微生物学习题 - 图文

更新时间:2024-04-21 13:08:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

作业习题

微生物学习

说明:本习题供校内微生物学习参考。

各章分别由名词解释、习题两部分组成,习题已给出答案。

第一章 绪论

一、术语或名词 二、习 题 三、习题解答

第二章 微生物的纯培养和显微镜技术

一、术语或名词 二、习 题 三、习题解答

第三章 微生物细胞的结构与功能

一、术语或名词 二、习 题 三、习题解答 第四章 微生物的营养

一、术语和名词 二、习 题 三、习题解答 第五章 微生物代谢

一、术语或名词 二、习 题 三、习题解答

第六章 微生物的生长繁殖及其控制

一、术语或名词 二、习 题 三、习题解答 第七章 病毒

一、术语或名词 二、习 题 三、习题解答 第8章 微生物的遗传

一、术语及名词 二、习 题 三、习题解答 第九章 基因表达调控

一、术语或名词 二、习 题 三、习题解答 第十章 微生物与基因工程

一、术语或名词 二、习 题 三、习题解答 第十一章 微生物的生态

一、术语或名词 二、习题 三、习题解答

第十二章 微生物的进化、系统发育和分类鉴定

一、术语或名词 二、习 题 三、习题解答

第十三章 微生物物种的多样性

一、名词及术语 二、习 题 三、习题答案 第十四章 感染与免疫

一、术语或名词 二、习 题 三、习题解答

第十五章 微生物工业和产品

一、术语或名词

二、习 题 三、习题解答

第一章 绪论

一、术语或名词

1.微生物(microorganism) 因太小,一般用肉眼看不清楚的生物。这些微小生物包括:无细胞结构不能独立生活的病毒、亚病毒(类病毒、拟病毒、朊病毒);具原核细胞结构的真细菌、古生菌以及具真核细胞结构的真菌(酵母、霉菌、蕈菌等)、单细胞藻类、原生动物等。但其中也有少数成员是肉眼可见的。

2。微生物学(microbiology) 研究肉眼难以看清的称之为微生物的生命活动的科学,分离和培养这些微小生物需要特殊技术。

3.分子微生物学(molecularmicrobiology) 在分子水平上研究微生物生命活动规律的科学。

4.细胞微生物学(cellularmicrobiology) 重点研究微生物与寄主细胞相互关系的科学。

5.微生物基因组学(microbic genomics) 研究微生物基因组的分子结构、信息含量及其编码的基因产物的科学。

6.自生说(spontaneousgeneration) 一个古老的学说,认为一切生命有机体能够从无生命的物质自然发生的。

7。安东·列文虎克(AntonyvanLeeuwenhoek,1632—1723) 荷兰商人,他是真正看见并描述微生物的第一人,他利用自制放大倍数为50~300倍的显微镜发现了微生物世界(当时被称之为微小动物),首次揭示了一个崭新的生物世界——微生物界。

8.路易斯·巴斯德(LouisPasteur,1822—1895) 法国人,原为化学家,后来转向微生物学研究领域,为微生物学的建立和发展做出了卓越的贡献,成为微生物学的奠基人。主要贡献:用曲颈瓶实验彻底否定了“自生说”,从此建立了病原学说,推动了微生物学的发展;研究了鸡霍乱,发现将病原菌减毒可诱发免疫性,以预防鸡霍乱病;其后他又研究了牛、羊炭疽病和狂犬病,并首次制成狂犬疫苗,证实其免疫学说,为人类防病、治病做出了重大贡献;分离到了许多引起发酵的微生物,并证实酒精发酵是由酵母菌引起的,也发现乳酸发酵、醋酸发酵和丁酸发酵都是不同细菌所引起的,为进一步研究微生物的生理生化和工业微生物学奠定了基础。

9.罗伯特.柯赫(Robert Koch,1843—1910) 德国人,著名的细菌学家,曾经是一名医生,对病原细菌的研究做出了突出的贡献:(1)具体证实了炭疽病菌是炭疽病的病原菌;(2)分离、培养了肺结核病的病原菌,这是当时死亡率极高的传染性疾病,因此柯赫获得了诺贝尔奖;(3)提出了证明某种微生物是否为某种疾病病原体的基本原则——柯赫氏定律。他也是微生物学的奠基人。

10.伍连德(1879—1960) 我国广东香山人,著名公共卫生学家,我国海港检疫创始人。他用微生物学理论和技术对鼠疫和霍乱的病原进行研究和防治,在中国最早建立起卫生防疫机构,培养了第一支预防鼠疫的专业队伍,在他的领导和组织下,有效地战胜了1910—1911和1920—1921年间我国东北各地鼠疫的大流行,被国际上誉为著名的防疫专家,世界鼠疫会议1911年4月在我国沈阳举行时,他任大会主席和中国首席代表。著有“论肺型鼠疫”、“鼠疫概论”和“中国医史”等。

11。汤飞凡(1879—1958) 我国湖南醴陵人,著名的医学微生物学家,在医学细菌学、病毒学和免疫学等方面的某些领域做出·了显著的贡献,特别是首次应用鸡胚卵黄囊接种法从病人的眼结膜刮屑物中分离、培养沙眼衣原体的成功,确证了沙眼衣原体的存在,为世界上首创,成为医学微生物学方面的重大成果。

12。SARS Severe Acute Respiratory Syndrome的简称,严重急性呼吸道综合征,即我国称为的非典型肺炎,也简称为非典。

二、习 题

填空题

1.微生物与人类关系的重要性,你怎么强调都不过分,微生物是一把十分锋利的双刃剑,它们在给人类带来 的同时也带来 。

2.1347年的一场由 引起的瘟疫几乎摧毁了整个欧洲,有1/3的人(约2 500万人)死于这场灾难。

3。2003年SARS在我国一些地区迅速蔓延,正常的生活和工作节奏严重地被打乱,这是因为SARS有很强的传染性,它是由一种新型的 所引起。

4.微生物包括: 细胞结构不能独立生活的病毒、亚病毒(类病毒、拟病毒、朊病毒);具细胞结构的真细菌、古生菌;具 细胞结构的真菌(酵母、霉菌、蕈菌等)、单细胞藻类、原生动物等。

5.著名微生物学家Roger Stranier提出,确定微生物领域不应只是根据微生物的大小,而且也应该根据有别于动、植物的 。

6.重点研究微生物与寄主细胞相互关系的新型学科领域,称为 。

7.公元6世纪(北魏时期),我国贾思勰的巨著“ ”详细地记载了制曲、酿酒、制酱和酿醋等工艺。

8,19世纪中期,以法国的 和德国的 为代表的科学家,揭露了微生物是造成腐败发酵和人畜疾病的原因,并建立了分离、培养、接种和灭菌等一系列独特的微生物技术,从而奠定了微生物学的基础,同时开辟了医学和工业微生物学等分支学科。 和 是微生物学的奠基人。

9.20世纪中后期,由于微生物学的 、 等技术的渗透和应用的拓宽及发展,动、植物细胞也可以像微生物一样在乎板或三角瓶中分离、培养和在发酵罐中进行生产。

10,目前已经完成基因组测序的3大类微生物主要是 、 及 。而随着基因组作图测序方法的不断进步与完善,基因组研究将成为一种常规的研究方法,为从本质上认识微生物自身以及利用和改造微生物将产生质的飞跃。

11.微生物从发现到现在的短短的300年间,特别是20世纪中期以后,已在人类的生活和生产实践中得到广泛的应用,并形成了继动、植物两大生物产业后的 。 选择题(4个答案选1)

1.当今,一种新的瘟疫正在全球蔓延,它是由病毒引起的( )。 (1)鼠疫 (2)天花 (3)艾滋病(AIDS) (4)霍乱

(1)选择平板 (2)富集培养 (3)稀释涂布 (4)单细胞显微分离

3.下面哪一项不属于稀释倒平板法的缺点?( )

(1)菌落有时分布不够均匀 (2)热敏感菌易被烫死 (3)严格好氧菌因被固定在培养基中生长受到影响 (4)环境温度低时不易操作

4.下面哪一种方法一般不被用作传代保藏?( )

(1)琼脂斜面 (2)半固体琼脂柱 (3)培养平板 (4)摇瓶发酵

5.冷冻真空干燥法可以长期保藏微生物的原因是微生物处于( )的环境,代谢水平大大降低。

(1)干燥、缺氧、寡营养 (2)低温、干燥、缺氧 (3)低温、缺氧、寡营养 (4)低温、干燥、寡营养

6.对光学显微镜观察效果影响最大的是( )。 (1)目镜 (2)物镜 (3)聚光器 (4)总放大倍数

7.暗视野显微镜和明视野显微镜的区别在于( )。 (1)目镜 (2)物镜 (3)聚光器 (4)样品制备

8.相差显微镜使人们能在不染色的情况下,比较清楚地观察到在普通光学显微镜和暗视野显微镜下都看不到或看不清的活细胞及细胞内的某些细微结构,是因为它改变了样品不同部位间光的( ),使人眼可以察觉。

(1)波长 (2)颜色 (3)相位 (4)振幅 9.( )不是鉴别染色。

(1)抗酸性染色 (2)革兰氏染色 (3)活菌染色 (4)芽孢染色 10.细菌的下列哪项特性一般不用作对细菌进行分类、鉴定?( )

(1)球菌的直径 (2)球菌的分裂及排列 (3)杆菌的直径 (4)杆菌的分裂及排列 是非题

1.为了防止杂菌,特别是空气中的杂菌污染,试管及玻璃烧瓶都需采用适宜的塞子塞口,通常采用棉花塞,也可采用各种金属、塑料及硅胶帽,并在使用前进行高温干热灭菌。 2,所有的微生物都能在固体培养基上生长,因此,用固体培养基分离微生物的纯培养是最重要的微生物学实验技术。

3.所有的培养基都是选择性培养基。

4.直接挑取在平板上形成的单菌落就可以获得微生物的纯培养。 5.用稀释摇管法分离获得的微生物均为厌氧微生物。

6.冷冻真空干燥保藏、液氮保藏法是目前使用最普遍、最重要的微生物保藏方法,大多数专业的菌种保藏机构均采用这两种方法作为主要的微生物保存手段。

7.光学显微镜的分辨率与介质折射率有关,由于香柏油的介质折射率(约1.5)高于空气(1.0), 因此,使用油镜的观察效果好于高倍镜,目前科学家正在寻找折射率比香柏油更高的介质以进一步改善光学显微镜的观察效果。

8.与其他电子显微镜相比,扫描隧道显微镜在技术上的最大突破是能对活样品进行观察。 9.与光学显微镜相比,电子显微镜的分辨率虽然有很大的提高,但却无法拍摄彩色照片。 10.和动植物一样,细菌细胞也会经历由小长大的过程,因此,在相同情况下应选择成熟的细菌而非幼龄细菌进行显微镜观察,这样可以看得更清楚。 11.霉菌、酵母菌均是没有分类学意义的普通名称。 问答题

1.一般说来,严格的无菌操作是一切微生物工作的基本要求,但在分离与培养极端嗜盐菌时常在没有点酒精灯的普通实验台上倾倒培养平板、在日常环境中直接打开皿盖观察和挑取菌落,而其研究结果并没有因此受到影响,你知道这是为什么吗?

2.如果希望从环境中分离得到厌氧固氮菌,你该如何设计实验?

3,为什么光学显微镜的目镜通常都是15X?是否可以采用更大放大倍率的目镜(如30x)来进 一步提高显微镜的总放大倍数? 4.为什么透射电镜和扫描电镜对样品厚度与大小的要求有如此大的差异?能否用扫描电镜来观察样品的内部结构,而用透射电镜来观察样品的表面结构?

5.试论电子显微镜在进行生物样品制备与观察时应注意的问题。 6.对细菌的细胞形态进行观察和描述时应注意哪些方面?你是否能很快地在显微镜下区分同为单细胞的细菌、酵母菌和原生动物?

