电工电子综述CMOS集成电路

更新时间:2023-04-26 21:18:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

--

CMOS集成电路

摘要:CMOS(Complementary Metal Oxide Semiconductor),互补金属氧化物半导体,电压控制的一种放大器件,是组成CMOS数字集成电路的基本单元。CMOS集成电路是目前大规模(LSI)和超大规模(VLSI)集成电路中广泛应用的一种电路结构,相对于传统的双极型、NMOS和PMOS集成电路而言,其在功率消耗、噪声抑制等方面具有明显的优势。

关键词:CMOS 集成电路优势工作原理防护措施

一、CMOS集成电路简介

CMOS(Complementary Metal Oxide Semiconductor),互补金属氧化物半导体,电压控制的一种放大器件,是组成CMOS数字集成电路的基本单元。在计算机领域,CMOS常指保存计算机基本启动信息(如日期、时间、启动设置等)的芯片。有时人们会把CMOS和BIOS混称,其实CMOS是主板上的一块可读写的RAM芯片,是用来保存BIOS的硬件配置和用户对某些参数的设定。CMOS可由主板的电池供电,即使系统掉电,信息也不会丢失。CMOS ROM本身只是一块存储器,只有数据保存功能。而对BIOS中各项参数的设定要通过专门的程序。BIOS设置程序一般都被厂商整合在芯片中,在开机时通过特定的按键就可进入BIOS设置程序,方便地对系统进行设置。因此BIOS设置有时也被叫做CMOS 设置。

早期的CMOS是一块单独的芯片MC146818A(DIP封装),共有64个字节存放系统信息。386以后的微机一般将 MC146818A芯片集成到其它的IC芯片中(如82C206,PQFP封装),586以后主板上更是将CMOS与系统实时时钟和后备电池集成到一块叫做DALLDA DS1287的芯片中。随着微机的发展、可设置参数的增多,现在的CMOSROM一般都有128字节及至256字节的容量。为保持兼容性,各BIOS厂商都将自己的BIOS中关于CMOS ROM的前64字节内容的设置统一与MC146818A的CMOS ROM格式一致,而在扩展出来的部分加入自己的特殊设置,所以不同厂家的BIOS芯片一般不能互换,即使是能互换的,互换后也要对CMOS信息重新设置以确保系统正常运行。

1963年,仙童半导体(Fairchild Semiconductor)的Frank Wanlass 发明了CMOS电路。到了1968年,美国无线电公司(RCA)一个由亚伯·梅德温(Albert Medwin)领导[1]的研究团队成功研发出第一个CMOS集成电路(I ntegrated Circuit)。早期的CMOS元件虽然功率消耗比常见的晶体管-晶体管逻辑电路(Transistor-to-Transistor Logic,TTL)要来得低,但是因为操作速度较慢的缘故,所以大多数应用CMOS的场合都和降低功耗、延长电池使用时间有关,例如电子表。不过经过长期的研究与改良,今日的CMOS元件无论在使用的面积、操作的速度、耗损的功率,以及制造的成本上都比另外一种主流的半导体制程BJT(Bipolar Junction Transistor,双载子晶体管)要有优势,很多在BJT无法实现或是成本太高的设计,利用CMOS皆可顺利的完成。

早期分离式CMOS逻辑元件只有“4000系列”一种(RCA 'COS/MOS'制程),到了后来的“7400系列”时,很多逻辑芯片已经可以利用CMOS、NMOS,甚至是BiCMOS(双载子互补式金氧半)制程实现。

--

--

早期的CMOS元件和主要的竞争对手BJT相比,很容易受到静电放电(Ele ctro Static Discharge,ESD)的破坏。而新一代的CMOS芯片多半在输出入接脚(I/O pin)和电源及接地端具备ESD保护电路,以避免内部电路

元件的闸极或是元件中的PN接面(PN-Junction)被ESD引起的大量电流烧毁。不过大多数芯片制造商仍然会特别警告使用者尽量使用防静电的措施来避免超过ESD保护电路能处理的能量破坏半导体元件,例如安装内存模组到个人电脑上时,通常会建议使用者配戴防静电手环之类的设备。

