q-Euler Numbers and Polynomials Associated with Basic Zeta Functions
更新时间:2023-07-18 09:16:01 阅读量: 实用文档 文档下载
- qeulerk推荐度:
- 相关推荐
In this paper we give the q-extension of Euler numbers which can be viewed as interpolating of the q-analogue of Euler zeta function ay negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Final
q-EULERNUMBERSANDPOLYNOMIALSASSOCIATEDWITHBASICZETAFUNCTIONS
arXiv:0807.2682v1 [math.NT] 17 Jul 2008
TaekyunKim
DivisionofGeneralEducation-Mathematics,KwangwoonUniversity,Seoul139-701,S.Korea
e-mail:tkkim@kw.ac.kr
Abstract.
Weconsidertheq-analogueofEulerzetafunctionwhichisde nedby
ζq,E(s)=[2]q
∞X( 1)nqnsn=1
Whenonetalksof
q-extension,qisvariouslyconsideredasanindeterminate,acomplexnumberq∈Corap-adicnumberq∈Cp.Ifq∈C,thenwenormallyassume|q|<1,andwhenq∈Cp,thenwenormallyassume|q 1|p<1.Weusethenotation:
[x]q=[x:q]=
1 qx
1+q
.
p.
In this paper we give the q-extension of Euler numbers which can be viewed as interpolating of the q-analogue of Euler zeta function ay negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Final
2q-ANALOGUEOFRIEMANNZETAFUNCTION
Notethatlimq→1[x]q=xforx∈Zpinpresentedp-adiccase.
LetUD(Zp)bedenotedbythesetofuniformlydi erentiablefunctionsonZp.Forf∈UD(Zp),letusstartwiththeexpression
1
[pN] q
0≤j<pN
f(j)( q)j,(see[5,6,16]).
Forda xedpositiveintegerwith(p,d)=1,let
N
X=Xd=←lim Z/dpZ,X1=Zp,
N
X=
0<a<dp
(a,p)=1
a+dpZp,
a+dpNZp={x∈X|x≡a(moddpN)},
wherea∈Zliesin0≤a<dpN,(see[1-30]).
LetNbethesetofpositiveintegers.Form,k∈N,theq-Eulerpolynomials( m,k)Em(x,q)ofhigherorderinthevariablesxinCpbymakinguseofthep-adicq-integral,cf.[5,6],arede nedby
( m,k)
(1)Em,q(x)=
Zp
···
Zp
Zp
[x+x1+x2+···+xk]mq
·q
ktimes
x1(m+1) x2(m+2) ··· xk(m+k)
dµ q(x1)dµ q(x2)···dµ q(xk).
Now,wede netheq-Eulernumbersofhigherorderasfollows:
( m,k)( m,k)Em,q=Em,q(0).
In this paper we give the q-extension of Euler numbers which can be viewed as interpolating of the q-analogue of Euler zeta function ay negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Final
3
From(1),wecanderive
( m,k)Em,q
(2)
=lim
1
m m
( 1)iii=0
N→∞
1
(1 q)m
et+1
k
=
n=0
∞
(k)tEn
n
(1 q)m
m
m
( 1)jqjx
jj=0
1
[n]sq
,q∈Rwith0<q<1ands∈C.
Thenumeratorensurestheconvergence.In(4),wecanconsiderthefollowingproblem:
“Arethereq-Eulernumberswhichcanbeviewedasinterpolatingofζq,E(s)atnegativeintegers,inthesamewaythatRiemannzetafunctioninterpolatesBernoullinumbersatnegativeintegers”?
Inthispaper,wegivethevalueζq,E( m),form∈N,whichisaansweroftheaboveproblemandconstructanewcomplexq-analogueofHurwitz’stypeEulerzetafunctionandq-L-seriesrelatedtoq-Eulernumbers.Also,wewilltreatsomeinterestingidentitiesofq-Eulernumbers.
In this paper we give the q-extension of Euler numbers which can be viewed as interpolating of the q-analogue of Euler zeta function ay negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Final
4q-ANALOGUEOFRIEMANNZETAFUNCTION
2.someidentitiesofq-EulernumbersEm,q
( m,1)
.
Inthissection,weassumeq∈Cpwith|1 q|p<1.By(1),weseethat
En,q
( n,1)
(x)=
q (n+1)t[x+t]ndµ q(t)
X
q=
[2]q
Thuswehave(5)
En,q( n,1)(x)=
[2]q
whered,narepositiveintegerswithd≡1(mod2).