三、习题解答

填空题 1.个 群 2.纯 3。灭菌 任何生物 4.稀释倒平板法 涂布平板法 平板划线法 5.分类 鉴定 6.死亡 污染 变异 7.低(高) 好(差) 8.放大 反差 分辨率 9.1 000~1 500x 10或15 90或100 香柏油 10.’波长 振幅 11.紫外线 12.光源 真空 荧光屏 照片 13.球状 杆状 螺旋状 14.菌丝体 营养菌丝 气生菌丝 繁殖菌丝 15.原生动物

选择题 1. (1) 2. (2) 3. (1) 4. (4) 5. (2) 6. (2) 7. (3) 8. (4) 9. (3) 10. (4) 是非题

1. - 2. - 3. + 4。 - 5. - 6. + 7. - 8. + 9. + 10. - 11. +

问答题

1.培养极端嗜盐菌的培养平板需要添加很高浓度的氯化钠(25%),实验室环境中的一般微生物都不能在这种选择培养基上生长,因此在实验过程中即使不采取无菌操作技术,实验结果仍不会受到影响。

2.(1)根据选择分离的原理设计不含氮的培养基,在这种培养基上生长的细菌,其氮素应来自固氮作用。(2)将环境样品(例如土样)稀释涂布到选择平板上,放置于厌氧罐中。对厌氧罐采用物理、化学方法除去氧气,保留氮气。培养后在乎板上生长出来的细菌应是厌氧固氮菌或兼性厌氧固氮菌。(3)挑取一定数量的菌落,对应点种到两块缺氮的选择平板上,分别放置于厌氧罐内、外保温培养。在厌氧罐内外均能生长的为兼性厌氧固氮菌,而在厌氧罐外的平板上不生长,在厌氧罐内的平板上生长的即为可能的厌氧固氮菌。(4)对分离得到的厌氧固氮菌菌落样品进行系列稀释,涂布于相应的选择平板,重复上述步骤直到获得厌氧固氮菌的纯培养。

3.光学显微镜的分辨率受到光源波长及物镜性能的限制,在使用最短波长的可见光(4.50nnl)作为光源时在油镜下可以达到的最大分辨率为0.18 μm。由于肉眼的正常分辨能力一般为 0.25mm左右,因此光学显微镜有效的最高总放大倍数只能达到1 000~1 500倍。油镜的放大倍数是100x,因此显微镜配置的目镜通常都是15 x,选用更大放大倍数的目镜(如30 x)进一步提高显微镜的放大能力对观察效果的改善并无帮助。 4.(1)透射电子显微镜的成像原理类似于普通光学显微镜,作为光源的电子束在成像时要穿透样品。由于电子束的穿透力有限,因此在进行透射电镜观察时要求样品一定要薄。而扫描电镜的成像原理类似于电视或电传真照片,图像是通过收集样品表面被激发的二次电子形成的,因此对样品的厚度并无特别的要求。(2)扫描电镜一般被用于观察样品的表面结构,但通过样品制备过程中的冰冻蚀刻技术,用扫描电镜也可观察到样品的内部结构,获得立体

的图像。(3)透射电镜一般通过超薄切片技术观察样品的内部结构,但通过样品制备过程中的复型技术,用透射电镜也可对样品的表面结构进行观察。

5.(1)电子束的穿透能力:电子束的穿透能力是十分有限的,超薄切片是基本的透射电镜实验技术。相比之下,扫描电镜对样品的大小和厚度没有严格的要求。(2)生物组织的特点:生物组织的主要成分之一是水,若生物样品不经处理直接放进电镜,镜筒中的高真空必然会使样品发生严重的脱水现象,失去样品原有的空间构型,所以一般都不能用电镜进行生物样品的活体观察。而且,由于生物样品很容易遭到破坏,在对样品进行固定、干燥、染色及其他一些处理过程中,也必须随时注意使样品尽量保持生活状态下的精细结构,而不严重失真。另外,在扫描电镜的使用中,除要求样品干燥外,还需要样品具一定的导电能力,以减少样品表面电荷的堆积并得到良好的二次电子信号。而生物样品一般都是不导电的,所以在制备扫描电镜生物样品时,一般需在其表面镀上一层金属薄膜。(3)增加样品的反差:显微观察时,只有样品具有一定的反差,才能得到清晰的图像。光学显微镜可以通过各种染色技术来增加样品的反差,并得到彩色的样品图像。而在电镜的使用中,彩色染料是不采用的,因为两种不同的颜色在电镜中是不能区别的。电镜中生物样品不同结构之间反差的取得一般是用重金属盐染色或喷镀,凡是嗜金属的结构,对电子的散射与吸收的能力增强,易于形成明暗清晰的电子图像。而且,由于电子图像是靠不同电子密度形成的亮度差异而构成,所以,电镜得到的电视或照相图像都是黑白的。

6.(1)首先应使用稀释涂布等方法对待检菌株的纯度、群落形态、生理特性等进行检查、确认。(2)选用正常的新鲜培养基和新鲜培养物进行培养和观察,避免培养过程中一些物理、化学条件的改变或培养时间过长等因素对细胞形态的影响。(3)报告细胞大小时应选用多个细胞检测的平均数,并记录所用的实验方法,包括培养条件、培养时间、样品制备方法和染色方法等。(4)可从大小和形态上对细菌、酵母菌和原生动物进行区分。酵母菌、原生动物个体较大,一般可用低倍镜观察,酵母菌细胞一般呈卵圆形、圆形、圆柱形或柠檬形,不具运动性,原生动物细胞形态多变,能够运动。相比较而言,细菌细胞一般较小,需用高倍镜或油镜才能看清。

附:显微镜种类比较

显微镜类型

明视野显微镜

基本原理及特点

光线透射照明,物像处于亮背景中。为光学显 微镜的最基本配置,价格便宜、容易使用

应 用 察

各种情况下染色样品或活细胞个体形态的观

暗视野显微镜

光学显 微镜

相差显微

镜 荧光显微

镜 共聚焦显微镜

通过特殊的聚光器实现斜射照明,亮物像形成

于暗背景中

通过特殊的聚光器和物镜提高样品不同部位

间的反差(明暗差异)

经荧光染料染色或荧光抗体处理的样品在紫外线照射下

激发出各种波长的可见光,在黑暗 的背景中形成明亮的彩色物像

激光作为光源,每次照明样品的一个点,连续 扫描后经计算机处理获得样品的二维或三维

图像。显微镜价格昂贵

用电子束作为“光源”聚焦成像,分辨率较光学显微镜大大提高。仪器庞大、昂贵、对工作环境和操作技术有

明视野显微镜下不易看清的活细胞的观察;不

易被染色或易被染色过程破坏的细胞的观察

运动性

(例如对梅毒密螺旋体的检测);观察活细胞的

活细胞及其内部结构的观察

环境微生物的直接观察;病灶或医学样品中特

体)

定病原微生物的直接检测(使用特定的荧光抗

对完整细胞的细微立体结构进行观察

和分析

透射电镜

对病毒颗粒或超薄片处理后对细胞

电子显微镜

较高要求 的内部结构进行观察

扫描电镜 隧道扫描

探针扫描显微镜

显微镜

电子束在样品表面扫描,收集形成的二次电子形成物像。分辨率远高于光学显微镜。仪器庞大、昂贵、对工作环

境和操作技术有较高要求

用细小的探针在样品表面进行扫描,通过检测针尖和样

品间隧道效应电流的变化形成物像

利用细小的探针对样品表面进行恒定高度的扫描,同时通过一个激光装置来监测探针随样品表面的升降变化来

获取样品表面形貌的

信息

一般用于观察样品的表面立体结构

与电子显微镜相比,这类显微镜能提供

原子力显微镜

更高的分辨率,可在生理状态下对生物大分子

格也相对便宜

或细胞结构进行观察。同时仪器体积较小,价

项 目 形 态

构 造

数 量

功 能

内质网

囊腔,细管形 有膜。分两种:糙面内质网的膜上有核糖

体粒,光面内质网的膜上无核糖体粒

数量少

糙面内质网合成、运送蛋白质,光面内质网合成磷脂

核糖体

小颗粒状 扁平膜囊和小囊泡

无膜。表层为蛋白质,内芯为RNA 有膜。由数个扁平膜囊和大小不等 的囊泡组成

有膜。小囊泡内含数十种酸性水解酶 有膜。小囊泡内含氧化酶和过氧化 氢酶等

有内外两层膜。内膜可形成嵴,其上有大量的基粒(ATP酶复合体)。基质内含TCA酶系、70S核糖体和双链环状DNA

数量极多,变化大 合成蛋白质

高尔基体

数量少 数量较多,但变化大

数量较多,但变化大

浓缩蛋白质,合成糖蛋白和脂蛋白,协调细胞内环境

溶酶体

球形小·囊泡

执行细胞内的消化功能

微体

球形小囊泡

对脂肪酸进行氧化

线粒体

杆菌状或囊状

ATP

利用CO:和H:O进行光合作用,以合成葡萄糖和释放氧

数量多,但变化大 对底物进行氧化磷酸化以产生

叶绿体

扁球状或扁椭圆状

由内、外两层膜以及类囊体和基质构成。仅存在于光合生基质内含70 S核糖体和双链环状DNA等。物中。不同细胞中类囊体数量多,常叠成基粒

数量变化很大

第三章 微生物细胞的结构与功能

一、术语或名词

1.原核生物(proksryotes) 一大类细胞微小、只有称作核区(无细胞膜包裹的裸露DNA)的原核单细胞生物。所有原核生物都是微生物,包括真细菌和古生菌两大类群。原核生物与真核生物的主要区别是:①基因组由无核膜包裹的双链DNA环组成。②缺少单位膜分隔而成的细胞器。③核糖体为70S型。

2.细菌细胞壁(ceUWaU ofbacteris) 位于细菌细胞最外面的一层厚实、坚韧的外被,主要由肽聚糖组成,有固定细胞外形和保护细胞免受损伤等多种功能。革兰氏阳性细菌细胞壁的特点是厚度大(20—80rim)和化学组分简单,一般只含90%肽聚糖和10%磷壁酸。革兰氏阴性细菌的细胞壁由外膜(含脂多糖、磷脂和外膜蛋白)和一薄层肽聚糖(2~3am)组成。 3.肽聚糖(peptidoglycan) 真细菌细胞壁的特有成分,由无数肽聚糖单体以网状形式交联而成。肽聚糖单体由肽与聚糖两部分构成,其中的肽由四肽尾和肽桥构成,聚糖则由N—乙酰葡糖胺和/V—乙酰胞壁酸以\—1,4糖苷键相互间隔交联而成,呈长链骨架状。C’细菌的四肽尾一般由L—Ala、D—Glu、L—Lys和D—Ala 4个氨基酸构成,肽桥则由5个Gly残基构成;C—细菌的四肽尾一般由L—Ala、D—Glu、m—DAP和D—Ala构成,且无肽桥。 4.磷壁酸(teichoicacid) G’细菌细胞壁上的一种酸性多糖,主要成分为甘油磷酸或核糖醇磷酸。可分壁磷壁酸和膜磷壁酸两种,前者是与肽聚糖分子间进行共价结合的磷壁酸,后者则是跨越肽聚糖层并与细胞膜相交联的磷壁酸。

5.外膜(outer membrane) 位于G—细菌细胞壁最外层的一层由脂多糖(LPS)、磷脂、脂蛋白和其他蛋白组成的厚膜。

6.脂多糖(1ipopolysaccharide,LPS) 位于C—细菌细胞壁最外层的一层较厚(8—10nm)的类脂多糖类物质,由类脂A、核心多糖和O—特异侧链3部分构成,是C—细菌致病物质内毒素的成分。

7.外膜蛋白(outer membrane protein) 嵌合在C—细菌细胞壁外膜上的多种蛋白质成分, 如脂蛋白和孔蛋白等。

8.周质空间(periplasmicspace) 一般指位于C—细菌细胞壁外膜与细胞膜之间的狭窄空 间,呈胶状,内含各种周质蛋白,包括各种酶类和受体蛋白等。

9.假肽聚糖(pseudopeptidoglycan) 甲烷杆菌属(Methanobacterium)等部分古生菌细胞壁的主要成分。其多糖骨架由N—乙酰葡糖胺和N—乙酰塔罗糖胺糖醛酸以\—1,3糖苷键交替连接而成,连在后一氨基糖上的肽尾由L—Glu、L—Ala和L—Lys 3个L型氨基酸组成,肽桥则由L—Gin一个氨基酸组成。