此外,早期的CMOS逻辑元件(如4000系列)的操作范围可由3伏特至18伏特的直流电压,所以CMOS元件的闸极使用铝做为材料。而多年来大多数使用CMOS制造的逻辑芯片也多半在TTL标准规格的5伏特底下操作,直到1990年后,有越来越多低功耗的需求与讯号规格出现,取代了虽然有着较简单的讯号接口、但是功耗与速度跟不上时代需求的TTL。此外,随着MOSFET元件的尺寸越做越小,闸极氧化层的厚度越来越薄,所能承受的闸极电压也越来越低,有些最新的CMOS制程甚至已经出现低于1伏特的操作电压。这些改变不但让CMOS芯片更进一步降低功率消耗,也让元件的性能越来越好。

近代的CMOS闸极多半使用多晶硅制作。和金属闸极比起来,多晶硅的优点在于对温度的忍受范围较大,使得制造过程中,离子布值(ion implantation)后的退火(anneal)制程能更加成功。此外,更可以让在定义闸极区域时使用自我校准(self-align)的方式,这能让闸极的面积缩小,进一步降低杂散电容(s tray capacitance)。2004年后,又有一些新的研究开始使用金属闸极,不过大部分的制程还是以多晶硅闸极为主。关于闸极结构的改良,还有很多研究集中在使用不同的闸极氧化层材料来取代二氧化硅,例如使用高介电系数介电材料(high-K dielectric),目的在于降低闸极漏电流(leakage current)。 CMOS由PMOS管和NMOS管共同构成,它的特点是低功耗。由于CMOS中一对MOS组成的门电路在瞬间要么PMOS导通、要么NMOS导通、要么都截止,比线性的三极管(BJT)效率要高得多,因此功耗很低,因此,计算机里一个纽扣电池就可以给它长时间地提供电力。

在计算机领域,CMOS常指保存计算机基本启动信息(如日期、时间、启动设置等)的芯片。有时人们会把CMOS和BIOS混称,其实CMOS是CPU中的一块只读的ROM芯片,是用来保存BIOS的硬件配置和用户对某些参数的设定。CMOS可由主板的电池供电,即使系统掉电,信息也不会丢失。

在今日,CMOS制造工艺也被应用于制作数码影像器材的感光元件,尤其是片幅规格较大的单眼数码相机。虽然在用途上与过去CMOS电路主要作为固件或计算工具的用途非常不同,但基本上它仍然是采取CMOS的工艺,只是将纯粹逻辑运算的功能转变成接收外界光线后转化为电能,再透过芯片上的模数转换器(A DC)将获得的影像讯号转变为数码讯号输出。

CMOS集成电路是目前大规模(LSI)和超大规模(VLSI)集成电路中广泛应用的一种电路结构,相对于传统的双极型、NMOS和PMOS集成电路而言,其在功率消耗、噪声抑制等方面具有明显的优势。

1.功耗低

CMOS集成电路采用场效应管,且都是互补结构,工作时两个串联的场效应管总是处于一个管导通,另一个管截止的状态,电路静态功耗理论上为零。实际上,由于存在漏电流,CMOS电路尚有微量静态功耗。单个门电路的功耗典型值仅为20mW,动态功耗(在1MHz工作频率时)也仅为几mW。

--

--

2.工作电压范围宽

CMOS集成电路供电简单,供电电源体积小,基本上不需稳压。国产CC4000系列的集成电路,可在3~18V电压下正常工作。

3.逻辑摆幅大

CMOS集成电路的逻辑高电平“1”、逻辑低电平“0”分别接近于电源高电位VDD及电影低电位VSS。当VDD=15V,VSS=0V时,输出逻辑摆幅近似15V。因此,CMOS集成电路的电压电压利用系数在各类集成电路中指标是较高的。

4.抗干扰能力强

CMOS集成电路的电压噪声容限的典型值为电源电压的45%,保证值为电源电压的30%。随着电源电压的增加,噪声容限电压的绝对值将成比例增加。对于VDD=15V的供电电压(当VSS=0V时),电路将有7V左右的噪声容限。

