概率论期中总结
更新时间:2023-09-17 14:43:01 阅读量: 幼儿教育 文档下载
Chapter 1 Introduction to Probability
1.3 Experiments, Events and Sample Space
? Types of Experiments ? The Sample Space The collection of all possible outcomes of an experiment is called the sample space of the experiment.
1.4 The Definition of Probability
? Axiom and Basic Theorems A?S, Pr(A) indicates the probability that Awill occur. A1. For every event A, Pr(A)?0. A2. Pr(S) = 1.
A3. For every infinite sequence of disjoint events A1, A2, . ..
??Pr(?Ai)?i?1?Pr(A)
ii?1Theorem ? Pr(?) = 0.
? For every finite sequence of n disjoint events A1, A2, . . .,
?Pr(?Ai)?i?1?Pr(A)
ii?1?? Theorem1.4.3. For every event A, Pr(Ac) = 1 ? Pr(A). ? If A?B, then Pr(A)?Pr(B). ? For every event A, 0?Pr(A)?1.
? For every two events A and B, Pr(A?B) = Pr(A) + Pr(B) ? Pr(AB).
1.5 Finite Sample Spaces
? Requirements of Probabilities s1, . . . , sn?S
p1, . . . , pn satisfy: the following two conditions: pi ?0 for i = 1, . . . , n and ?i?1nPi=1
The probability of each event A can then be found by adding the probabilities pi of all outcomes si that belong to A.
? Simple Sample Spaces A sample space S containing n outcomes s1, . . . , sn is called a simple sample space if the probability assigned to each of the outcomes s1, . . . , sn is 1/n. If an event A in this simple sample space contains exactly m outcomes, then Pr(A) =
mn.
1.6 Combinatorial Methods
Binomial Coefficients:
?n????k?=
n!k!?n?k?!
(Binomial theorem) For all numbers x and y and each positive integer n,
(x?y)nn?n?nn?k????xykk?0??
1.7 The Probability of a Union of Events
? For every three events A1, A2, and A3,
Pr(A1?A2?A3) = Pr(A1) + Pr(A2) + Pr(A3) ? [Pr(A1A2) + Pr(A2A3) + Pr(A1A3)] + Pr(A1A2A3). ? For every n events A1, . . . , An,
nPr(?Ai)?i?1
n?Pr(A)??Pr(AA)??iiji?1i?ji?j?kPr(AiAjAk)??i?j?k?lPr(AiAjAkAl)?(?1)n?1Pr(AiAj...An)Chapter 2 Conditional Probability
2.1 The Definition of Conditional Probability
? Introduction to the Definition The conditional probability of the event A given that the event B has occurred.: Pr(A | B).
Pr(A|B)?Pr(AB)Pr(B)
Rewrite the formula of conditional probabilities: Pr(AB) = Pr(B)Pr(A | B). Pr(AB) = Pr(A)Pr(B | A). ? Intersection of n events Suppose that A1,A2, . . . ,An are events such that Pr(A1A2 · · ·An?1) > 0. Then
Pr(A1A2 · · ·An) = Pr(A1)Pr(A2 | A1)Pr(A3 | A1A2) … Pr(An| A1A2 · · ·An?1). Rewrite:
Suppose that A1,A2, . . . ,An,B are events such that Pr(A1A2 · · ·An?1 | B) > 0. Then
Pr(A1A2 · · ·An | B) = Pr(A1 | B)Pr(A2 | A1B) · · · Pr(An | A1A2 · · ·An?1B).
2.2 Independent Events
? Definition of Independence Suppose that Pr(A) > 0 and Pr(B) > 0. Events A and B are independent if Pr(A | B) = Pr(A), Pr(B | A) = Pr(B).
Theorem ? Theorem ? If two events A and B are independent, then the events A and Bc are also independent, that is, Pr(ABc ) = Pr(A)Pr(Bc ).
? Let A1, . . . ,Ak be events such that Pr(A1 · · ·Ak ) > 0. Then A1, . . . ,Ak are independent if and only if, for every two disjoint subsets {i1, . . . , im} and {j1, . . . , jl} of {1, . . . , k}, we have Pr(Ai1 · · ·Aim | Aj1 · · ·Ajl) = Pr(Ai1 · · ·Aim).
2.3 Bayes’ Theorem
?
Theorem ? Suppose that the events B1, . . . ,Bk form a partition of the space S and that Pr(Bj ) > 0 for j = 1, . . . , k. Then, for every event A in S,
kPr(A)??Pr(B)Pr(A|B)
jjj?1Theorem ? (Conditional Version of Law of Total Probability.) The law of total probability has an analog conditional on another event C, namely
kPr(A|C)??Pr(Bj?1j|C)Pr(A|BjC)
Theorem (Bayes’ theorem) ? Let the events B1, . . . ,Bk form a partition of the space S such that Pr(Bj ) > 0 for j = 1, . . . , k, and let A be an event such that Pr(A) > 0.
Pr(Bj|A)?Pr(Bi)Pr(A|Bi)kThen, for i = 1, . . . , k,
?j?1Pr(Bj)Pr(A|Bj)
Chapter 3 Random Variables and
Distributions
3.1 Random Variables and Discrete Distributions ? Definition of a Random Variable. Consider an experiment for which the sample space is denoted by S. A real-valued function that is defined on the space S is called a random variable. In other words, in a particular experiment a random variable X would be some function that assigns a real number X(s) to each possible outcome s 2 S.
? Measure the random variables Preparation for the distribution of a random variable. Random variable X. A subset of the real line A, X?A denote some event. Determine the
正在阅读:
概率论期中总结09-17
普通动物学复习总结01-29
2018年本科会计经典毕业论文学习范文word范文2篇07-28
第一次演讲作文600字07-04
人教版六年级上册品德期末复习资料12-07
用友u8仓库管理操作手册12-25
水电站建设 审批权限、审批步骤和审批流程01-01
美容健康知识和生活小窍门06-19
管理信息系统同步测试答案 - 图文09-17
郑州住宅小区调研 - 图文10-25
- 实验室搬迁工作方案 2016.2.18 - 图文
- 盖板涵施工方案
- 《雨下得有多大》教学设计与反思--李文红 - 图文
- 掸邦民族武装汇总2011 - 图文
- 电大管理会计补修课题库
- 部编版六年级语文上册第八单元 语文园地 教案+实录
- 平改坡各工种安全技术交底
- 京东电商模式和盈利能力研究
- 高速公路监理岗前考核试题库(30)
- 例三+偏心套筒机械加工工艺规程编制及锥销孔钻床夹具设计
- 精选2017九年级物理上册第12章机械能和内能测试题新版苏科版
- 冀教版五年级数学下册应用题(1)
- 工业通风复习题全剖析
- MATLAb实验报告第六次
- 高强度内法兰连接钢棒电杆的应用
- 人教版二年级数学下册第1、2单元测试卷
- 2009—2013年自考组织行为学试题和答案
- 参观闽中革命史纪念馆心得体会
- 华中师范大学网络教育学院《数据库》练习测试题库及答案
- 工程质量创优规划 - 图文