九年级第第三次月考数学试卷

更新时间:2023-09-26 06:25:01 阅读量: 教学工作计划 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
 
九年级第第三次月考数学试卷
 
一、精心选一选(本大题共8小题,每小题3分,共24分)
1.方程 的解为                  【   】
A. =1     B. =0     C. =1或 =0     D. =1或 =-1
2.从如图所示的二次函数 的图象中,你认为下面不正确的信息是【   】
A.     B.C=0      C.对称轴为x=1      D.
3.在下列的图形中,是中心对称图形的是  【    】

4.下列说法中,正确的是                 【   】
A.“明天降雨的概率是80%”表示明天有80%的时间降雨
B.“明天降雨的概率是80%”表示明天降雨的可能性有八成
C.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上
D.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖
5.关于 的说法不正确的是           【  】
A. 是无理数                B.3< <4  
C. 是12的算术平方根        D. 是最简二次根式
6.如图,⊙O的弦PQ垂直于直径MN,G为垂足,OP=4,下面四个等式中可能成立的是【  】.
A.PQ=9 B.MN=7 C.OG=5 D.PG=GQ=2
7.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是【  】

 












8.如图所示,在△ABC中,∠C=90°,AC=8,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB,AC都相切,则⊙O的半径是         【  】
A.1        B.          C.           D.
二、细心填一填 (本大题共8小题,每小题3分,共24分)
9.方程 +1=-2(1-3x)化为一元二次方程的一般形式后,二次项系数为1,一次项系数是         
10.( 在下面(Ⅰ)、(Ⅱ)两题中任选一题,若两题都做按第(Ⅰ)题计分)
(Ⅰ)计算: =           
(Ⅱ)用计算器计算: ≈     (保留三位有效数字).
11.将抛物线 向下平移1个单位,得到的抛物线是         .
12.已知△ABC周长为1,连结△ABC三边中点构成第二个三角形,再连结第二个三角形三边中点构成第三个三角形,以此类推,第2010个三角形的周长为               
13.已知A( ,1),B( ,1)是抛物线 ( ≠0)上的两点,当 时,y=      
14.如图,D为等腰直角三角形斜边BC上的一点,△ABD绕点A旋转后与△ACE重合,如果AD=1,那么DE=      .






A











B











C











O



































1











1











2











3











2











3











4











4











(第16题)





15.如图⊙ 和⊙ 外切,它们的半径分别为1和2,过O 作⊙ 的切线,切点为A,则O A长为          .
16.如图,在已建立直角坐标系的4×4的正方形方格纸中,△ 是格点三角形(三角形的三个顶点都是小正方形的顶点), 若以格点 、 、 为顶点的三角形与△ 相似(C点除外),则格点 的坐标是        
三、开心算一算(本大题共4小题, 每小题6分,共24分).
17.化简: .                
 
 
 
18.已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程 有两个相 等的实数根,试判断△ABC的形状。
 
 
 
 
 
 
 
 
 
19.如图,在矩形 中,点 分别在边 上,BE⊥EF,AB=6cm,AD=11cm(其中AE>DE),DF=4cm,求BE的长.
 
 
 
 
 
 
 
 
20.小明和小慧玩纸牌游戏.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明先从中抽出一张,小慧从剩余的3张牌中也抽出一张.
小慧说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.






 





 
 
 
 

 
(1)请用树状图表示出两人抽牌可能出现的所有结果;
(2)若按小慧说规则进行游戏,这个游戏公平吗?请说明理由.
 
 
 
 
四、用心做一做(本大题共3小题,每小题8分,共24分)
21.如图,△ABC和△DEF在平面直角坐标系中的位置如图所示.
    (1)将△ABC向下平移1个单位得到△A1B1C1,请画出△A1B1C1;并写出点A的对应点A1的坐标;
(2)能否将△A1B1C1通过旋转变换得到△DEF?若能试作出旋转中心,并求出旋转角,若不能说明理由.
 
                                 
 
 
 
 


22.如图,PA、PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.
求∠P的度数.






 






 
 
 
 
 
 
 
 
 
 
 
23.某学校打算在校园里划分一块矩形空地进行绿化,要求在中央布置一个长比宽多4米的矩形(即图中小矩形)花坛,四周铺植2米宽的草地,现甲、乙两位同学分别提出如下两个设想:
甲:中央矩形花坛面积要为45平方米;
乙:草地总面积要为32平方米;
问这两位同学的设想分别能实施吗?若能,试求划出的这块矩形(即图中大矩形)空地的长和宽;若不能,试说明理由.
 