5.输入阻抗高

CMOS集成电路的输入端一般都是由保护二极管和串联电阻构成的保护网络,故比一般场效应管的输入电阻稍小,但在正常工作电压范围内,这些保护二极管均处于反向偏置状态,直流输入阻抗取决于这些二极管的泄露电流,通常情况下,等效输入阻抗高达103~1011Ω,因此CMOS集成电路几乎不消耗驱动电路的功率。

6.温度稳定性能好

由于CMOS集成电路的功耗很低,内部发热量少,而且,CMOS电路线路结构和电气参数都具有对称性,在温度环境发生变化时,某些参数能起到自动补偿作用,因而CMOS集成电路的温度特性非常好。一般陶瓷金属封装的电路,工作温度为-55 ~ +125℃;塑料封装的电路工作温度范围为-45 ~

+85℃。

7.扇出能力强

扇出能力是用电路输出端所能带动的输入端数来表示的。由于CMOS集成电路的输入阻抗极高,因此电路的输出能力受输入电容的限制,但是,当CMOS 集成电路用来驱动同类型,如不考虑速度一般可以驱动50个以上的输入端。

8.抗辐射能力强

CMOS集成电路中的基本器件是MOS晶体管,属于多数载流子导电器件。

各种射线、辐射对其导电性能的影响都有限,因而特别适用于制作航天及核实验设备。

9.可控性好

CMOS集成电路输出波形的上升和下降时间可以控制,其输出的上升和下降时间的典型值为电路传输延迟时间的125%~140%。

10.接口方便

因为CMOS集成电路的输入阻抗高和输出摆幅大,所以易于被其他电路所驱动,也容易驱动其他类型的电路或器件。

二、CMOS集成电路的工作原理

下面我们通过CMOS集成电路中的一个最基本电路-反相器(其他复杂的CMOS集成电路大多是由反相器单元组合而成)入手,分析一下它的工作过程。

--

--

利用一个P沟道MOS管和一个N沟道MOS管互补连接就构成了一个最基本

的反相器单元电路如附图所示。图中VDD为正电源端,VSS为负电源端。电路设计采用正逻辑方法,即逻辑“1”为高电平,逻辑“0”为低电平。

附图中,当输入电压VI为底电平“0”(VSS)时,N沟道MOS管的栅-源电压VGS N=0V(源极和衬底一起接VSS),由于是增强型管,所以管子截止,而P沟道M OS管的栅-源电压VGSN=VSS—VDD。若| VSS—VDD |>| VTP|(MOS管开

启电压),则P沟道MOS管导通,所以输出电压V0为高电平“1”(VDD),实现

了输入和输出的反相功能。

当输入电压VI为底电平“1”(VDD)时,VGSN=(VDD—VSS)。若(VDD—VSS)> VGSN ,则N沟道MOS管导通,此时VGSN=0V, P沟道MOS管截止,所以输出电压V0为低电平“0”(VSS),与VI互为反相关系。

由上述分析可知,当输入信号为“0”或“1”的稳定状态时,电路中的两个MOS管总有一个处于截止状态,使得VDD和VSS之间无低阻抗直流通路,因此静态功耗极小。这便是CMOS集成电路最主要的特点。

三、CMOS集成电路应用常识

电路的极限范围

CMOS集成电路在使用过程中是不允许在超过极限的条件下工作的。当电路在超过最大额定值条件下工作时,很容易造成电路损坏,或者使电路不能正常工作。

应当指出的是:CMOS集成电路虽然允许处于极限条件下工作,但此时对电源

设备应采取稳压措施。这是因为当供电电源开启或关闭时,电源上脉冲波的幅度很可能超过极限值,会将电路中各MOS晶体管电极之间击穿。上述现象有时并不呈现电路失效或损坏现象,但有可能缩短电路的使用寿命,或者在芯片内部留下隐患,使电路的性能指标逐渐变劣。

工作电压、极性及其正确选择

在使用CMOS集成电路时,工作电压的极性必须正确无误,如果颠倒错位,在电路的正负电源引出端或其他有关功能端上,只要出现大于0.5V的反极性电压,就会造成电路的永久失效。

