2020年高考数学(艺术生百日冲刺)专题16 算法、复数、推理与证明测试题

更新时间:2023-05-03 14:15:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

专题16算法、复数、推理与证明测试题

命题报告:

1.高频考点:程序框图、复数、归纳推理、类比推理、演绎推理、不等式的证明等。

2.考情分析:本单元在高考中必考,内容简单,主要涉及客观题,推理和证明渗透得数学各方面,是培养数学素养的关键。

3.重点推荐: 3考察复数的几何性质,9,11题涉及数学文化题。

一.选择题(共12小题,每一题5分)

1.(2020?青州市三模)设i是虚数单位,若复数是纯虚数,则a=()

A.﹣1 B.1 C.﹣2 D.2

【答案】D

【解析】:∵=是纯虚数,∴a=2.故选:D.

2.如程序框图所示,其作用是输入x的值,输出相应的y的值.若要使输入的x的值与输出的y的值相等,则这样的x的值有()

A.1个B.2个C.3个D.4个

【答案】C

【解析】:这是一个用条件分支结构设计的算法,该程序框图所表示的算法的作用是求分段函数y=的函数值,

当x ≤2时,令x 2

=x ,得x=0或1;

当2<x ≤5时,令2x ﹣3=x ,得x=3;

当x >5时,令=x ,得x=±1(舍去),

故只有3个值符合题意.

故选:C . 3. 如图,在复平面内,复数z 1,z 2对应的向量分别是,OA OB u u u r u u u r ,则复数12

Z Z 对应的点位于( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

【答案】.B

【解析】:由题意可知z 1=﹣2﹣i ,z 2=i .∴

, 复数12

Z Z 对应的点位于第二象限.故选B . 4. (2020?陕西一模)运行如图的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数y=x a

,x ∈[0,+∞)是增函数的概率为( )

A .

B .

C .

D .

【答案】C

【解析】:由框图可知A={3,0,﹣1,8,15},其中基本事件的总数为5,设集合中满足“函数y=x α

,x ∈

[0,+∞)是增函数”为事件E ,当函数y=x α,x ∈[0,+∞)是增函数时,α>0事件E 包含基本事件为3,则.故选:C . 故选:D .

11. 设函数,观察:,,3()f x =

,

,???,由归纳推理可得当∈n N *

且2≥n 时,()n f x = ( ) A . B .

C .

D .

【答案】C 【解析】观察可得,所给的函数式的分子不变都是x ,而分母是由两部分的和组成,第一部分的系数分别是1,3,7,15,…,21n -,第二部分的数分别是2,4,8,16,…,2n ,∴.

12. (2020?平度市校级模拟)阅读程序框图(如图),输出的结果的值为( )

A B 1

2

C

1

3

D

1

5

【答案】A

【解析】:如图所示的是当型循环结构,第一次循环:S=0+=,

n=1+1=2;

第二次循环:S==,

n=2+1=3;

第三次循环:S==,

n=3+1=4;

第四次循环:S=+sin=,

n=4+1=5;

第五次循环:S=+sin=0,

n=5+1=6;

第六次循环:S=0+sin2π=0,

n=6+1=7.

第七次循环:S=0+=,

n=7+1=8;

第八次循环:S==,

n=8+1=9;

所以,S的取值的周期是6,

∵2020=335×6+1,

∴第2020次循环时,S=0+=,n=2020+1=2020,

∵n=2020,n<2020不成立,

∴输出的结果S为:.

故答案为:.

二.填空题

13.(2020届?曾都区期中)将n表示为k=k+1(n∈N*),当i=0时,a i=1;当1≤i≤k时,a i为0或1.记f (n)为上述表示中a i为1的个数,例如:1=1×20,4=1×22+0×21+0×20,故f(1)=1,f(4)=1,则f (20)= 2 .

【答案】2

【解析】:根据题意知,20=1×24+0×23+1×22+0×21+0×20,∴f(20)=2,

故答案为:2.

14.(2020?闵行区一模)已知是纯虚数(i是虚数单位),则

= .

【答案】

【解析】:∵是纯虚数,∴,得sin且cos,∴α为第二象限角,则cos.∴=sinαcos+cosαsin=.故答案为:﹣.