10.缺壁细菌(cellwalldeficientbacteria) 细胞壁缺乏或缺损的各种细菌的统称,包括支原体、L型细菌、原生质体和球状体等。

11.L型细菌(1 form ofbacteria) 指在实验室或宿主体内通过自发突变而形成的遗传性稳定的细胞壁缺陷菌株。因最初发现的念珠状链杆菌(Streptobacillus monil扣rmis)是在英国Lister研究所发现,故称L型细菌。

12.原生质体(protoplast) 在人为条件下,用溶菌酶除尽细菌等微生物原有细胞壁或用青霉素抑制新生细胞壁合成后,所得到的仅有一层细胞膜包裹着的圆球状细胞,一般由C’细菌形成。原生质体对渗透压敏感,无繁殖能力,在合适条件下,细胞壁可再生,并恢复其繁殖能力。

13.球状体(sphaeroplast) 又称原生质球,指还残留有部分细胞壁的原生质体。G—细菌一般只形成球状体。

14.细菌细胞质膜(cytoplasmic membrane Ofbacteria) 又称细菌细胞膜。是紧贴在细菌细胞壁内侧、包围着细胞质的一层柔软、脆弱、富有弹性的半透性薄膜,厚约?~8nm,由磷脂(占20%-30%)和蛋白质(占50%~70%)组成。细胞质膜的主要功能是选择性的控制细胞内外的物质交流。

15.间体(mesosome) 细菌细胞中的一种由细胞质膜内褶而形成的囊状构造,其中充满着层状或管状的泡囊。多见于G’细菌。每个细胞含一至几个。其功能与DNA的复制、分配,细胞分裂和酶的分泌有关。

16. 细菌的细胞质(cytoplasm ofbacteria) 细菌细胞质膜包围的除核区以外的一切半透明 胶状、颗粒状物质的总称。主要成分为颗粒状内含物,核糖体、酶类、中间代谢物、质粒、各种营养牧 和大分子的单体等。

17.细菌的内含物(inclusionbody ofbacteria) 细胞质内形状较大的颗粒和泡囊状构造,包括各种贮藏物、羧酶体、气泡或磁小体等。

18.聚—β—羟丁酸(poly—β hydroxybutyrate,PHB) 存在于某些细菌细胞质内的颗粒状内含物,由许多羟基丁酸分子聚合而成,具贮藏能量、碳源和降低细胞内渗透压的作用。

19.异染粒(metachromaticgranules) 又称迂回体或捩转菌素,是无机偏磷酸盐的聚合物,具有贮藏磷元素和能量的功能。在白喉棒杆菌和结核分枝杆菌中易见到异染粒。 20.羧酶体(carboxysome) 存在于一些自养细菌细胞内的多角形或六角形内含物,内含1,5—二磷酸核酮糖羧化酶,在自养细菌的CO2:固定中起着关键作用。

21..核区(nuclear region) 又称核质体,指原核生物所特有的无核膜结构、无固定形态的原始细胞核。其成分是一个大型环状双链DNA分子,它是细菌负载遗传信息的主要物质基础。

22.芽孢(endospore) 某些细菌在其生长发育后期,在细胞内形成的一个圆形或椭圆形、厚壁、含水量极低、抗逆性(抗热、化学药物、辐射等)极强的休眠体。产芽孢的细菌主要有芽孢杆菌属(Bacillus)和梭菌属(Clostridium)两属。

23.渗透调节皮层膨胀学说(osmoregulatory expanded cortex theory) 解释芽孢耐热机制的一个较新的学说。它认为芽孢的耐热性在于芽孢衣对多价阳离子和水分的透性很差,以及皮层的离子强度很高,从而使皮层产生极高的渗透压去夺取芽孢核心中的水分,其结果导致皮层的充分膨胀,而作为芽孢的生命部分——芽孢核心的细胞质却发生高度失水,并由此变得高度耐热了。

24.伴孢晶体(parasporalcrystal) 苏云金芽孢杆菌等少数芽孢杆菌在其形成芽孢的同时,会在芽孢旁形成一颗菱形或双锥形的碱溶性蛋白晶体(6内毒素),称为伴孢晶体。它对约200种昆虫尤其是鳞翅目的幼虫有毒杀作用,故可制成细菌杀虫剂。

25.糖被(glycocalyx) 指包被于某些细菌细胞壁外的一层厚度不定的胶状物质。糖被有数种:①形态固定、层次厚的为荚膜。②形态固定、层次薄的为微荚膜。③形态不固定、结构松散的为黏液层。④包裹在细胞群体上有一定形态的糖被称菌胶团。糖被的主要功能是保护菌体免受干旱损伤或被宿主免疫活性细胞吞噬。

26.细菌鞭毛(flagella ofbacteria) 生长在某些细菌体表的长丝状、波曲、可旋转的蛋白质附属物,其数目一至数十条,具有运动功能。鞭毛由基体、钩形鞘和鞭毛丝3部分组成。鞭毛在细菌表面的着生方式有一端生、两端生、周生和侧生等数种,它是细菌鉴定中的重要指标。

27.菌毛(fimbriae) 一种长在细菌体表的纤细、中空、短直、数量较多的蛋白质附属物,具有使菌体附着于物体表面的功能。有菌毛者多属C—致病细菌。菌毛的功能是使细菌可牢固地黏附于寄主的呼吸道、消化道或泌尿生殖道等的黏膜细胞上,以利定植和致病。

28.性毛(pili,sex pili) 又称性菌毛。构造和成分与菌毛相同,但比菌毛长、粗。每个细菌一般仅着生一至少数几条性毛。多见于G—细菌的雄性菌株上,其主要功能是向雌性菌株传递遗传物质。

29.真核微生物(eukaryoticmicrooganisms) 凡是细胞核具有核膜、细胞能进行有丝分裂、细胞质中存在线粒体或同时存在叶绿体等细胞器的生物,称真核生物。微生物中的真菌、显微藻类、原生动物和地衣均属于真核生物,故可称为真核微生物。

30.“9+2”型鞭毛(“9+2”typeflagella) 在某些真核细胞表面长有毛发状、具有运动功能的细胞器,称为鞭毛。它由基体、过渡区和鞭杆3部分组成,因其鞭杆的横切面的中央可见到两个中央微管,其周围则有9个微管二联体围绕一圈,故真核生物的鞭毛又称“9+2”型鞭毛。

31.细胞核(nucleus) 存在于一切真核细胞中的形态完整、有核膜包裹的细胞核,它是细胞内遗传信息(:DNA)的储存、复制和转录的主要部位,并对细胞的生长、发育、繁殖以及遗传和变异等生命活动起着决定性的作用。细胞核由核被膜、染色质、核仁和核基质等构成。

32.染色质(chromatin) 真核细胞处于分裂的间期时,其细胞核内的DNA和组蛋白等组成一种线性、可被苏木精等碱性染料染色的复合物,称为染色质。染色质的基本单位是核小体。

33.染色体(chromasome) 真核细胞进行有丝分裂或减数分裂时,其染色质丝通过盘绕、折叠,由核小体经中空螺线管至超螺旋环,最后浓缩成在光学显微镜下可见的棒状结构,即称染色体。

34.核小体(nucleosome) 构成真核细胞染色质的基本单位。其核心结构为组蛋白八聚体,由H2A、H2B、H3和H4分子各一对组成,在八聚体外有以左手方向盘绕两周的DNA链,另有一个组蛋白分子H1,与连接DNA相结合,锁住了核小体的进出口,从而保持其结构稳定。

35.核仁(nucleolus) 细胞核中一个没有膜包裹的圆形或椭圆形小体。每个核中有一至数,富含蛋白质和RNA,是真核细胞中合成rRNA和装配核糖体的部位。

36.核基质(nuclearmatrix) 旧称核液。一种充满于细胞核空间由蛋白纤维组成的网状结构,具有支撑细胞核和为染色质提供附着点的功能。

37.细胞器(organelle) 细胞质内具有一定形态、构造和功能的微型器,自,一般有膜包裹,如内质网、高尔基体、溶酶体、线粒体和叶绿体等。

38.细胞骨架(cytoskeleton) 一种由微管、肌动蛋白和中间丝3种蛋白质纤维所构成的细胞支架,具有支持、运输和运动功能。

39.内质网(endoplasmic reticulum) 细胞质中一个与细胞基质相隔离、但彼此相通的囊腔和细管系统,由脂质双分子层围成。有两类,其一因膜上附有核糖体颗粒,称糙面内质网,具有合成和运送胞外分泌蛋白至高尔基体中去的功能;其二为膜上无核糖体的光面内质网,是脂代谢、钙代谢和合成磷脂的部位。

40.核糖体(ribosome) 是一种无膜包裹的颗粒状细胞器,具有合成蛋白质的功能。外层为蛋白质,内层为RNA。每个细胞中有大量的核糖体。原核生物具有70 S核糖体,而真核生物则有80S核糖体。

41.高尔基体(Golgi apparatus) 是一种由数个平行堆叠的扁平膜囊和大小不等的囊泡所组成的膜聚合体,具有合成、分泌糖蛋白和脂蛋白,对某些蛋白质原进行酶切加工,以及对新细胞壁和细胞膜提供合成原料等多种功能。

42.溶酶体(1ysosome) 一种由单层膜包裹、内含多种酸性水解酶的囊泡状细胞器,具有进行细胞内消化的功能。

43.微体(microbody) 一种由单层膜包裹、与溶酶体相似的球状细胞器。真核微生物的微体主要含一至几种氧化酶类,这类微体又称过氧化物酶体。

44.线粒体(mitochondria) 一种由双层膜包裹的、执行氧化磷酸化产能反应的重要细胞器,一般呈杆菌状,数量很多。由内外两层膜包裹,内膜向内伸展,形成许多嵴,其上着生许多基粒(即为ATP合成酶复合体)以及4种脂蛋白复合物(呼吸链成分)。在线粒体的基质内含有TCA酶系、一套半自主复制的双链环状DNA以及70S核糖体。

45.叶绿体(chloroplast) 一种由双层膜包裹的、能捕获光能并把它转化为化学能的绿色颗粒状细胞器,只存在于藻类和绿色植物中。一般由叶绿体膜、类囊体和基质3部分构成。基质内含 有能进行半自主复制的双链环状DNA 1)~及70S核糖体。

二、习 题

填空题

1.证明细菌存在细胞壁的主要方法有 , , 和 等4种。 2.细菌细胞壁的主要功能为 , , 和 等。

3.革兰氏阳性细菌细胞壁的主要成分为——和——,而革兰氏阴性细菌细胞壁的 主要成分则是 、 、 和 。

4.肽聚糖单体是由 和 以 糖苷键结合的 ,以及 和 3种成分组成的,其中的糖苷键可被 水解。

5.G+’细菌细胞壁上磷壁酸的主要生理功能为 、 、 和 等几种。

6。G——细菌细胞外膜的构成成分为 、 、 和 。 7.脂多糖(LPS)是由3种成分组成的,即 、 和 。

8.在LPS的分子中,存在有3种独特糖,它们是 、 和 。 9.用人为方法除尽细胞壁的细菌称为 ,未除尽细胞壁的细菌称为 ,因在实验室中发生缺壁突变的细菌称为 ,而在自然界长期进化中形成的稳定性缺壁细菌则称为 。

10,细胞质膜的主要功能有 、 、 、 和 。

11.在细胞质内贮藏有大量聚犀—羟基丁酸(PHB)的细菌有 、 、 和 等。

12.在芽孢核心的外面有4层结构紧紧包裹着,它们是 、 、 和 。 13.在芽孢皮层中,存在着 和 2种特有的与芽孢耐热性有关的物质,在芽孢核心中则存在另一种可防护DNA免受损伤的物质,称为 。

14.芽孢的形成须经过7个阶段,它们是 、 、 、 、 、 和 。

15.芽孢萌发要经过 、 和 3个阶段。

16.在不同的细菌中存在着许多休眠体构造,如 、 、 和 等。

17.在细菌中,存在着4种不同的糖被形式,即 、 、 和 。 18.细菌糖被的主要生理功能为 、 、 、 、 和 等。 19.细菌的糖被可被用于 、 、 和 等实际工作中。