虽然CMOS集成电路的工作电压范围很宽,如CC4000系列电路在3~18V

的电源电压范围内都能正常工作,当使用时应充分考虑以下几点:

1. 输出电压幅度的考虑

电路工作时,所选取的电源工作电压高低与电路输出电压幅度大小密切相关。由于CMOS集成电路输出电压幅度接近于电路的工作电压值,因此供给电路的正负工作电压范围可略大于电路要求输出的电压幅度。

2. 电路工作速度的考虑

--

--

CMOS集成电路的工作电压选择,直接影响电路的工作速度。对CMOS集成电路提出的工作速度或工作频率指标要求往往是选择电路工作电压的因素。如果降低CMOS集成电路的工作电压,必将降低电路的速度或频率指标。

3.输入信号大小的考虑

工作电压将限制CMOS集成电路的输入信号的摆幅,对于CMOS集成电路来说,除非对流经电路输入端保护二极管的电流施加限流控制,输入电路的信号摆幅一般不能超过供给电压范围,否则将会导致电路的损坏。

4. 电路功耗的限制

CMOS集成电路所选取的工作电压愈高,则功耗就愈大。但由于CMOS集成电路功耗极小,所以在系统设计中,功耗并不是主要考虑的设计指标。

输入和输出端使用规则

1. 输入端的保护方法

在CMOS集成电路的使用中,要求输入信号幅度不能超过VDD—VSS。输入信号电流绝对值应小于10mA。如果输入端接有较大的电容C时,应加保护电阻R,如附图3所示。R的阻值约为几十欧姆至几十千欧姆。

2. 多余输入端的处置

CMOS集成电路多余输入端的处置比较简单,下面以或门及与门为例进行说明。如附图4所示,或门(或非门)的多余输入端应接至VSS端;与门(与非门)的多余输入端应接至VDD端。当电源稳定性差或外界干扰较大时,多余输入端一般不直接与电源(地)相连,而是通过一个电阻再与电源(地)相连,如图5所示,R的阻值约为几百千欧姆。

另外,采用输入端并联的方法来处理多余的输入端也是可行的。但这种方法只能在电路工作速度不高,功耗不大的情况下使用。

3. 多余门的处置

CMOS集成电路在一般使用中,可将多余门的输入端接VDD或VSS,而输出端可悬空不管。当用CMOS集成电路来驱动较大输入电流的元器件时,可将多余门按逻辑功能并联使用。

4. 输出端的使用方法

--

--

-- 在高速数字系统中,负载的输入电容将直接影响信号的传输速度,在这种情况下,CMOS 集成电路的扇出系数一般取为10~20。此时,如果输出能力不足,通常的解决方法是选用驱动能力较强的缓冲器(如四同相/反相缓冲器CC 404

1),以增强输出端吸收电流的能力。

寄生可控硅效应的防护措施

由于CMO S集成电路的互补特点,造成了在电路内部有一个寄生的可控硅(VS)效应。

当CMOS 集成电路受到某种意外因素激发,如电感、电火花,在电源上引起的噪声往往要超过CM OS 集成电路的击穿电压(约25V )。这时,集成电路的VDD 端和V SS 端之间会出现一种低阻状态,电源电压突然降低,电流突然增加,如果电源没有限流措施,就会把电路内部连接VDD 或VSS 的铝线烧断,造成电路永久性损坏。

如果电源有一定的限流措施(例如电源电流限在250mA 以内),在出现大电流、低电压状态时,及时关断电源,就能保证电路安全无损。重新打开电源,电路仍能正常工作。

简单的限流方法是用电阻和稳压管进行限流,如附图1所示。图中稳压管的击穿电压就是C MOS 集成电路的工作电压,电阻用来限流,电容用来提供电路翻转时所需的瞬态电流。

