即掉到河里的概率为,则河流的宽度占总距离的,所以河宽为500×=
2525252520(m).
二、填空题
7.(2013·福建)利用计算机产生0~1之间的均匀随机数a,则事件“3a-1<0”发生的概率为________.
1[答案]
3
[分析] 解不等式,求出a的取值范围,算出此范围与所给区间的比值即可. 1
[解析] 由题意,得0<a<,所以根据几何概型的概率计算公式,得事件“3a-1<0”
31
发生的概率为.
3
8.一只蚂蚁在三边边长分别为3、4、5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为________.
B.20 m D.10 m
1
[答案]
2
[解析] 如图所示,△ABC中,AB=3,AC=4,BC=5,
则△ABC的周长为3+4+5=12.设某时刻该蚂蚁距离三角形的三个顶点的距离均超过1为事件A,则P(A)=
DE+FG+MN3+2+11
==.
BC+CA+AB122
9.在一个球内挖去一个几何体,其三视图如图.
在球内任取一点P,则点P落在剩余几何体上的概率为________. [答案]
53 125
[解析] 由三视图可知,该几何体是球与圆柱的组合体,球半径R=5,圆柱底面半径r43500π2
=4,高h=6,故球体积V=πR=,圆柱体积V1=πr·h=96π,
33
500π
-96π353
∴所求概率P==. 500π1253三、解答题
10.一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒(没有两灯同时亮),当你到达路口时,看见下列三种情况的概率各是多少?
(1)红灯;(2)黄灯;(3)不是红灯.
[解析] 在75秒内,每一时刻到达路口是等可能的,属于几何概型. 亮红灯的时间302(1)P===;
全部时间30+40+55亮黄灯的时间51
(2)P===;
全部时间7515
不是红灯亮的时间黄灯或绿灯亮的时间
(3)P==
全部时间全部时间453
==. 755
11.已知正方体ABCD-A1B1C1D1的棱长为1,在正方体内随机取点M,求使四棱锥M-ABCD1
的体积小于的概率.
6
[分析] 由题目可获取以下主要信息:
①正方体ABCD-A1B1C1D1的棱长为1,M为其内一点;
1
②求四棱锥M-ABCD的体积小于的概率.
6解答本题的关键是结合几何图形分析出概率模型.
[解析] 如图,正方体ABCD-A1B1C1D1,设M-ABCD的高为h, 11则×S四边形ABCD×h<, 36又S四边形ABCD=1,
1
V正方体211
则h<,即点M在正方体的下半部分.故所求概率P==. 2V正方体2
12.(1)在半径为1的圆的一条直径上任取一点,过该点作垂直于直径的弦,其长度超过该圆内接正三角形的边长3的概率是多少?
(2)在半径为1的圆内任取一点,以该点为中点作弦,问其长超过该圆内接正三角形的边长3的概率是多少?
(3)在半径为1的圆周上任取两点,连成一条弦,其长超过该圆内接正三角形边长3的概率是多少?
[解析] (1)设事件A=“弦长超过3”,弦长只与它跟圆心的距离有关,
1
∵弦垂直于直径,∴当且仅当它与圆心的距离小于时才能满足条件,由几何概率公式
21
知P(A)=. 2
1
(2)设事件B=“弦长超过3”,弦被其中点惟一确定,当且仅当其中点在半径为的同2心圆内时,才能满足
1
条件,由几何概率公式知P(B)=. 4
(3)设事件C=“弦长超过3”,固定一点A于圆周上,以此点为顶点作内接正三角形
ABC,显然只有当弦的另一端点D落在P(C)=.
13
上时,才有|AD|>|AB|=3,由几何概率公式知
正在阅读:
新人教A版必修三《3.3.1几何概型》强化练习及答案09-13
成本会计案例03-17
2014春九年级地理期中试卷05-10
基于单片机的智能PID控制器设计12-20
PCB设计的原则与技巧12-21
调车人员“一站到底”知识竞赛题库04-28
单片机04-28
幼儿园小班周小结4篇02-21
逃课检讨书08-22
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 人教
- 必修
- 几何
- 强化
- 练习
- 答案
- 3.3
- 潍坊市幼儿教师资格证面试试题
- 中级工电工试题
- 印江四中开展“远离网吧 拒绝沉迷”主题班会活动简报 - 图文
- 市人民政府办公室关于印发《十堰市创建国家卫生城市健康教育工作实施方案》的通知
- 项目部周例会制度
- 英语专业英语教学法试题打印版 - 图文
- 大工19春民用建筑室内污染物种类及其防治措施(模板)
- 数字信号处理 用窗函数法设计FIR数字滤波器 第三次实验
- 皮带机防护设施安装标准
- 期货投资实验报告5、6 - 图文
- 事业单位无领导面试题型排序类
- 初中数学第1章有理数
- 第09章 挡水及泄水坝段混凝土施工
- 移动电子商务在在线旅游市场中的应用模式分析
- 1#楼结构信息计算书
- 美国对中国的十大恩情
- 加强地市级党政正职管理?
- 法国列级61酒庄简单介绍(有酒标图+所在村庄)
- 检验科大型仪器设备情况 已完成
- 重庆大学材料考研专业课必背知识点