20.判断某细菌是否存在鞭毛,通常可采用 、 、 和 等方法。

21.G细菌的鞭毛是由基体以及 和 3部分构成,在基体上着生 、 、 和 4个与鞭毛旋转有关的环。

22.在G—细菌鞭毛的基体附近,存在着与鞭毛运动有关的两种蛋白,一种称 ,位于 ,功能为 ;另一种称 ,位于 ,功能为 。

23.借周生鞭毛进行运动的细菌有 和 等,借端生鞭毛运动的细菌有 和 等,而借侧生鞭毛运动的细菌则有 等。

24.以下各类真核微生物的细胞壁主要成分分别是:酵母菌为 ,低等真菌为 ,高等真菌为 ,藻类为 。

25.真核微生物所特有的鞭毛称 ,其构造由 、 和 3部分组成。

26.真核生物鞭毛杆的横切面为 型,其基体横切面则为 型,这类鞭毛的运动 方式是 。

27.真核生物的细胞核由 、 、 和 4部分组成。

28.染色质的基本单位是 ,由它进一步盘绕、折叠成 和 后,再进 一步浓缩成显微镜可见的 。

29.细胞骨架是一种由 、 和 3种蛋白质纤维构成的细胞支架。 30.在真核微生物细胞质内存在着沉降系数为 S的核糖体,它是由 S和 S两个小亚基组成,而其线粒体和叶绿体内则存在着 S核糖体,它是由 S和 S两个小亚基组成。

31.真核微生物包括 、 、 和 等几个大类。 32.长有鞭毛的真核微生物类如 、 、和 ,长有纤毛的真核微生物 如 ;长有鞭毛的原核生物如 、 和 等。

选择题/4个答案选1//

1.C—细菌细胞壁的最内层成分是( )。

(1)磷脂 (2)肽聚糖 (3)脂蛋白 (4)LPS 2.C’细菌细胞壁中不含有的成分是( )。

(1)类脂 (2)磷壁酸 (3)肽聚糖 (4)蛋白质

3.肽聚糖种类的多样性主要反映在( )结构的多样性上。 (1)肽桥 (2)黏肽 (3)双糖单位 (4)四肽尾 4.磷壁酸是( )细菌细胞壁上的主要成分。 (1)分枝杆菌 (2)古生菌 (3)G+ (4)G—

5.在G细菌肽聚糖的四肽尾上,有一个与G细菌不同的称作( )的氨基酸。 (1)赖氨酸 (2)苏氨酸 (3)二氨基庚二酸 (4)丝氨酸 6,脂多糖(LPS)是C—细菌的内毒素,其毒性来自分子中的( )。 (1)阿比可糖 (2)核心多糖 (3)O特异侧链 (4)类脂A

7.用人为的方法处理G—细菌的细胞壁后,可获得仍残留有部分细胞壁的称作( )的缺壁细菌。 (1)原生质体 (2)支原体 (3)球状体 (4)L型细菌

8.异染粒是属于细菌的( )类贮藏物。 (1)磷源类 (2)碳源类 (3)能源类 (4)氮源类

9.最常见的产芽孢的厌氧菌是( )。(1)芽孢杆菌属 (2)梭菌属 (3)孢螺菌属 (4)芽孢八叠球菌属

10.在芽孢的各层结构中,含DPA—Ca量最高的层次是( )。

(1)孢外壁 (2)芽孢衣 (3)皮层 (4)芽孢核心

11.在芽孢核心中,存在着一种可防止DNA降解的成分( )。

(1)DPA—Ca (2)小酸溶性芽孢蛋白 (3)二氨基庚二酸 (4)芽孢肽聚糖

+

12.苏云金芽孢杆菌主要产生4种杀虫毒素,其中的伴孢晶体属于( )。 (1)o毒素 (2)p毒素 (3)丁毒素 (4)6毒素 13.在真核微生物,例如( )中常常找不到细胞核。

(1)真菌菌丝的顶端细胞 (2)酵母菌的芽体 (3)曲霉菌的足细胞 (4)青霉菌的孢子梗细胞

14.按鞭毛的着生方式,大肠杆菌属于( )。

(1)单端鞭毛菌 (2)周生鞭毛菌 (3)两端鞭毛菌 (4)侧生鞭毛菌 15.固氮菌所特有的休眠体构造称为( )。

(1)孢囊 (2)外生孢子 (3)黏液孢子 (4)芽孢

16.在酵母菌细胞壁的4种成分中,赋予其机械强度的主要成分是( )。 (1)几丁质 (2)蛋白质 (3)葡聚糖 (4)甘露聚糖

17.在真核微生物的“9+2”型鞭毛中,具有ATP酶功能的构造是( )。 (1)微管二联体 (2)中央微管 (3)放射辐条 (4)动力蛋白臂 18.构成真核微生物染色质的最基本单位是( )。

(1)螺线管 (2)核小体 (3)超螺线管 (4)染色体

19.在真核微生物的线粒体中,参与TCA循环的酶系存在于( )中。 (1)内膜 (2)膜间隙 (3)嵴内隙 (4)基质

20.在叶绿体的各结构中,进行光合作用的实际部位是( )。 (1)基粒 (2)基质 (3)类囊体 (4)基质类囊体 是非题

1.古生菌也是一类原核生物。

2.G细菌的细胞壁,不仅厚度比G细菌的大,而且层次多、成分复杂。

3.在G+和G—细菌细胞壁的肽聚糖结构中,甘氨酸五肽是其肽桥的常见种类。 4.磷壁酸只在G+细菌的细胞壁上存在,而LPS则仅在G—细胞壁上存在。 5.古生菌细胞壁假肽聚糖上的糖链与真细菌肽聚糖的糖链一样,都可以被溶菌酶水解。 6.着生于G—细菌细胞膜上的孔蛋白,是一种可控制营养物被细胞选择吸收的蛋白质。 7.假肽聚糖只是一部分古生菌所具有的细胞壁成分。

8.在嗜高温古生菌的细胞膜上,存在着其他任何生物所没有的单分子层膜。 9.产芽孢的细菌都是一些杆状的细菌,如芽孢杆菌属和梭菌属等。

10.在芽孢萌发前,可用加热等物理或化学处理使其活化,这种活化过程是可逆的。 11.处于萌发阶段的芽孢,具有很强的感受态。 12.苏云金芽孢杆菌的伴孢晶体又称γ内毒素。

13.芽孢是细菌的内生孢子,具有休眠、抵御不良环境和繁殖等功能。

14.包围在各种细菌细胞外的糖被(包括荚膜和黏液层等),其成分都是多糖。 15.有菌毛的细菌多数是G+细菌。

16.细菌和真菌的鞭毛都是以旋转方式来推动细胞运动的。 17.细菌的鞭毛是通过其顶端生长而非基部生长而伸长的。 18.在枯草芽孢杆菌等G细菌的鞭毛基体上都着生有4个环。 19,菌毛一般着生于G+致病细菌的细胞表面。

20.藻青素和藻青蛋白都是蓝细菌细胞中的氮源类贮藏物。 21.羧酶体是异养微生物细胞质内常见的内含物。

22.气泡只存在于一些光合营养型、无鞭毛运动的水生细菌中。

23.真核生物的细胞膜上都含有甾醇,而原核生物细胞膜上都不含甾醇。

24.同一种真菌,在其不同的生长阶段中,其细胞壁的成分会发生明显的变化。

+

+

-

21.腐生型(metatrophy) 利用无生命的有机物(如动植物尸体和残体)的化能有机异养型生物。 22.寄生型(paratrophy) 寄生在活的寄主机体中的化能有机异养型生物,离开寄主不能生存。

23.兼养型生物(mixotroph) 兼有自养和异养代谢过程的微生物,利用无机电子供体和有机

碳源。

24.原养型(prototroph) 与自然发生的同种其他个体一样,具有相同营养需求的微生物。 25.培养基(culture medium) 由人工配制的、适合微生物生长、繁殖或产生代谢产物的营养基质。

26.复合(天然)培养基(complex medium) 含有化学成分尚不完全清楚或化学成分不恒定的天然有机物的培养基,也称非化学限定培养基(chemically undefined medium)。 27.合成培养基(synthetic.medium) 由化学成分完全了解的物质配制而成的培养基,也称化学限定培养基(chemically defined medium)。

28.固体培养基(solid.medium) 在液态培养基中加入一定量凝固剂而制成的固体状态的培养基。

29.半固体培养基(semisolid medium) 在液态培养基中加入凝固剂的量比固体培养基中的少而制成的半固体状态的培养基。

30.液体培养基(1iquid medium) 不含凝固剂的液态培养基。

31.基础培养基(minimum medium) 含有一般微生物生长所需基本营养物质的培养基。 32.加富培养基(enrichment medium) 在基础培养基中加入某些特殊营养物质,用于培养营养要求比较苛刻的异养型微生物的培养基。

33.鉴别培养基(differential medium) 在培养基中加入能与特定微生物的代谢产物发生特征性化学反应的化学物质,用于鉴别不同类型微生物。 34.选择培养基(selective medium) 根据不同微生物的营养需求或对某种化学物质敏感性不同,在培养基中加入相应营养物质或化学物质,抑制不需要微生物的生长,将所需微生物从复杂的微生物群体中选择分离出来。

35.琼脂(agar) 由藻类(石花菜)中提取的一种高度分支的复杂多糖,用作凝固剂配制固体、半固体培养基。

36.明胶(gelatin) 由胶原蛋白制备的培养基凝固剂。

37.透过屏障(permeability barrier) 微生物细胞表面由原生质膜、细胞壁、荚膜及黏液层组

成的限制物质进出细胞的屏障。

38.扩散(diffusion) 营养物质通过原生质膜上的含水小孔,由高浓度胞外(内)环境向低浓度胞内(外)进行运输的过程。 39.促进扩散(facilitated diffusion) 营养物质由载体(透过酶)辅助的跨质膜扩散过程。 40.透过酶(permease) 一种由膜结合载体蛋白质或由两种以上蛋白质组成的系统,能帮助营养物质跨膜运输。

41.被动运输(passive transport) 包括扩散和促进扩散在内的依靠膜内外被运输物质浓度差而进行的物质运输方式。 42.主动运输(active transport) 在载体的帮助下,依靠细胞提供的能量进行的物质跨膜运输,可以进行逆浓度运输。

43.初级主动运输(primary active transport) 由电子传递系统、ATP酶及细菌视紫红质引起的质子跨膜运输,在原生质膜内外建立质子浓度差。

44.能化膜(energized membrane) 细胞通过消耗呼吸能、化学能及光能,引起胞内质子(或其他离子)外排,在原生质膜内外建立质子浓度差(或电势差),使膜处于充能状态。 45.次级主动运输(secondary active transport) 能化膜质子浓度差(或电势差)消失过程中偶联的其他物质的运输。

46.同向运输(symport) 某种物质与质子通过同一载体以相同方向进行的次级主动运输。 47.逆向运输(antiport) 某种物质与质子通过同一载体以相反方向进行的次级主动运输。 48.单向运输(uniport) 在能化膜质子浓度差(或电势差)消失过程中,某种物质单独通过某一载体进行的次级主动运输。

49.基团转位(group translocation) 物质通过载体帮助,在一个较复杂的运输系统的作用下进行的跨膜主动运输,被运输物质在该过程中化学性质发生改变。

50.Na,K一ATP酶(Na,K一ATPase) 存在于原生质膜上的一种离子通道蛋白,利用ATP的能量将胞内Na‘泵”出胞外,而将胞外K‘泵”入胞内,也称Na,K一泵。 51.ATP结合盒式转运蛋白(ATP—binding cassette transporters,ABC transporters) 利用ATP的能量跨膜转运物质而不改变其化学性质的膜蛋白复合体,需要一种质膜外底物结合蛋白来行使功能,简称ABC转运蛋白。 52.膜泡运输(membrane vesicle transport) 存在于真核微生物(如变形虫)中的一种通过胞吞作用运输营养物质的方式。 53.胞吞作用(endocytosis) 细胞通过原生质膜吸附、包裹并吸收溶质或颗粒物质的过程。 54.胞饮作用(pinocytosis) 通过原生质膜包裹液态物质的胞吞作用。