寄生VS 造成损坏的电路用万用表电阻挡就可判断。正常电路,VDD —VSS 之间有二极管特性:V S烧毁的电路,VDD~VS S之间呈开路状态。

在系统中,被损坏的电路如果加交流信号,其输出电平范围很窄,既高电平不到V DD ,低电平不到VS S,而且不能驱动负载。

正常的CMOS 集成电路用J T-1晶体管特性测试仪测量,能得到如图2所示的击穿特性曲线。测试方法:VDD 接正电源,VSS 接地,所有的输入端接VDD 或VSS,测量集成电路的击穿特性。

四、CM OS 集成电路的接口电路

1.CMO S-T TL 集成电路的接口

由于TTL 的低电平输入电流1.6mA ,而C MOS 的低电平输出电流只有1.5mA,因而一般都得加一个接口电路。这里介绍一种采用单电源的接口电路。在附图1中,门II 起接口电路的作用,是CM OS 集成电路缓冲/电平变换器,

起缓冲驱动或

--

逻辑电平变换的作用,具有较强的吸收电流的能力,可直接驱动TTL集成电路,因而连接简便。但是,使用时需要注意相位问题。电路中CC4049是六反相缓冲/变换器,而CC4050是六同相缓冲/变换器。

2.CMOS-HTL集成电路的接口

HTL集成电路是标准的工业集成电路,具有较高的抗干扰性能。由于CMOS集成电路的工作电压很宽,因而可与HTL集成电路共用+15V电源。此时,两者之间的VOH、VOL及IIH、IIL均互相满足,不必另设接口电路,直接相连即可,连接电路见附图2。

3.CMOS-ECL集成电路的接口

ECL集成电路是一种非饱和型的数字逻辑电路。其工作速度居所有逻辑电路之首。ECL采用负电源供电。CMOS集成电路驱动ECL集成电路可使用单电源工作,如附图3所示。ECL集成电路加-5.2V工作电压,CMOS的VDD接地,V SS接至-5.2V。以ECL集成电路CE10102为例,(CE10102内部包括4

个2输入或非门),流入ECL的输入高电平电流IIH为265uA,输入高电平电压VIH为-1.105V,在单电源下CMOS电路可以满足ECL集成电路的输入需要。

4.CMOS-NMOS集成电路的接口

CMOS集成电路是N沟道MOS电路,NMOS集成电路的输入阻抗很高,基本上不需要吸收电流,因此,CMOS与NMOS集成电路连接时不必考虑电流的负载问题。? NMOS集成电路大多采用单组正电源供电,并且以5V为多。CMOS集成电路只要选用与NMOS集成电路相同的电源,就可与NMOS集成电路直接连接。不过,从NMOS到CMOS直接连接时,由于NMOS输出的高电平低于CMOS集成电路的输入高电平,因而需要使用一个(电位)上拉电阻R,如图4所示,R的取值一般选用2~100KΩ。

--

--

5.CMOS-PMOS集成电路的接口

PMOS集成电路是一种适合在低速、低频领域内应用的器件。PMOS集成电路采用-24V电压供电。如图5所示的CMOS-PMOS接口电路采用两种电源供电。采用直接接口方式,一般CMOS的电源电压选择在10~12V就能满足PMOS对输入电平的要求。

6.CMOS-工业控制电路的接口?工业控制电路是工业控制系统中常用的电路,多采用24V工作电压。图6示出了CMOS电路与工业控制电路的连接方法。图中R1是晶体三极管VT的基极偏流电阻,VT的作用是把CMOS电路较低的逻辑高电平拉到24V,使两者构成良好的连接。

7.CMOS-晶体三极管VT的接口

图7a是CMOS集成电路驱动晶体三极管的接口。晶体三极管VT采用共发射极形式连接R1是VT的负载电阻,R1是VT的基极偏流电阻,R1的大小由公式R 1=(VOH-VBH)β/IL决定。式中IL为负载电流。使用时应先根据VL和IL 来选定VC,然后估算IB(IB=IL/β)是否在CMOS集成电路的驱动能力之内。如超出,可换用β值更高的晶体三极管或达林顿管,如图7b所示。晶体三极管VT 按IL选定,IB=IL/(β1*β2),电阻R1的取值为:R1=(VOH -1.4)/(IB + 1.4/R2),式中R2是为改善电路的开关特性而引入的,其值一般取为4?1