15.布兰克先生有一位夫人和一个女儿,女儿有一位丈夫和一个儿子,阅读以下信息:

①五人中有一人是医生,而在其余四人中有一人是这位医生的病人;

②医生的孩子和病人父母亲中年龄较大的那一位性别相同;

③医生的孩子既不是病人,也不是病人父母亲中年龄较大的那一位.

根据以上信息,谁是医生?

(填写代号:A布兰克先生,B夫人,C女儿,D女婿,E外孙)

【答案】D

【解析】:根据题意得,布兰克先生不是医生,由医生的孩子和病人父母亲中年龄较大的那一位性别相同知女婿是医生,女儿是病人.

16.已知数列其中第一项是,接下来的两项是,再接下来的三项是,依此类推,则a97+a98+a99+a100= .

【答案】

【解析】:根据题意知,第一项是,接下来的两项是,再接下来的三项是,依此类推,1+2+3+…+i=,i=13时,=91,∴a97+a98+a99+a100=+++=.故答案为:.

三.解答题

17.已知i是虚数单位,a,b∈R,z1=a﹣1+(3﹣a)i,z2=b+(2b﹣1)i,z1=z2.

(1)求a,b的值;

(2)若z=m﹣2+(1﹣m)i,m∈R,求证:|z+a+bi|≥.

解析:(1)解:由z1=a﹣1+(3﹣a)i,z2=b+(2b﹣1)i,由z1=z2,

得,解得,

∴a=2,b=1;…………4分

(2)证明:∵z=m﹣2+(1﹣m)i,m∈R,

∴|z+a+bi|=|m﹣2+(1﹣m)i+2+i|=

==.

当且仅当m=1时上式取等号,

∴|z+a+bi|≥.…………10分

18.(2020?洛阳期中)将正整数作如下分组:(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),…设第1组,第2组,第3组,第4组,第5组,第6组,…第n 组包含的正整数的和分别为S1,S2,S3,S4,S5,S6,…S n.

(1)计算S1,S2,S3,S4,S5,S6,S7,并求S n;

(2)计算S 1+S 3,S 1+S 3+S 5,S 1+S 3+S 5+S 7的值,试猜测S 1+S 3+S 5+…+S 2n ﹣1的结果

【分析】(1)求得S 1,S 2,S 3,S 4,S 5,S 6,S 7,结合已知条件说明各组数值关系.然后求S n ;

(2)计算S 1+S 3,S 1+S 3+S 5,S 1+S 3+S 5+S 7的值猜想(n ∈N *

)即可.

(2)S 1+S 3=1+15=16=24

S 1+S 3+S 5=1+15+65=81=34,

S 1+S 3+S 5+S 7=81+175=256=44,

猜测S 1+S 3+S 5+…+S 2n ﹣1=n 4,…………12分

19. 请阅读下列不等式的证法:已知

,求证:. 证明:构造函数

, 则

因为对一切R x ∈,恒有()f x ≥0,所以

≤0, 从而得. 请回答下面的问题:

(Ⅰ)若

,请写出上述结论的推广式; (Ⅱ)参考上述证法,请证明你的推广式.

【解析】:(Ⅰ)推广形式:若

, 则. …………5分

(Ⅱ)证明:构造函数

…………7分

因为对一切x R ∈,恒有()f x ≥0,

所以

≤0, 从而得. ……12分 20. 如图所示,在四棱锥P ﹣ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,PA=AD ,E ,F 分别为PD ,BC 的中点.

(1)求证:AE ⊥PC ;

(2)G 为线段PD 上一点,若FG ∥平面AEC ,求的值.

【分析】(1)证明:AE ⊥平面PCD ,即可证明AE ⊥PC ;

(2)取AP 中点M ,连接MF ,MG ,ME ,利用平面MFG ∥平面AEC ,又平面MFG ∩平面PAD=MG ,平面AEC ∩平面PAD=AE ,MG ∥AE ,即可求的值.