55.吞噬作用(phagocytosis) 通过原生质膜包裹颗粒状物质的胞吞作用。

56.铁载体(siderophore) 微生物细胞向胞外分泌的一种能络合Fe3+的小分子化合物,铁一铁载体复合物通过ABc转运蛋白进入细胞。

+

+

+

+

+

+

+

+

二、习 题

填空题

1.组成微生物细胞的主要元素包括 、 、 、 、 和 等。

2.微生物生长繁殖所需六大营养要素是 、 、 、 、 和 。 3.碳源物质为微生物提供 和 ,碳源物质主要有 、 、 、 、 等。,

4.氮源物质主要有 、 、 、常用的速效氮源如 、 ,有利于 ;迟效氮如 、 它有利于 。

5.无机盐的生理作用包括 、 、 、 、 。

6.生长因子主要包括 、 和 ,其主要作用是 。

7.水的生理作用主要包括 、 、 、 、 、 。 8,根据 ,微生物可分为自养型和异养型。

9,根据 ,微生物可分为光能营养型和化能营养型。

10,根据 ,微生物可分为无机营养型和有机营养型。

11,根据碳源、能源和电子供体性质的不同,微生物的营养类型可分为 、 、 和 。 12.设计、配制培养基所要遵循的原则包括 、 、 、 、 和 。

13.按所含成分划分,培养基可分为 和 。

14.按物理状态划分,培养基可分为 、 和 。 15.按用途划分,培养基可分为 、 、 和 等4种类型。 16.常用的培养基凝固剂有 、 和 。 17.营养物质进入细胞的主要影响因素是 、

18.营养物质进入细胞的方式有 、 、 和 。 选择题(4个答案选1)

1.在含有下列物质的培养基中,大肠杆菌首先利用的碳物质是() (1)蔗糖 (2)葡萄糖 (3)半乳糖 (4)淀粉

2.在工业生产中为提高土霉素产量,培养基中可采用的混合氮源是( )。 (1)蛋白胨/酵母浸膏 (2)黄豆饼粉/花生饼粉 (3)玉米浆/黄豆饼粉 (4)玉米浆/(NH4)2S04 3.下列物质可用作生长因子的是( )。

(1)葡萄糖 (2)纤维素 (3)NaCl (3)叶酸 4.一般酵母菌生长最适水活度值为( )。

(1)0.95 (2)0.76 (3)0.66 (4) 0.88

5.大肠杆菌属于( )型的微生物。

(1)光能无机自养(2)光能有机异养 (3)化能无机自养 (4)化能有机异养 6.蓝细菌和藻类属于( )型的微生物。

(1)光能无机自养 (2)光能有机异养 (3)化能无机自养 (4)化能有机异养 7.硝化细菌属于( )型的微生物

(1)光能无机自养 (2)光能有机异养 (3)化能无机自养 (4)化能有机异养 8.某种细菌可利用无机物为电子供体而以有机物为碳源,属于( )型的微生物。 (1)兼养型 (2)异养型 (3)自养型 (4)原养型 9.化能无机自养微生物可利用( )为电子供体。

(1)C02 (2)H2 (3)O2

10.实验室培养细菌常用的的培养基是( )。 (1)牛肉膏蛋白胨培养基 (2)马铃薯培养基 (3)高氏一号培养基 (4)查氏培养基

11.用来分离产胞外蛋白酶菌株的酪素培养基是一种( )。

(1)基础培养基 (2)加富培养基 (3)选择培养基 (4)鉴别培养基

12.固体培养基中琼脂含量一般为( )。 (1)0.5% (2)1.5% (3)2.5% (4)5%

13.下列培养基中( )是合成培养基。

(1)LB培养基 (2)牛肉膏蛋白胨培养基

(3)麦芽汁培养基 (4)查氏培养基

14.培养百日咳博德氏菌的培养基中含有血液,这种培养基是( )。 (1)基础培养基 (2)加富培养基 (3)选择培养基 (4)鉴别培养基 15.用来分离固氮菌的培养基中缺乏氮源,这种培养基是一种( )。

(1)基础培养基 (2)加富培养基 (3)选择培养基 (4)鉴别培养基 16.一般酵母菌适宜的生长pH为( )。

(1)5.0~6.0 (2)3.0~4.0 (3)8.0~9.O (4)7.0~7.5 17.一般细菌适宜的生长pH为( )。

(1)5.0~6.0 (2)3.0~4.0 (3)8.0~9.0 (4)7.0~7.5 18.水分子可通过( )进入细胞。

(1)主动运输 (2)扩散 (3)促进扩散 (4)基团转位 19.需要载体但不能进行逆浓度运输的是( )。

(1)主动运输 (2)扩散 (3)促进扩散 (4)基团转位 20.被运输物质进入细胞前后物质结构发生变化的是( )。 (1)主动运输 (2)扩散 (3)促进扩散 (4)基团转位

是非题

1.所有碳源物质既可以为微生物生长提供碳素来源,也可以提供能源。 2.某些假单胞菌可以利用多达90种以上的碳源物质。 3.碳源对配制任何微生物的培养基都是必不可少的。

4.氨基酸在碳源缺乏时可被微生物用作碳源物质,但不能提供能源。 5.以(NH4)2SO4为氮源培养微生物时,会导致培养基pH升高。 6.KN03作为氮源培养微生物被称为生理碱性盐。

7.在配制复合培养基时,必须向培养基中定量补加微量元素。

8.培养营养缺陷型微生物的培养基必须同时加入维生素、氨基酸、嘌呤及嘧啶。 9.目前已知的致病微生物都是化能有机异养型生物。

10.只有自养型微生物能够以CO2,为惟一或主要碳源进行生长。 11.培养自养型微生物的培养基完全可以由简单的无机物组成。 12.为使微生物生长旺盛,培养基中营养物质的浓度越高越好。 13.在培养基中蛋白胨可以作为天然的缓冲系统。

14.对含葡萄糖的培养基进行高压蒸汽灭菌时可在121.3℃加热20 minn即可。 15.半固体培养基常用来观察微生物的运动特征。

16.基础培养基可用来培养所有类型的微生物。

17.一些化能有机异养微生物可以在以葡萄糖为碳源、铵盐为氮源的合成培养基上生长。 18.伊红美蓝(EMB)培养基中,伊红美蓝的作用是促进大肠杆菌的生长。 19.在用于分离G+细菌的选择培养基中可加入结晶紫抑制G一细菌的生长。

20.当葡萄糖胞外浓度高于胞内浓度时,葡萄糖可通过扩散进入细胞。

21.在促进扩散过程中,载体蛋白对被运输物质具有较高的专一性,一种载体蛋白只能运输一种物质。

22.被动运输是微生物细胞吸收营养物质的主要方式。

23.在主动运输过程中,细胞可以消耗代谢能对营养物质进行逆浓度运输,当被运输物质胞外浓度高于胞内浓度时,主动运输就不需要消耗代谢能。

24.Na+,K+一ATP酶利用ATP的能量将胞内K+‘泵”出胞外,而将胞外Na+‘泵”入胞内。 25.微生物细胞向胞外分泌铁载体,通过ABc转运蛋白将Fe3+运输进入细胞。 问答题

1.能否精确地确定微生物对微量元素的需求,为什么?

2.为什么生长因子通常是维生素、氨基酸、嘌呤和嘧啶,而葡萄糖通常不是生长因子? 3.以紫色非硫细菌为例,解释微生物的营养类型可变性及对环境条件变化适应能力的灵活性。

4.如果要从环境中分离得到能利用苯作为碳源和能源的微生物纯培养物,你该如何设计实验?

5.某些微生物对生长因子的需求具有较高的专一性,可利用它们通过“微生物分析” (microbiological assay)对样品中维生素或氨基酸进行定量。试设计实验利用某微生物对某一 样品维生素B他的含量进行分析。

6.以伊红美蓝(EMB)培养基为例,分析鉴别培养基的作用原理。

7.某学生利用酪素培养基平板筛选产胞外蛋白酶细菌,在酪素培养基平板上发现有几株菌的菌落周围有蛋白水解圈,是否能仅凭蛋白水解圈与菌落直径比大,就断定该菌株产胞外蛋白酶的能力就大,而将其选择为高产蛋白酶的菌种,为什么?

8.与促进扩散相比,微生物通过主动运输吸收营养物质的优点是什么?

9.以大肠杆菌磷酸烯醇式丙酮酸一糖磷酸转移酶系统(PTs)为例解释基团转位。

10.试分析在主动运输中,ATP结合盒式转运蛋白(ABc转运蛋白)系统和膜结合载体蛋白(透过酶)系统的运行机制及相互区别。

三、习题解答

填空题

填空题 1.C H 0 N P S 2.碳源 氮源 无机盐 生长因子 水 能源 3.碳素来源 能源 糖 有机酸 醇 脂 烃 4.蛋白质(肽、氨基酸) 氨及铵盐 硝酸盐 分子氮(N,)玉米浆 (NH4)2SO4 菌体生长 黄豆饼粉 玉米饼粉 代谢产物积累 5.酶活性中心组分 维持细胞结构和生物大分子稳定 调节渗透压 控制氧化还原电位 作为能源物质 6.维生素 氨基酸 嘌呤和嘧啶 作为酶的辅基或辅酶 合成细胞结构及组分的前体 7.溶剂 参与化学反应 维持生物大分子构象 热导体 维持细胞形态 控制多亚基结构的装配与解离 8.碳源性质 9.能源 10.电子供体 11.光能无机自养 光能有机异养 化能无机自养 化能有机异养 12.选择适宜营养物质 营养物质浓度及配比合适 控制pH 控制氧化 还原电位 原料来源 灭菌处理 13.复合(天然)培养基 合成培养基 14,固体 牛固体 液体 15.基础 加富 鉴别 选择 16.琼脂 明胶 硅胶 17.营养物质性质 微生物所处环境 微生物细胞透过屏障 18.扩散 促进扩散 主动运输 膜泡运输

选择题

1. (2) 2. (3) 3. (4) 4. (4) 5. (4) 6. (1) 7. (3) 8. (1) 9. (2) 10. (1) 11. (4) 12. (2) 13. (4) 14. (2) 15. (3) 16. (1) 17. (4) 18. (2) 19. (3) 20. (4)

是非题 1.- 2.+ 3.- 4.- 5.- 6.+ 7.— 8.— 9.+ 10.+ 11.+ 12.- 13.+ 14.— 15.+ 16.- 17.+ 18.- 19.- 20.- 21.— 22.— 23.— 24.- 25.— 问答题

1.不能。微生物对微量元素需要量极低;微量元素常混杂在天然有机化合物、无机化学试剂、自来水、蒸馏水、普通玻璃器皿中;细胞中微量元素含量因培养基组分含量不恒定、药品生产厂家及批次、水质、容器等条件不同而变化,难以定量分析检测。

2.维生素、氨基酸或嘌呤(嘧啶)通常作为酶的辅基或辅酶,以及用于合成蛋白质、核酸,是微生物生长所必需且需要量很小,而微生物(如营养缺陷型菌株)自身不能合成或合成量不足以满足机体生长需要的有机化合物。而葡萄糖通常作为碳源和能源物质被微生物利用,需要量较大,而且其他一些糖类等碳源物质也可以代替葡萄糖满足微生物生长所需。 3.紫色非硫细菌在没有有机物时可同化c0:进行自养生活,有有机物时利用有机物进行异养生活,在光照及厌氧条件下利用光能进行光能营养生活,在黑暗及好氧条件下利用有机物氧化产生的化学能进行化能营养生活。

4.(1)从苯含量较高的环境中采集土样或水样;(2)配制培养基,制备平板,一种仅以苯作为惟一碳源(A),另一种不含任何碳源作为对照(B);(3)将样品适当稀释(十倍稀释法),涂布A平板;(4)将平板置于适当温度条件下培养,观察是否有菌落产生;(5)将A平板上的菌落编号并分别转接至B平板,置于相同温度条件下培养(在B平板上生长的菌落是可利用空气中C02的自养型微生物);(6)挑取在A平板上生长而不在B平板上生长的菌落,在一个新的A平板上划线、培养,获得单菌落,初步确定为可利用苯作为碳源和能源的微生物纯培养物;(7)将初步确定的目标菌株转接至以苯作为惟一碳源的液体培养基中进行摇瓶发酵实验,利用相应化学分析方法定量分析该菌株分解利用苯的情况。