Ifwetakex=0,thenwehave(6)
Em,q( m,1)
=
[2]q[2][n]mE( m,1)
qn
qm,qn
=
[2]q
k!
.
d
+t]nqddµ qd(t).
d
),
In this paper we give the q-extension of Euler numbers which can be viewed as interpolating of the q-analogue of Euler zeta function ay negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Final
5
By(3),(8),weeasilysee:
∞
Fq(t,x)=[2]q
(9)
k=0
1
1+qj k.
k
t
k!
Di erentiatingbothsideswithrespecttotin(5),(6)andcomparingcoe cients,
weobtainthefollowing:
Theorem1.Form≥0,wehave(10)
( m,1)Em,q(x)=[2]q
∞
n
q nm[n+x]mq( 1).
n=0
Corollary2.Letm∈N.Thenthereexists(11)
( m,1)
Em,q=[2]q
∞
n
q nm[n]mq( 1),andE0,q
(0,1)
=
[2]q
n=1
[2]qd[2]qd
[d]mq[d]mq
d 1 i=0d 1 i=0
q mi( 1)iχ(i)
q dx(m+1)[
( m,1)
i
Zp
χ(i)( 1)iq miEm,qd(
i
In this paper we give the q-extension of Euler numbers which can be viewed as interpolating of the q-analogue of Euler zeta function ay negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Final
6q-ANALOGUEOFRIEMANNZETAFUNCTION
3.q-analogsofzetafunctions
Inthissection,weassumeq∈Rwith0<q<1.Nowweconsidertheq-extensionoftheEulerzetafunctionasfollows:
∞ns
nq( 1)ζq,E(s)=[2]q
n=1
[n+x]sq
.
Notethatζq,E(s,x)isananalyticcontinuationinwholecomplexs-plane.
By(14)andTheorem1,wehavethefollowingtheorem.Theorem4.Foranypositiveintegerk,wehave(15)
ζq,E( k,x)=Ek,q
( k,1)
(x,q).
Ford∈Nwithd≡1(mod2),letχbeDirichletcharacterwithconductord.By(13),thegeneralizedq-Eulernumbersattachedtoχcanbede nedas(16)
( m,1)Em,χ,q=
[2]q
d
).
Fors∈C,wede ne(17)
Lq,E(s,χ)=[2]q
∞ χ(n)( 1)nqsn
n=1
[2]qd
s
[d] q
a=1
d
χ(a)( 1)aqsaζqd,E(s,
a
In this paper we give the q-extension of Euler numbers which can be viewed as interpolating of the q-analogue of Euler zeta function ay negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Final
7
Theorem5.Letk∈N.Thenthereexists
Lq,E( k,χ)=Ek,χ,q.
LetaandFbeintegerswith0<a<F.Fors∈C,weconsiderthefunctionsHq(s,a,F)asfollows:
Hq,E(s,a,F)=[2]q
qms( 1)m
[2]qF
saa[F] q( 1)qζqF(s,
( k,1)
a
m≡a(F),m>0
[2]qF
( n,1)
[F]nEqn,qF(
a
In this paper we give the q-extension of Euler numbers which can be viewed as interpolating of the q-analogue of Euler zeta function ay negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Final
8q-ANALOGUEOFRIEMANNZETAFUNCTION
8.T.Kim,q-BernoullinumbersandpolynomialsassociatedwithGaussianbinomialcoe cients,RussianJ.Math.Phys.15(2008),51-57.9.T.Kim,q-extensionoftheEulerformulaandtrigonometricfunctions,RussianJ.Math.Phys.14(2007),275-278.10.T.Kim,J.y.Choi,J.Y.Sug,Extendedq-Eulernumbersandpolynomialsassociatedwithfermionic
p-adicq-integralonZp,RussianJ.Math.Phys.14(2007),160-163.11.T.Kim,q-generalizedEulernumbersandpolynomials,RussianJ.Math.Phys.13(2006),293-298.12.T.Kim,Multiplep-adicL-function,RussianJ.Math.Phys.13(2006),151-157.
