初三圆的证明专题训练(答案)

更新时间:2023-09-11 06:10:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

下载试卷文档前说明文档:

1. 试题左侧二维码为该题目对应解析;

2. 请同学们独立解答题目,无法完成题目或者对题目有困惑的,扫描二维码查

看解析,杜绝抄袭;

3. 只有老师通过组卷方式生成的二维码试卷,扫描出的解析页面才有“求老师

讲解”按钮,菁优网原有的真题试卷、电子书(习题集)上的二维码试卷扫出的页面无此按钮。学生点击该按钮以后,下载试卷教师可查看被点击的相关统计数据。

4. 自主组卷的教师使用该二维码试卷后,可在“菁优网->我的空间->我的收藏

->我的下载”处点击重点。

5. 在使用中有任何问题,欢迎在“意见反馈”提出意见和建议,感谢您对菁优

网的支持。

图标查看学生扫描的二维码统计图表,以便确定讲解

第1页(共32页)

2015年04月19日九年级数学组的初中数学组卷

(扫描二维码可查看试题解析)

一.解答题(共17小题)

1.(2014?辽阳)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB. (1)求证:直线BF是⊙O的切线; (2)若AB=5,sin∠CBF=

,求BC和BF的长.

2.(2014?吉林)如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题: (1)求证:CD是⊙O的切线;

(2)若BC=3,CD=4,求平行四边形OABC的面积.

3.(2014?天水)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD. (1)判断直线CD和⊙O的位置关系,并说明理由. (2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.

第2页(共32页)

4.(2013?德州)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形. (1)求AD的长; (2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.

5.(2013?菏泽)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P. (1)求证:AP是⊙O的切线;

(2)OC=CP,AB=6,求CD的长.

6.(2013?聊城)如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=(1)四边形FADC是菱形; (2)FC是⊙O的切线.

,BE=2.求证:

第3页(共32页)

7.(2012?北京)已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE. (1)求证:BE与⊙O相切;

(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.

8.(2012?济宁)如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP与OD的延长线交于点P,连接PC、BC.

(1)猜想:线段OD与BC有何数量和位置关系,并证明你的结论. (2)求证:PC是⊙O的切线.

9.(2012?德阳)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G. (1)求证:AE?FD=AF?EC; (2)求证:FC=FB; (3)若FB=FE=2,求⊙O的半径r的长.

第4页(共32页)

10.(2012?黔南州)已知:如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A. (1)求证:CD为⊙O的切线;

(2)过点C作CE⊥AB于E.若CE=2,cosD=,求AD的长.

11.(2012?广安)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP. (1)求证:直线CP是⊙O的切线. (2)若BC=2

,sin∠BCP=

,求点B到AC的距离.

(3)在第(2)的条件下,求△ACP的周长.

12.(2012?黄冈)如图,在△ABC中,BA=BC,以AB为直径作半圆⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E. (1)求证:DE为⊙O的切线;

2

(2)求证:BD=AB?BE.

第5页(共32页)

本文来源:https://www.bwwdw.com/article/fl4h.html

Top