5.(1)将缺乏维生素B。:但含有过量其他营养物质的培养基分装于一系列试管,分别定量接入用于测定的微生物;(2)在这些试管中分别补加不同量的维生素B,:标准样品及待测样品,在适宜条件下培养;(3)以微生物生长量(如测定0D㈣。。)值对标准样品的量作图,获得标准曲线; (4)测定含待测样品试管中微生物生长量,对照标准曲线,计算待测样品中维生素B.:的含量。

6.EMB培养基含有伊红和美蓝两种染料作为指示剂,大肠杆菌可发酵乳糖产酸造成酸性环境时,这两种染料结合形成复合物,使大肠杆菌菌落带金属光泽的深紫色,而与其他不能发酵乳糖产酸的微生物区分开。

7.不能。因为,(1)不同微生物的营养需求、最适生长温度等生长条件有差别,在同一平板上相同条件下的生长及生理状况不同;(2)不同微生物所产蛋白酶的性质(如最适催化反应温度、pH、对底物酪素的降解能力等)不同;(3)该学生所采用的是一种定性及初步定量的方法,应进一步针对获得的几株菌分别进行培养基及培养条件优化,并在分析这些菌株所产蛋白酶性质的基础上利用摇瓶发酵实验确定蛋白酶高产菌株。

8.主动运输与促进扩散相比的优点在于可以逆浓度运输营养物质。通过促进扩散将营养物质运输进入细胞,需要环境中营养物质浓度高于胞内,而在自然界中生长的微生物所处环境中的营养物质含量往往很低,在这种情况下促进扩散难以发挥作用。主动运输则可以逆浓度运输,将环境中较低浓度营养物质运输进入胞内,保证微生物正常生长繁殖。

9.大肠杆菌PTs由5种蛋白质(酶I、酶Ⅱa、酶Ⅱb、酶Ⅱc及热稳定蛋白质Hn)组成,酶Ⅱa、酶b、酶Ⅱc 3个亚基构成酶Ⅱ。酶I和HPr为非特异性细胞质蛋白,酶Ⅱa也是细胞质蛋白,亲水性酶Ⅱb与位于细胞膜上的疏水性酶Ⅱc相结合。酶Ⅱ将一个葡萄糖运输进入胞内,磷酸烯醇式丙酮酸(PEP)上的磷酸基团逐步通过酶I和HPr的磷酸化和去磷酸化作用,最终在酶Ⅱ的作用下转移到葡萄糖,这样葡萄糖在通过PTs进入细胞后加上了一个磷酸基团。

10.(1)ABC转运蛋白常由两个疏水性跨膜结构域与胞内的两个核苷酸结合结构域形成复合物,跨膜结构域在膜上形成一个孔,核苷酸结合结构则可结合ATP。ABc转运蛋白发挥功能还需要存在于周质空间(G+菌)或附着在质膜外表面(G一菌)的底物结合蛋白的帮助。底物结合蛋白与被运输物质结合后再与ABC转运蛋白结合,借助于ATP水解释放的能量,ABC转运蛋白将被运输物质转运进入胞内。(2)膜结合载体蛋白(透过酶)也是跨膜蛋白,被运输物质在膜外表面与透过酶结合,而膜内外质子浓度差在消失过程中,被运输物质与质子一起通过透过酶进入细胞。(3)被运输物质通过ABC转运蛋白系统和通过透过酶进入细胞的区别在于能量来源不同,前者依靠ATP水解直接偶联物质运输,后者依靠膜内外质子浓度差消失中偶联物质运输。

第五章 微生物代谢

一、术语或名词

1.分解代谢(catabolism) 也称产能代谢,生物氧化,是指大分子物质在细胞内降解成小分子物质,并产生能量的过程。

2.合成代谢(anabolism) 是指利用小分子物质在细胞内合成复杂大分子物质,并消耗能量的过程。

3.糖酵解(glycolysis) 无氧条件下,异养生物降解葡萄糖生成两个丙酮酸并产生能量的过程。是葡萄糖分解代谢的共同途径。

4.发酵(fermentation) 广义的发酵,泛指一切利用微生物进行生产的过程,多指传统的与实际生产有关的工业化生产,多是好氧过程,如氨基酸发酵、抗生素发酵、单细胞蛋白生产等。微生物生理学上的发酵又称狭义的发酵,是指微生物细胞将有机物氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物的过程。

5.底物水平磷酸化(substrate—level phosphorylation) 发酵过程中往往伴随着一些高能化合物的生成,如EMP途径中的甘油酸一1,3一二磷酸和磷酸烯醇式丙酮酸。这些高能化合物可以直接偶联ATP或GTP的生成。底物水平磷酸化可以存在于发酵过程中,也可以存在于呼吸过程中,但产生能量相对较少。

6.乙醇发酵(alcoholic fermentation) 有两种方式,葡萄糖在酵母和某些细菌(如Sarcina、:Enterobacteriaceae)中经EMP途径,或者某些细菌(如运动发酵假单胞菌)中经ED途径降解成丙酮酸,进一步生成乙醛,乙醛还原生成乙醇。

7.乳酸发酵(1actic acid fermentation) 有两种方式,葡萄糖经EMP途径降解为丙酮酸,丙酮酸在乳酸脱氢酶的作用下被NADH还原为乳酸,终产物只有一种乳酸,称为同型乳酸发酵(1lomolactic fermentation);葡萄糖经PK、HK或HMP途径降解为丙酮酸,代谢终产物除乳酸外,还有乙醇或乙酸,故称异型乳酸发酵(heterolactic fermentation)。 8.呼吸(respiration) 微生物在降解底物的过程中,将释放出的电子交给NAD(P)’、FAD或FMN等电子载体,再经电子传递系统传给外源电子受体,从而生成水或其他还原型产物并释放出能量的过程。以分子氧作为最终电子受体的称为有氧呼吸(aerobic respiration),以氧化型化合物作为最终电子受体的称为无氧呼吸(anaerobic respiration)。 9.电子传递系统(electron transport system) 一系列膜相关电子载体,把电子传递给最终的电子受体,除了泛醌之外,电子载体在膜上的排列顺序为还原电位最负到最正。一般电子传递系统的组成及电子传递方向为:NAD(P)一FP(黄素蛋白)一Fes(铁硫蛋白)一CoQ(辅酶Q)一cyt b_Cyt c_Cyt aCyta3。

10.氧化磷酸化(oxidative phosphorylation) 在糖酵解和三羧酸循环过程中,形成的NAD(P)H和FADH:,通过电子传递系统将电子传递给电子受体(氧或其他氧化性化合物),同时偶联ATP合成的生物过程。

11.巴斯德效应(Pasteur effect) 当微生物从厌氧条件转换到有氧条件时,微生物转向有氧呼吸,糖分解代谢速率降低。

12.反硝化作用(denitrification) 又称硝酸盐呼吸(nitrate respiration),以硝酸或亚硝酸盐为电子受体进行的无氧呼吸,此过程中硝酸盐还原形成气态产物NO、N2。

13.同化型硝酸还原(assimilative nitrate reduction) 在厌氧或好氧条件下,某些兼性厌氧细菌还原硝酸为亚硝酸,进一步转变成铵,作为氮源被细胞利用。 14.异化型硝酸还原(dissimilartive nitrate reduction) 硝酸作为最终电子受体被还原成亚硝酸,分泌到细胞外或形成N:被释放。在这个过程中,硝酸只作为电子受体,用于生物氧化产能,而不作为细胞氮源。

15.Stickland反应(Stickland reaction) 某些微生物利用氨基酸作为碳源、能源和氮源。以一种氨基酸作为供氢体而氧化,另一种氨基酸作为电子受体被还原的生物氧化产能方式,产能效率低,每分子氨基酸产生1个ATP。

16.化能自养菌(chemoautotrophs) 还原CO2的ATP和还原力[H]是通过还原性无机化合物(NH4+、NO2_、H2S、S0、H2和Fe2+)的氧化而获得的,产能途径是氧化磷酸化,一般为好氧菌。 17.不产氧光合作用(anoxygenic photosynthesis) 又称环式光合磷酸化,光合细菌所特有。光能驱动下,电子从菌绿素分子出发,通过电子传递链的循环,又回到菌绿素,期间产生ATP,还原力来自环境中的无机化合物供氢,不产生氧气。

18.产氧光合作用(oxygenic photosynthesis) 又称非环式光合磷酸化,绿色植物、藻类和蓝细菌所共有。光能驱动下,电子从光反应中心I(Ps I)的叶绿素a出发,通过电子传递链,连同光反应中心Ⅱ(PsⅡ)水的光解生成的H’,生成还原力;光反应中心Ⅱ(PsⅡ)由水的光解产生氧气和电子,电子通过电子传递链,传给光反应中心Ps I,期间生成ATP。 19.紫膜光合磷酸化(photophosphorylation by purple membrane) 紫膜由细菌视紫红质蛋白和类脂组成,细菌视紫红质蛋白功能与叶绿素相似,能吸收光能,并在光量子驱动下起着质子泵的作用,将质子泵出紫膜外,从而形成紫膜内外的质子梯度差(质子动势),驱使ATP的形成。

20.代谢补偿途径(replenishment pathway) 或代谢物回补顺序(anaplerotic sequence),是指能补充两用代谢途径中因合成代谢而消耗的中间代谢产物的那些反应。如微生物特有的乙醛酸循环。 21.初级代谢(primary metabolism) 微生物细胞从外界吸收营养物质,通过分解和合成代谢,生成维持生命活动所必需的物质和能量的过程。 22.次级代谢(secondary metabolism) 微生物在一定的生长时期,以初级代谢产物为前体,合成一些对微生物自身生命活动无明确生理功能的物质的过程。

23.变构效应(allosterism) 别构酶的活性可以被小分子激活剂或者抑制剂改变,激活剂或者抑制剂借助于非共价键,可逆地同酶蛋白分子上的调控部位相结合,引起酶的三维结构的改变,导致酶的催化部位的活性发生变化。

24.反馈抑制(feedback inhibition) 每个代谢途径都至少有一个限速酶 (pacemaker enzyme),催化代谢途径中的限速反应,一般是代谢途径中第一步反应的催化酶。代谢途径的终端产物常常抑制第一步反应的可调控酶的活性,此调控作用称为反馈抑制。

25.酶合成阻遏(repression of enzyme synthesis) DNA分子上每一个操纵元都产生一个阻遏蛋白,在合成过程中,阻遏蛋白不能结合在操纵子部位上。然而,辅阻遏物可以与阻遏蛋白结合,改变阻遏蛋白的构象,因此可以与操纵子部位结合。这样mRNA的合成终止,蛋白质合成不能发生。

26.酶合成诱导(induction of enzyme synthesis) 调节基因产生的阻遏蛋白可以与操纵元上的操纵子部位结合,因此关闭了mRNA的转录,阻止了蛋白质的合成。当培养基中加入诱导物时,诱导物与阻遏蛋白结合,阻止了阻遏蛋白与操纵子部位的结合,操纵子开放,基因转录发生。

二、习 题

填空题

1.代谢是细胞内发生的全部生化反应的总称,主要是由 和 两个过程组成。微生物的分解代谢是指 在细胞内降解成 ,并 能量的过程;合成代谢是指利用 在细胞内合成 ,并 能量的过程。

2.生态系统中, 微生物通过 能直接吸收光能并同化CO2, 微生物分解有机化合物,通过 产生CO2。

3.微生物的4种糖酵解途径中, 是存在于大多数生物体内的一条主流代谢途径 是存在于某些缺乏完整EMP途径的微生物中的一种替代途径,为微生物所特有; 是产生4碳、5碳等中间产物,为生物合成提供多种前体物质的途径。

4 和 的乙醇发酵是指葡萄糖经 途径分解为丙酮酸后,进一步形成乙醛,乙醛还原生成乙醇; 的乙醇发酵是利用ED途径分解葡萄糖为丙酮酸最后生成乙醇。 5.同型乳酸发酵是指葡萄糖经 途径降解为丙酮酸,丙酮酸在乳酸脱氢酶的作用下被NADH还原为乳酸。异型乳酸发酵经 、 和 途径分解葡萄糖代谢终产物除乳酸外,还有 。