 
 
 
 
 
 
 
 
 
 
 
 
五、耐心想一想(本大题共2小题,每小题12分,共24分)
24.如图,已知二次函数 的图像与 轴交于A、B两点(A在点B的左边),与 轴交于点C,直线 与 轴交于点D。
(1)求A、B、C三点的坐标;






O











x











y











D











C











B











A











第24题





(2)在直线 ( )上有一点P(点P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求P点的坐标;(用含m的代数式表示)。
(3)在(2)成立的条件下,试问:抛物线 上是否存在一点Q,使得四边形ABPQ为平行四边形?如果存在这样的点Q,请求出m的值;如果不存在,请简要说明理由。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25.如图是一块含30°(即∠CAB=30°)角的三角板和一个量角器拼在一起,三角板斜边AB与量角器所在圆的直径MN重合,其量角器最外缘的读数是从N点开始(即N点的读数为0),现有射线CP绕着点C从CA顺时针以每秒2度的速度旋转到与△ACB外接圆相切为止.在旋转过程中,射线CP与量角器的半圆弧交于E.
(1) 当射线CP与△ABC的外接圆相切时,求 射线CP旋转度数是多少?
(2)当射线CP分别经过△ABC的外心、内心时,点E处的读数分别是多少?
(3)当旋转7.5秒时,连结BE,求证:BE=CE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
参考答案
1.     C,  2.D,  3.A,  4.B,  5.D,  6.A,  7.B,  8.A
9.   -6    10.(1)0.1   (2)0.316   11.     12.   
13.  3     14.      15.      16. (1,4)或(3,1)或(3,4)
17. 解:原式= …………….3分 ………………………6分
18..解:∵关于x的方程 有两个相等的实数根,
                     
            ∵
19. 解:∵  
              ∵ ∽
              
              
                
              
20. 解:(1)


















小慧:











10











12











3











小明:











10











12











3











6











6











12











3











10





……





6











10











3











12





………2分
结果:(3,6)  (3,10)  (3,12)  (6,3)  (6,10)  (6,12) 
(10,3)  (10,6)  (10,12) (12,3) (12,6)  (12,10)………3分
(2)公平。理由如下:……………………4分
           
   
21. 解:(1)如图, 点A1的坐标为(-1,2);………………3分(其中画图1分)
  (2)能,………………………4分
如图, 由图可知△DEF≌△A1B1C1,………5分
连结A1D, B1E交于点P,………………6分
∵ A1B1∥DE, B1C1∥EF,
∴旋转中心点P的坐标为(0,-0.5),旋转角为180°.………8分
22.解:连接AB……………………1分
           ∵AC是直径 


∵PA是圆0的切线

∵PA、PB是圆0的切线 PA=PB……………………6分


 
23.解:甲设中央矩形的长为 ,则 ( -4)=45,
, (不合)
划出矩形长、宽分别为13米、9米.故甲同学的设想可实施……………4分
  (2)乙中央矩形的长为 ,
   则( +4)( -4+4)- ( -4)=32
      =4,由于矩形长要求比宽多4,而长为4,这样矩形不存在,乙同学的设想不能实施........................................8分
24.解: (1)由于抛物线 与 轴交点为A、B, ,
而与 轴的交点C的坐标表示为 ………3分(2)
P在直线 上,且在第一象限,以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似有二种情况:即PD与OB对应和PD与OC对应。根据相似三角形性质分别求得 。…7分
(3)假设抛物线 上存在一点Q,使得四边形ABPQ为平行四边形。
    PQ∥AB,且PQ=AB=2,点Q的横坐标为m-2,Q、P的纵坐标是相同的。
        当P为 时, , 在抛物线 的图像上, 。………9分,
当P为 时, 点 的坐标是 ,点 在抛物线 的图像上,  ………11分
………12分
25.解:(1).120°………………………………………3分
(2)∠BCA=90°, △ABC的外接圆就是量角器所在的圆,
  当CP过△ABC外心时(即过O点),∠BCE=60°,
∴∠BOE=120°, 即E处的读数为120, ………6分
  当CP过△ABC的内心时, ∠BCE=45°, ∠EOB=90°,
∴E处的读数为90…………………………………9分
(3)在图2中,
  ∵∠PCA=2×7.5°=15°, ∠BCE=75°, ∠ECA=∠EBA=15°,
  ∴∠EBC=∠EBA+∠ABC=∠BCE=75°,
  ∴BE=EC…………………………………………12分
 

本文来源:https://www.bwwdw.com/article/f7ld.html

Top