学习数学新课标心得体会

更新时间:2023-04-08 23:12:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

学习《数学新课标解读》的心得体会

通过学习《数学新课程标准解读》,使我进一步认识到数学课程改革从理念、内容到实施,都有较大变化。数学课程力求将教育改革的基本理念与课程的框架设计、内容确定以及课程实施有机结合起来,为广大数学教师深刻领会数学新课改精神,有效的进行数学教学改革指明了方向。下面我就谈一下我的感受:

一、多样化与优化

现代教育的基本理念是“以学生的发展为本”,既要面向全体,又要尊重差异。作为教师,要促进学生的全面发展,就要尊重个性化,不搞填平补充一刀切。要创造促进每个学生得到长足发展的数学教育。

《课标》里“数与代数”中贯穿了算法多样化的思想,是针对过去计算教学中往往只有一种算法的弊端提出来的。例如某一种题目,只要求笔算,另一种题目只要求口算,即使口算也往往只有一种思路(当然,学生如有其他思路也不限制),这样很容易忽略个别差异,遏止了学生的创造性,何况有不少题目本来就可以有多种算法的。可以说,鼓励算法多样化是在计算教学中促进每个学生在各自基础上得到发展的一个有效途径。

应该明确“算法多样化”与“一题多解”是有区别的。“一题多解”是面向个体,尤其是中等以上水平的学生,遇到同一道题可有多种思路多种解法,目的是为了发展学生思维的灵活性。而“多样化”是面向群体的,每人可以用自己最喜欢或最能理解的一种算法,同时在群体多样化时,通过交流、评价可以吸取或改变自己原有的算法。因此,在教学中不应该也不能要求学生对同一题说出几种算法,否则只是增加学生不必要的负担。数学是讲“优化”的算法,“优化”的含意是要求寻找最简捷、最容易、速度快的方法。教学中,教师有责任引导学生去比较、去评价,并使大家掌握那些公认的更好、更一般的算法,以便举一反三、闻一知百,否则就失去了教育的功能。算法多样化绝非是越“多”越好,切忌一些无价值的重复。总之,一切要从儿童的实际出发。

二、生活化与数学化

数学源于生活,寓于生活,用于生活。新课程改革重视数学教学生活化,引导学生在活动中学习数学,使孩子们感到数学有趣、有用,取得了明显的效果,也是数学课改的最大亮点。

通过对新课标的学习,本人更深层地体会到新课标的指导思想,深切体会到作为教师,我们应该以学生发展为本,指导学生合理选择学习方法、制定学习计划;帮助学生打好基础,提高对数学的整体认识,发展学生的能力和应用意识,注重数学知识与实际的联系,注重数学的文化价值,促进学生的科学观的形成。在日常教学中,就要贯彻新

课标的指导思想,更新理念,改进教学方法,争取早日成为新课改中合格的、成熟的数学教师。

应该看到,儿童的数学学习是一种不断提出问题、探索问题和解决问题的思维过程。问题是数学的心脏,数学问题来自两个方面,有来自数学外部的(即现实的生活实际),也有来自数学内部的。无论来自外部或内部,只要能造成学生的认知矛盾,都能引起学生的内在学习动机,就会出现发展,都是有价值的。前面提到的“三角形内角和”,如果采用由旧引新的方法(设问:正方形有几个内角?四个内角和是多少度?长方形呢?三角形三个内角的大小是不固定的,有没有规律呢?)三言两语,就能有效地激起学生的求知欲。因此,看问题必须全面,不能绝对化。教学是科学,一切要从实际出发。

三、探索与发现

学习方式一般说来,可分为接受学习与发现学习两种。

发现学习是由教师提出问题,学生自己独立探索和发现其结论。这种学习方式可以最大限度地发挥学生的积极性、主动性和创造性,启迪学生的智慧,培养探索能力和独立获取知识的能力。

小学生学习数学,首先要掌握前人积累的数学基础知识(往往以符号形式表示),学生必须积极思考,理解每个符号、式子所代表的实际意义,才能真正内化成自己的认识。如果学习中仅仅记住这些符号的代表组合,例如,只知道读作“三分之二”,却不明其意,这就是机械学习。一般的数学学习都是有意义的学习,当然不排斥个别的机械学习,如背乘法口诀,这种熟记只有助于记忆,并不表明推导其结果的过程,而且机械学习也只是辅助性的学习。

数学学习中的有意义的接受学习是指学习内容已以定论形式展示出来,不需要学生去独立发现,只要学生从自己原有的认知结构中检索与新知识具有实质性联系的固定点,使之相互作用,实行新知识意义上的同化,从而扩大或改组认知结构。例如,“四则混合运算顺序”本身就是一种规定,学生在原有已掌握的加、减、乘、除法计算方法的基础上,“先乘除后加减”直接计算,便可接受这一知识。

目前我国提倡的探索学习则不同。这种学习方式不呈现学习结论,而是让学生通过对一定材料的实验、尝试、推测、思考去探索发现某些数量关系和图形特征。例如,学习平行四边形面积求法时,学生用各种不同的平行四边形纸片,通过剪拼、割补转化成一个长方形,然后分析割补后的长方形的长和宽与原来平行四边形的底和高的关系,从而探索出平行四边形的面积公式为“底×高”。

就以上两种学习方式的功能比较而言:探索学习比较开放,它更重视学生的学习动

本文来源:https://www.bwwdw.com/article/fpol.html

Top