6.微生物在糖酵解生成丙酮酸基础上进行的其他种类的发酵有丁二醇发酵、混合酸发酵、发酵和 发酵等。丁二醇发酵的主要产物是 , 发酵的主要产物是乳酸、乙酸、甲酸、乙醇。

7.产能代谢中,微生物通过 磷酸化和 磷酸化将某种物质氧化而释放的能量储存在ATP等高能分子中;光合微生物则通过 磷酸化将光能转变成为化学能储存在ATP中。 磷酸化既存在于发酵过程中,也存在于呼吸作用过程中。

8.呼吸作用与发酵作用的根本区别是呼吸作用中电子载体不是将电子直接传递给底物降解的中间产物,而是交给 系统,逐步释放出能量后再交给 。

9.巴斯德效应是发生在很多微生物中的现象,当微生物从 转换到 下,糖代谢速率 ,这是因为 比发酵作用更加有效地获得能量。

10.无氧呼吸的最终电子受体不是氧,而是外源电子受体,像NO3-、NO2-、SO42-、S2O3、CO2:等无机化合物,或 等有机化合物。

11.化能自养微生物氧化 而获得能量和还原力。能量的产生是通过 磷酸化形式,电子受体通常是O2。电子供体是 、 、 和 。还原力的获得是逆呼吸链的方向进行传递, 能量。

12.光合作用是指将光能转变成化学能并固定的CO2过程。光合作用的过程可分成两部分:在 中光能被捕获并被转变成化学能,然后在 中还原或固定CO2合成细胞物质。 13.微生物有两种同化CO2的方式: 和 。自养微生物固定CO2的途径主要有3条:卡尔文循环途径,可分为 、 和 3个阶段;还原性三羧酸途径,通过逆向的三羧酸循环途径进行,多数酶与正向三羧酸循环途径相同,只有依赖于ATP的 是个例外;乙酰辅酶A途径,存在于甲烷产生菌、硫酸还原菌和在发酵过程中将CO2转变乙酸的细菌中,非循环式CO2固定的产物是 和 。

14.Straphylococcus aureus肽聚糖合成分为3个阶段:细胞质中合成的 ,在细胞膜中进一步合成 ,然后在细胞膜外壁引物存在下合成肽聚糖。青霉素在细胞膜外抑制 的活性从而抑制肽聚糖的合成。

15.微生物将空气中的N2还原为NH4的过程称为 之间相互的关系。该过程中根据微生物和其他生物固氮体系可以分为 、 和 3种。

16.固氮酶包括两种组分:组分I(P1)是 ,是一种 ,由4个亚基组成;组分Ⅱ(P2)是一种 ,是一种 ,由两个亚基组成。P1、P2单独存在时,都没有活性,只有形成复合体后才有固氮酶活性。

17.次级代谢是微生物生长至 或 ,以 为前体,合成一些对微生物自身生命活动无明确生理功能的物质的过程。次级代谢产物大多是分子结构比较复杂的物质化合物如: 、 、 、 、 及 等多种类别。

18.酶的代谢调节表现在两种方式: 是一种非常迅速的机制,发生在酶蛋白分子水平; 是一种比较慢的机制,发生在基因水平上。

19.分支代谢途径中酶活性的反馈抑制可以有不同的方式,常见的方式是 、 、 、 。

20.细菌的二次生长现象是指当细菌在含有葡萄糖和乳糖的培养基中生长时,优先利用 ,当其耗尽后,细菌经过一段停滞期,不久在 的诱导下开始合成 ,细菌开始利用 。该碳代谢阻遏机制包括 和 的相互作用。 选择题(4个答案选1)

1.化能自养微生物的能量来源于( )。

(1)有机物 (2)还原态无机化合物 (3)氧化态无机化合物 (4)日光

2.下列葡萄糖生成丙酮酸的糖酵解途径中,( )是最普遍的、存在于大多数生物体内的一条主流代谢途径。

(1)EMP途径 (2)HMP途径 (3)ED途径 (4)WD途径

3.下列葡萄糖生成丙酮酸的糖酵解途径中,( )是存在于某些缺乏完整EMP途径的微生物中的一种替代途径,产能效率低,为微生物所特有。

(1)EMP途径 (2)HMP途径 (3)ED途径 (4)WD途径 4.酵母菌和运动发酵单胞菌乙醇发酵的区别是( )。

(1)糖酵解途径不同 (2)发酵底物不同 (3)丙酮酸生成乙醛的机制不同 (4)乙醛生成乙醇的机制不同

5.同型乳酸发酵中葡萄糖生成丙酮酸的途径是( )。

(1)EMP途径 (2)HMP途径 (3)ED途径 (4)WD途径

6.由丙酮酸开始的其他发酵过程中,主要产物是丁酸、丁醇、异丙醇的发酵是( )。 (1)混合酸发酵 (2)丙酸发酵 (3)丁二醇发酵 (4)丁酸发酵

7.ATP或GTP的生成与高能化合物的酶催化转换相偶联的产能方式是( )。 (1)光合磷酸化 (2)底物水平磷酸化 (3)氧化磷酸化 (4)化学渗透假说 8.下列代谢方式中,能量获得最有效的方式是( )。 (1)发酵 (2)有氧呼吸 (3)无氧呼吸 (4)化能自养 9.卡尔文循环途径中CO2固定(羧化反应)的受体是( )。

(1)核酮糖一5一磷酸 (2)核酮糖一1,5一二磷酸 (3)3一磷酸甘油醛 (4)3一磷酸甘油酸

10.CO2固定的还原性三羧酸途径中,多数酶与正向三羧酸循环途径相同,只有依赖于ATP的( )是个例外。

(1)柠檬酸合酶 (2)柠檬酸裂合酶 (3)异柠檬酸脱氢酶 (4)琥珀酸脱氢酶 11.青霉素抑制金黄色葡萄球菌肽聚糖合成的( )。 (1)细胞膜外的转糖基酶 (2)细胞膜外的转肽酶

(3)细胞质中的“Park”核苷酸合成 (4)细胞膜中肽聚糖单体分子的合成. 12.不能用于解释好氧性固氮菌其固氮酶的抗氧机制的是( )。

(1)呼吸保护作用 (2)构象保护 (3)膜的分隔作用 (4)某些固氮酶对氧气不敏感

13.以下哪个描述不符合次级代谢及其产物( )。 (1)次级代谢的生理意义不像初级代谢那样明确 (2)次级代谢产物的合成不受细胞的严密控制 (3)发生在指数生长后期和稳定期 (4)质粒与次级代谢的关系密切

14.细菌的二次生长现象可以用( )调节机制解释。 (1)组合激活和抑制 (2)顺序反馈抑制 (3)碳代谢阻遏 (4)酶合成诱导

15.下面对于好氧呼吸的描述( )是正确的。 (1)电子供体和电子受体都是无机化合物

(2)电子供体和电子受体都是有机化合物 (3)电子供体是无机化合物,电子受体是有机化合物 (4)电子供体是有机化合物,电子受体是无机化合物

16.无氧呼吸中呼吸链末端的氢受体是( )。

(1)还原型无机化合物 (2)氧化型无机化合物 (3)某些有机化合物 (4)氧化型无机化合物和少数有机化合物

17.厌氧微生物进行呼吸吗?( )

(1)进行呼吸,但是不利用氧气 (2)不进行呼吸,因为呼吸过程需要氧气 (3)不进行呼吸,因为它们利用光合成作用生成所需ATP (4)不进行呼吸,因为它们利用糖酵解作用产生所需ATP

18.碳水化合物是微生物重要的能源和碳源,通常( )被异养微生物优先利用。 (1)甘露糖和蔗糖 (2)葡萄糖和果糖 (3)乳糖 (4)半乳糖 19.延胡索酸呼吸中,( )是末端氢受体。

(1)琥珀酸 (2)延胡索酸 (3)甘氨酸 (4)苹果酸 20.硝化细菌是( ):

(1)化能自养菌,氧化氨生成亚硝酸获得能量 (2)化能自养菌,氧化亚硝酸生成硝酸获得能量 (3)化能异养菌,以硝酸盐为最终的电子受体 (4)化能异养菌,以亚硝酸盐为最终的电子受体 是非题

1.无氧呼吸和有氧呼吸一样也需要细胞色素等电子传递体,也能产生较多的能量用于生命活动,但由于部分能量随电子转移传给最终电子受体,所以生成的能量不如有氧呼吸产生的多。

2.CO2是自养微生物的唯一碳源,异养微生物不能利用CO2作为辅助的碳源。

3.由于微生物的固氮酶对氧气敏感,不可逆失活,所以固氮微生物一般都是厌氧或兼性厌氧菌。

4.支持细胞大量生长的碳源,可能会变成次级代谢的阻遏物。

5.光能营养微生物的光合磷酸化没有水的光解,不产生氧气。

6.次级代谢的生理意义不像初级代谢那样明确,但是某些次级代谢产物对于该微生物具有特殊的意义,如与孢子的启动形成有关。

7.目前知道的所有固氮微生物都属于原核生物和古生菌类。

8.stickland反应对生长在厌氧和蛋白质丰富环境中的微生物非常重要,使其可以利用氨基酸作为碳源、能源和氮源。

9.当从厌氧条件转换到有氧条件时,微生物转向有氧呼吸,糖分解代谢速率加快。 10.反硝化作用是化能自养微生物以硝酸或亚硝酸盐为电子受体进行的无氧呼吸。 11.由于蓝细菌的光合作用产生氧气,所以蓝细菌通常都不具有固氮作用。 12.底物水平磷酸化只存在于发酵过程中,不存在于呼吸作用过程中。 13.底物水平磷酸化既存在于发酵过程中,也存在于呼吸作用过程中。

14.发酵作用的最终电子受体是有机化合物,呼吸作用的最终电子受体是无机化合物。 15.氧化磷酸化只存在于有氧呼吸作用中,不存在于发酵作用和无氧呼吸作用中。 16.发酵作用是专性厌氧菌或兼性厌氧菌在无氧条件下的一种有机物生物氧化形式,其产能机制都是底物水平磷酸化反应。

17.延胡索酸呼吸中,琥珀酸是末端氢受体延胡索酸还原后生成的还原产物,不是一般的中间代谢产物。

18.自养微生物同化CO2需要大量能量,能量来自于光能、无机物氧化或简单有机物氧化所得的化学能。

19.CO2固定的途径中,卡尔文循环途径存在于绿色植物、藻类、蓝细菌和几乎所有的自养型微生物包括光能自养和化能自养微生物中,而还原性三羧酸途径和乙酰辅酶A途径只存在于某些细菌中。 20.青霉素抑制肽聚糖分子中肽桥的生物合成,因此对于生长旺盛的细胞具有明显的抑制作用,而对于休止细胞无抑制作用。 问答题

1.比较酵母菌和细菌的乙醇发酵。

2.试比较底物水平磷酸化、氧化磷酸化和光合磷酸化中ATP的产生。

3.什么是无氧呼吸?比较无氧呼吸和有氧呼吸产生能量的多少,并说明原因。 4.比较自生和共生生物固氮体系及其微生物类群。 5.比较光能营养微生物中光合作用的类型。 6.简述化能自养微生物的生物氧化作用。

7.说明革兰氏阳性细菌细胞肽聚糖合成过程以及青霉素的抑制机制。

8.蓝细菌是一类放氧性光合生物,又是一类固氮菌,说明其固氮酶的抗氧保护机制。 9.说明次级代谢及其特点。如何利用次级代谢的诱导调节机制及氮和磷调节机制来提高抗生素的产量?

10.如何利用营养缺陷突变株进行赖氨酸发酵工业化生产?