【解析】(1)证明:∵AP ⊥平面ABCD ,∴AP ⊥CD ,

在矩形ABCD 中,CD ⊥AD ,

又AP ∩AD=A ,∴CD ⊥平面PAD ,

∵AE ?平面PAD ,∴CD ⊥AE ,

在△PAD 中,E 为PD 中点,PA=AD ,∴AE ⊥PD ,

又CD ∩PD=D ,CD ,PD ?平面PCD ,∴AE ⊥平面PCD ,

∵PC ?平面PCD ,∴AE ⊥PC …………6分

(2)解:

取AP 中点M ,连接MF ,MG ,ME .

在△PAD中,M,E分别为PA,PD的中点

则ME为△PAD的中位线∴,

又,∴ME∥FC,ME=FC,∴四边形MECF为平行四边形,∴MF∥EC,

又MF?平面AEC,EC?平面AEC,∴MF∥平面AEC,

又FG∥平面AEC,MF∩FG=F,MF,FG?平面MFG,∴平面MFG∥平面AEC,

又平面MFG∩平面PAD=MG,平面AEC∩平面PAD=AE,∴MG∥AE,

又∵M为AP中点,∴G为PE中点,

又E为PD中点,∴,即.……12分

21. 某校高二(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,且将全班25人的成绩记为A I(I=1,2,…,25)由右边的程序运行后,输出n=10.据此解答如下问题:

(Ⅰ)求茎叶图中破损处分数在[50,60),[70,80),[80,90)各区间段的频数;

(Ⅱ)利用频率分布直方图估计该班的数学测试成绩的众数,中位数分别是多少?

【解析】(Ⅰ)由直方图知:在[50,60)之间的频率为0.008×10=0.08,

∴在[50,60)之间的频数为2;

由程序框图知:在[70,80)之间的频数为10

所以分数在[80,90)之间的频数为25﹣2﹣7﹣10﹣2=4;…………6分

(Ⅱ)分数在[50,60)之间的频率为2/25=0.08;

分数在[60,70)之间的频率为7/25=0.28;

分数在[70,80)之间的频率为10/25=0.40;

分数在[80,90)之间的频率为4/25=0.16;

分数在[90,100]之间的频率为2/25=0.08;

估计该班的测试成绩的众数75

设中位数为x,则0.08+0.28+0.04(x﹣70)=0.5,

解得x=73.5…………12分

22.(2020 ?福州期中)在学习数学的过程中,我们通常运用类比猜想的方法研究问题.

(1)已知动点P为圆O:x2+y2=r2外一点,过P引圆O的两条切线PA、PB,A、B为切点,若=0,求动点P的轨迹方程;

(2)若动点Q为椭圆M:=1外一点,过Q引椭圆M的两条切线QC、QD,C、D为切点,若=0,求出动点Q的轨迹方程;

(3)在(2)问中若椭圆方程为=1(a>b>0),其余条件都不变,那么动点Q的轨迹方程是什么(直接写出答案即可,无需过程).

【分析】(1)由切线的性质及可知,四边形OAPB为正方形,所以点P在以O为圆心,|OP|长为半径的圆上,进而可得动点P的轨迹方程;

(2)设两切线为l1,l2,分当l1与x轴不垂直且不平行时,和当l1与x轴垂直或平行时两种情况,结合=0,可得动点Q的轨迹方程;

(3)类比(2)的求解过程,可得动点Q的轨迹方程.

【解析】(1)由切线的性质及可知,四边形OAPB为正方形,

所以点P在以O为圆心,|OP|长为半径的圆上,且,

进而动点P的轨迹方程为x2+y2=2r2…(3分)

(2)设两切线为l1,l2,

①当l1与x轴不垂直且不平行时,设点Q的坐标为Q(x0,y0)则x0≠±3,

设l1的斜率为k,则k≠0,l2的斜率为﹣,

l1的方程为y﹣y0=k(x﹣x0),联立,

得,…(5分)

因为直线与椭圆相切,所以△=0,得,化简,,

进而,

所以…(7分)

所以k是方程的一个根,

同理﹣是方程的另一个根,

∴k?(﹣)=,得,其中x0≠±3,…(9分)

本文来源:https://www.bwwdw.com/article/eule.html

Top