0KΩ。

--

--

-- 8.CMO S-发光二极管L ED 的接口

发光二极管(LED)具有高可靠性、低功耗、长寿命等多项重要特性。是与CMOS 集成电路配合使用的最佳终端显示器件之一。发光效率较高的LED 可由CM OS 集成电路直接驱动,特别当VDD =10~18V时,绝大多数的LED 能够有足够的亮度。应当说明,用CMO S集成电路驱动L ED 应串入限流电阻,因为当VDD=10V 时,其输出短路电流可达20mA 左右,若不加适当的限流保护,极易导致LE D或CMOS 集成电路损坏。图8a 是CMOS 集成电路输出低电平点亮LED 的电路,电阻R 可通过公式:R=(VDD -V OL-V LED)/IL ED 求出。图8b 是CMOS 集成电路输出高电平点亮L ED的电路,电阻R 的数值通过公式:R =(VOH-VLED )/ILED 求出。式中VLED 和分别是LED 的工作电压和工作电流。

如果在低电源电压下工作的CMOS 集成电路要驱动LED,或者使用负载能力较差的C OOO 系列CMOS 集成电路驱动LED,均可能难以使LE D发出足够明亮的光。解决办法是加一级晶体管驱动电路,以获得足够的驱动能力。?9.C MOS-可控硅V S的接口

一般中、小功率可控硅的触发电流约在10mA 以下,故多数CMOS 集成电路能够直接驱动可控硅。具体电路如图9所示。若需要更大的驱动电流,可改为CMO S缓冲器(例如CC 4041)或缓冲/驱动器(例如CC40107),也可加一级晶体三极管电路。

五、C MO S集成电路使用注意事项

CMOS集成电路的安装

为了避免由于静电感应而损坏电路,焊接CMO S集成电路所使用的电烙铁必需良好接地,焊接时间不得超过5秒。最好使用20~25W 内热式电烙铁和502环氧助焊剂,必要时可使用插座。? 在接通电源的情况下,不应装拆CMOS 集成电路。凡是与C MOS 集成电路接触的工序,使用的工作台及地板严禁铺垫高绝缘的板材(如橡胶板、玻璃板、有机玻璃、胶木板等),应在工作台上铺放严格接地的细钢丝网或铜丝网,并经常检查接地可靠性。

C MOS 集成电路的测试

测试时所有CMOS 集成电路的仪器、仪表均应良好接地。如果是低阻信号源,应保证输入信号不超过CMO S集成电路的电源电压范围(C XX X系列为7~15V ,C4000系列为3~18V),既VSS≤Vi≤VDD。如果输入信号一定要超过CMO S集成电路的电源电压范围,则应在输入端加一个限流电阻,使输入电流不超过

5

--

mA,以避免CMOS集成电路内部的保护二极管烧毁。?若信号源和CMOS集成电路用两组电源,开机时,应先接同CMOS集成电路电源,后接通信号源电源。关机时,应先关信号源电源,后关CMOS集成电路电源。

CMOS集成电路的保护措施

因为CMOS集成电路输入阻抗极高,随机的静电积累很可能使电路引出端任意两端的电压超过MOS管栅击穿电压,从而引起电路损坏。So,CMOS集成电路不用时应把电路的外引线全部短路,或放在导电的屏蔽容器内,以防被静电击穿。CMOS集成电路的互换

在使用中有些CMOS集成电路是可以直接换用。如国产CC4000可与国外产品C D4000、MC14000系列直接代换。?对于那些管脚排列和封装形式完全一致,但电参数有所不同的CMOS集成电路,换用时要十分注意。如国产CC4000和CXXX中有些品种,它们的工作电压有所差异,CC4000为3~18V、CXXX为

7~15V。换用时要考虑到电源供电及负载能力问题。另外,对于那些封装形式及管脚排列不同的CMOS集成电路,一般不能直接代换。如果需要换用,则应做一些相应的变换使两者功能相同的引出端一一对应。

--

本文来源:https://www.bwwdw.com/article/eu8q.html

Top