初二数学上册一次函数与几何练习题及答案doc

更新时间:2023-09-14 02:43:01 阅读量: 教学研究 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

一次函数

初二一次函数与几何题

1、平面直角坐标系中,点A的坐标为(4,0),点P在直线y=-x-m上,且AP=OP=4,则m的值是多少?

2、如图,已知点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,试求点B的坐标。

3、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线y=1/3x+b恰好将矩形

y OABC分为面积相等的两部分,试求b的值。 C B

O A x

4、如图,在平面直角坐标系中,直线y= 2x —6与x轴、y轴分别相交于点A、B,点C在x轴

y 上,若△ABC是等腰三角形,试求点C的坐标。

5、在平面直角坐标系中,已知A(1,4)、B(3,1),P是坐标轴上一点,(1)当P的坐标为多少时,AP+BP取最小值,最小值为多少? 当P的坐标为多少时,AP-BP取最大值,最大值为多少?

1

O A x B 一次函数

6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。

7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。

8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6)求k1,k2的值如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标

9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A点的坐标是(-1,0),

(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;

(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。

10、在平面直角坐标系中,一次函数y=Kx+b(b小于0)的图像分别与x轴、y轴和直线x=4交于A、B、C,直线x=4与x轴交于点D,四边形OBCD的面积为10,若A的横坐标为-1/2,求此一次函数的关系式

2

一次函数

11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y轴交于点A,且OA=OB:求这个一次函数解析式

12、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,m)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,SAOP=6. 求:(1)△COP的面积

(2)求点A的坐标及m的值;

(3)若SBOP =SDOP ,求直线BD的解析式

13、一次函数y=-

3x+1的图像与x轴、y轴分别交于点A、B,以AB为边在第一象限内做等边△3ABC

(1)求△ABC的面积和点C的坐标; (2)如果在第二象限内有一点P(a,

1),试用含a的代数式表示四边形ABPO的面积。 2(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由。

3

一次函数

14、已知正比例函数y=k1x和一次函数y=k2x+b的图像如图,它们的交点A(-3,4),且OB=

3OA。 5 (1)求正比例函数和一次函数的解析式; (2)求△AOB的面积和周长;

(3)在平面直角坐标系中是否存在点P,使P、O、A、B成为直角梯形的四个顶点?若存在,请直接写出P点的坐标;若不存在,请说明理由。

15、如图,已知一次函数y=x+2的图像与x轴交于点A,与y轴交于点C, (1)求∠CAO的度数;

(2)若将直线y=x+2沿x轴向左平移两个单位,试求出平移后的直线的解析式; (3)若正比例函数y=kx (k≠0)的图像与y=x+2得图像交于点B,且∠ABO=30°,求:AB的长及点B的坐标。

16、一次函数y=

3x+2的图像与x轴、y轴分别交于点A、B,以AB为边在第二象限内做等边△ABC 3 (1)求C点的坐标;

(2)在第二象限内有一点M(m,1),使S△ABM =S△ABC ,求M点的坐标;

(3)点C(23,0)在直线AB上是否存在一点P,使△ACP为等腰三角形?若存在,求P点的坐标;若不存在,说明理由。

17、已知正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),一次函数与x轴相交于B,且OB=0.6OA,求这两个函数的解析式

4

一次函数

18、已知一次函数y=x+2的图像经过点A(2,m)。与x轴交于点c,求角AOC.

19、已知函数y=kx+b的图像经过点A(4,3)且与一次函数y=x+1的图像平行,点B(2,m)在一次函数y=kx+b的图像上

(1)求此一次函数的表达式和m的值?

(2)若在x轴上有一动点P(x,0),到定点A(4,3)、B(2,m)的距离分别为PA和PB,当点P的横坐标为多少时,PA+PB的值最小?

答案

3、点到线的最短距离是点向该线做垂线 因为直线与x夹角45度 所以ABO为等腰直角三角形 AB=BO=2分之根号2倍的AO AO=1 BO=2分之根号2

在B分别向xy做垂线 垂线与轴交点就是B的坐标

由于做完还是等腰直角三角形 所以议案用上面的共识 可知B点坐标是(0.5,-0.5) 7、一次函数 的解析式为y=8x+4或y=(25/2)x-5.设一次函数为y=kx+b,则它与两坐标轴的交点是(-b/k,0)(0,b),所以有20=2x+b,|-b/k×b|×1/2=1,解之得k1=8,b1=4;k2=25/2,b2=-5.所以,一次函数 的解析式为y=8x+4或y=(25/2)x-5

8、因为正比例函数和一次函数都经过(3,-6)所以这点在两函数图像上 所以, 当x=3 y=-6 分别代入 得

5

本文来源:https://www.bwwdw.com/article/f5dh.html

Top