13.T.Kim,Powerseriesandasymptoticseriesassociatedwiththeq-analogofthetwo-variablep-adic
L-function,RussianJ.Math.Phys.12(2005),186-196.14.T.Kim,Analyticcontinuationofmultipleq-zetafunctionsandtheirvaluesatnegativeintegers,
RussianJ.Math.Phys.11(2004),71-76.15.T.Kim,OnEuler-Barnesmultiplezetafunctions,RussianJ.Math.Phys.10(2003),261-267.16.T.Kim,Themodi edq-Eulernumbersandpolynomials,Adv.Stud.Contemp.Math.16(2008),
161-170.17.T.Kim,Anoteonp-adicq-integralonZpassociatedwithq-Eulernumbers,Adv.Stud.Contemp.
Math.15(2007),133-137.18.T.Kim,Anoteonp-adicinvariantintegralintheringsofp-adicintegers,Adv.Stud.Contemp.
Math.13(2006),95-99.19.H.Ozden,Y.Simsek,S.-H.Rim,I.N.Cangul,Oninterpolationfunctionsofthetwistedgeneralized
Frobenius-Eulernumbers,Adv.Stud.Contemp.Math.15(2007),187-194.20.H.Ozden,Y.Simsek,I.N.Cangul,Multivariateinterpolationfunctionsofhigher-orderq-Euler
numbersandtheirapplications,AbstractandAppliedAnalysis2008(2008),Art.ID390857,16pages.21.H.Ozden,Y.Simsek,I.N.Cangul,Eulerpolynomialsassociatedwithp-adicq-Eulermeasure,
GeneralMathematics15(2007),24-37.22.Y.Simsek,GeneratingfunctionsofthetwistedBernoullinumbersandpolynomialsassociatedwith
theirinterpolationfunctions,Adv.Stud.Contemp.Math.16(2008),251-278.23.Y.Simsek,Y.Osman,V.Kurt,OninterpolationfunctionsofthetwistedgeneralizedFrobenius-Eulernumbers,Adv.Stud.Contemp.Math.15(2007),187-194.24.Y.Simsek,HardycharactersumsrelatedtoEisensteinseriesandthetafunctions,Adv.Stud.
Contemp.Math.12(2006),39-53.
In this paper we give the q-extension of Euler numbers which can be viewed as interpolating of the q-analogue of Euler zeta function ay negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Final
9
25.Y.Simsek,RemarksonreciprocitylawsoftheDedekindandHardysums,Adv.Stud.Contemp.
Math.12(2006),237-246.26.Y.Simsek,TheoremsontwistedL-functionandtwistedBernoullinumbers,Adv.Stud.Contemp.
Math.11(2005),205-218.27.Y.Simsek,D.Kim,S.-H.Rim,Onthetwo-variableDirichletq-L-series,Adv.Stud.Contemp.
Math.10(2005),131-142.28.Y.Simsek,A.Mehmet,RemarksonDedekindetafunction,thetafunctionsandEisensteinseries
undertheHeckeoperators,Adv.Stud.Contemp.Math.10(2005),15-24.29.Y.Simsek,Y.Sheldon,TransformationoffourTitchmarsh-typein niteintegralsandgeneralized
DedekindsumsassociatedwithLambertseries,Adv.Stud.Contemp.Math.9(2004),195-202.30.Y.Simsek,Onp-adictwistedq-L-functionsrelatedtogeneralizedtwistedBernoullinumbers,
RussianJ.Math.Phys.13(2006),340-348.
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Polynomials
- Associated
- Functions
- Numbers
- Euler
- Basic
- with
- Zeta
- 2012年江西理工大学地理信息系统基础考试大纲
- 泉州五中拔尖创新人才培养方案
- 认知心理学第三章 注意3
- V436632S04VTG-10PC中文资料
- 投资担保公司绩效考核办法
- 英语四六级没考好_考研英语不用怕
- Unit 6 Being There课文翻译
- 硅铝氧化物二元包覆钛白粉颗粒的有机改性
- 大学计算机基础试题及答案
- 初中英语阅读--科普知识 发明 现代技术
- 第五章 绩效管理
- 人教版2年级数学上册用加减法解决问题的技巧附答案
- 2.3.2回归直线及其方程
- 汽车转向系统故障诊断与维修
- 公司员工试用期合同
- 第一至三章-绪论&电力系统中性点的运行方式&电弧及电气触头的基本理论
- 文件备份--民俗谚语中的物理知识
- 中国百货业自营模式的探索
- 2013学年高一政治 第三单元《发展社会主义民主政治》精品教案 新人教版必修2
- 公司内部工程技术管理人员评职位级标准