三、习题解答

填空题 1.分解代谢合成代谢大分子物质小分子物质 产生 小分子物质 大分子物质 消耗2.光能自养 光合作用 异养 呼吸作用 3.EMP ED HMP 4.酵母菌 八叠球菌EMP 运动发酵单胞菌 5.EMP PK HK HMP 乙醇或乙酸 6.丙酸发酵 丁酸发酵 2,3一丁二醇混合酸 7.底物水平 氧化 光合 底物水平 8.电子传递 最终电子受体 9.厌氧条件 有氧条件 降低 好氧呼吸 10.延胡索酸 11.无机物 氧化磷酸化 H2 NH4 H2S Fe2+ 消耗 12.光反应 暗反应 13.自养式 异养式 CO2的固定(羧化反应) 被固定CO2的还原(还原反应) CO2受体的再生 柠檬酸裂合酶 乙酸丙酮酸 14.“Park”核苷酸(uDP一N一乙酰胞壁酸五肽) 肽聚糖单体分子转肽酶15.生

物固氮共生固氮体系 自生固氮体系 联合固氮体系 16.固氮酶钼铁蛋白(MoFe) 固氮酶还原酶铁蛋白(Fe) 17.指数期后期 稳定期 初级代谢产物 抗生素 激素 生物碱 毒素 色素 维生素 18.酶活性的调节 酶量的调节 19.顺序反馈抑制 协同反馈抑制 同工酶 组合激活和抑制 20.葡萄糖 乳糖届一半乳糖苷酶 乳糖 降解物激活蛋白(cAP)或cAMP受体蛋白(CRP) cAMP

选择题 1. (2) 2. (1) 3. (3) 4. (1) 5. (1) 6. (4) 7. (2) 8. (2) 9. (2) 10. (2) 11. (2) 12. (4) 13. (2) 14. (3) 15. (4) 16. (4) 17. (1) 18. (2) 19. (2) 20. (2)

是非题 1. + 2. - 3. - 4. + 5. - 6. + 7. + 8. + 9. - 10. - 11. - 12. - 13. + 14. + 15. - 16. + 17. + 18. - 19. + 20. +

问答题

1.主要差别是葡萄糖生成丙酮酸的途径不同。酵母菌和某些细菌(胃八叠球菌、肠杆菌)的菌株通过EMP途径生成丙酮酸,而某些细菌(运动发酵单胞菌、厌氧发酵单胞菌)的菌株通过ED途径生成丙酮酸。丙酮酸之后的途径完全相同。

2.底物水平磷酸化,发酵过程中往往伴随着一些高能化合物的生成,如EMP途径中的1,3一二磷酸甘油酸和磷酸烯醇式丙酮酸。这些高能化合物可以直接偶联ATP或GTP的生成。底物水平磷酸化可以存在于发酵过程中,也可以存在于呼吸过程中,但产生能量相对较少。氧化磷酸化,在糖酵解和三羧酸循环过程中,形成的NAD(P)H和FADH,,通过电子传递系统将电子传递给电子受体(氧或其他氧化性化合物),同时偶联ATP合成的生物过程。 光合磷酸化,光能转变成化学能的过程。当一个叶绿素(或细菌叶绿素)分子吸收光量子时,叶绿素(或细菌叶绿素)即被激活,导致叶绿素(或细菌叶绿素)分子释放一个电子被氧化,释放出的电子在电子传递系统的传递过程中逐步释放能量,偶联ATP的合成。主要分为光合细菌所特有的环式光合磷酸化和绿色植物、藻类和蓝细菌所共有的产氧型非环式光合磷酸化作用。 3.无氧呼吸是微生物在降解底物的过程中,将释放出的电子交给NAD(P)+、FAD或FMN等电子载体,再经电子传递系统传给氧化型化合物,作为其最终电子受体,从而生成还原型产物并释放出能量的过程。一般电子传递系统的组成及电子传递方向为: NAD(P)一FP(黄素蛋白)一Fe·s(铁硫蛋白)一CoQ(辅酶Q)一cyt b—Cyt c—Cyt a—cyt a,。无氧呼吸的最终电子受体不是氧,而是像NO3—、N02—、SO42—、S2O3一、CO2等,或延胡索酸(fumarate)等外源受体,氧化还原电位差都小于氧气,所以生成的能量不如有氧呼吸产生的多。

4.共生固氮体系:根瘤菌(尺^izobium)与豆科植物共生;弗兰克氏菌(Frank:尬)与非豆科树木共生;蓝细菌(eyanoba(舶ria)与某些植物共生;蓝细菌与某些真菌共生。自生固氮体系:好氧自生固氮菌(Azotobacter,Azotomonas,etc);厌氧自生固氮菌(Clostridium);兼性厌氧自生固氮菌(B0cillus,Klebsiella,etc);大多数光合菌(蓝细菌,光合细菌)。 5.

①光合细菌一环式光合磷酸化; ②绿硫细菌的非环式光合磷酸化;

③嗜盐细菌的光合磷酸化是一种只有嗜盐菌才有的,无叶绿素或细菌叶绿素参与的独特的光合作 用。是目前所知的最简单的光合磷酸化。嗜盐细菌紫膜上的细菌视紫红质吸收光能后,在膜内外建立质子浓度差。

非环式光合磷酸化是绿色植物、藻类和蓝细菌所共有的产氧型光合作用。光能驱动下,电子从光反应中心I(Ps I)的叶绿素a出发,通过电子传递链,连同光反应中心Ⅱ(PsⅡ)水的

光解生成的H,生成还原力;光反应中心Ⅱ(PsⅡ)由水的光解产生氧气和电子,电子通过电子传递链,传给光反应中心Ps I,期问生成ATP。

环式光合磷酸化为光合细菌所特有。光能驱动下,电子从菌绿素分子出发,通过电子传递链的循环,又回到菌绿素,期间产生ATP,还原力来自环境中的无机化合物供氢,不产生氧气。有些光合细菌虽只有一个光合系统,但也以非环式光合磷酸化的方式合成ATP,如绿硫细菌和绿色细菌,从光反应中心释放出的高能电子经铁硫蛋白、铁氧还蛋白、黄素蛋白,最后用于还原NAD+生成NADH。反应中心的还原依靠外源电子供体如S2-、S2O32一等。外源电子供体在氧化过程中放出电子,经电子传递系统传给失去了电子的光合色素,使其还原,同时偶联ATP的生成。嗜盐细菌的光合磷酸化是一种只有嗜盐菌才有的,无叶绿素或细菌叶绿素参与的独特的光合作用。是目前所知的最简单的光合磷酸化。嗜盐细菌紫膜上的细菌视紫红质吸收光能后,在膜内外建立质子浓度差,再由它来推动ATP酶合成ATP。

6.化能自养微生物氧化无机物而获得能量和还原力。能量的产生是通过电子传递链的氧化磷酸化形式,电子受体通常是O2,因此,化能自养菌一般为好氧菌。电子供体是H2、NH4、H

2+

(1)氨的氧化。N2S和Fe还原力的获得是逆呼吸链的方向进行传递,同时需要消耗能量。

H,和亚硝酸(N0f)是作为能源的最普通的无机氮化合物,能被亚硝化细菌和硝化细菌氧化。

(2)硫的氧化。硫杆菌能够利用一种或多种还原态或部分还原态的硫化合物(包括硫化物、元素硫、硫代硫酸盐、多硫酸盐和亚硫酸盐)作能源。H2S首先被氧化成元素硫,随之被硫氧化酶和细胞色素系统氧化成亚硫酸盐,放出的电子在传递过程中可以偶联产生ATP。(3)铁的氧化。从亚铁到高铁的生物氧化,对少数细菌来说也是一种产能反应,但这个过程只有少量的能量被利用。亚铁的氧化仅在嗜酸性的氧化亚铁硫杆菌(Thiobacillus ferrooxidans)中 进行了较为详细的研究。在低pH环境中这种细菌能利用亚铁氧化时放出的能量生长,在该菌的呼吸链中发现了一种含铜的铁硫菌蓝蛋白(rusticyanin),它与几种cyt c和一种cyt a,氧化酶构成电子传递链。(4)氢的氧化。氢细菌能利用分子氢氧化产生的能量同化CO2也能利用其他有机物生长。氢细菌的细胞膜上有泛醌、维生素K:及细胞色素等呼吸链组分。在这类细菌中,电子直接从氢传递给电子传递系统,电子在呼吸链传递过程中产生ATP。 7.革兰氏阳性菌肽聚糖合成的3个阶段(图5—10)。 (1)细胞质中的合成。

①葡萄糖 N一乙酰葡糖胺一UDP(G--UDP)一N一乙酰胞壁酸一UDP(M—uDP)

②MUDP一“Park”核苷酸,即UDP一N一乙酰胞壁酸五肽 (2)细胞膜中的合成。“Park”核苷酸一肽聚糖单体分子。

(3)细胞膜外的合成。青霉素抑制转肽酶。青霉素是肽聚糖单体五肽尾末端的D一丙氨酸一D一丙氨酸的结构类似物,两者竞争转肽酶的活力中心。

8.有两种特殊的保护系统。(1)分化出异形胞,其中缺乏光反应中心Ⅱ,异形胞的呼吸强度大于正常细胞,其超氧化物歧化酶的活性高。(2)非异形胞的保护方式:①时间上的分隔保护,白天光合作用,晚上固氮作用;②群体细胞中的某些细胞失去光反应中心Ⅱ,而进行固氮作用;③提高过氧化物酶和超氧化物歧化酶的活性来除去有毒氧化物。

9.相对于初级代谢而言,一般认为,微生物在一定的生长时期,以初级代谢产物为前体,合成一些对微生物自身生命活动无明确生理功能的物质的过程,称为次级代谢。这一过程形成的产物,即为次级代谢产物。次级代谢产物大多是分子结构比较复杂的化合物。根据其作用,可将其分为抗生素、激素、生物碱、毒素、色素及维生素等多种类别。 次级代谢特点:

(1)次级代谢的生理意义不像初级代谢那样明确,次级代谢途径某个环节发生障碍,致使不能合成某个次级代谢产物,而不影响菌体的生长繁殖。

(2)次级代谢与初级代谢关系密切,初级代谢的关键性中间产物往往是次级代谢的前体。

+

+

(3)次级代谢一般发生在菌体指数生长后期或稳定期,也会受到环境条件的影响。 (4)次级代谢产物的合成,因菌株不同而异,但与分类地位无关,两种完全不同来源的微生物可以产生同一种次级代谢产物。

(5)质粒与次级代谢的关系密切,控制着多种抗生素的合成。 (6)次级代谢产物通常都是限定在某些特定微生物中生成,因此与现代发酵产业密切相关。 (7)次级代谢产物的合成通常被细胞严密控制。某些抗生素的产生可以被加在发酵培养基中的诱导物诱导产生,可在发酵培养基中加入诱导物来增加产量。易代谢氮源如铵盐以及高浓度的磷酸盐,对某些抗生素的产生有抑制作用。在发酵培养基避免使用高浓度的铵盐和使用低浓度或亚适量的磷酸盐可以防止抑制作用。

10.在微生物中,以天冬氨酸为原料,通过分支代谢合成赖氨酸、苏氨酸和甲硫氨酸(图5—13)。为了解除正常的代谢调节以获得赖氨酸的高产菌株,工业上选育了谷氨酸棒杆菌的高丝氨酸缺陷型菌株作为赖氨酸的发酵菌种。这个菌种由于不能合成高丝氨酸脱氢酶(HSDH),故不能合成高丝氨酸,也就不能产生苏氨酸和甲硫氨酸。添加适量高丝氨酸(或苏氨酸和甲硫氨酸)的条件下,在含有较高糖和铵盐的培养基上,能产生大量的赖氨酸。

第六章 微生物的生长繁殖及其控制

一、术语或名词

1.二分裂(binary fission) 细胞核首先进行有丝分裂,然后细胞质通过胞质分裂而分开,从而形成两个相同的个体的分裂方式。 2.分批培养(batch culture) 是指微生物在封闭系统中进行的培养,培养过程中不对培养基进行更换。

3.迟缓期(1agphase) 微生物接种到新鲜培养基时,其数量并不立即增加,这个阶段被称为迟缓期或延滞期。

4.对数生长期(exponentialphase) 微生物经过延滞期后,以最大的速度进行生长和分裂,导致微生物数量呈对数增加的时期。在对数生长期微生物各成分按比例有规律地增加,微生物呈平衡生长。

5.稳定生长期(stationaryphase) 微生物经过对数生长期后,生长速度降低至零(细菌分裂增加的数量等于细菌死亡数量)的时期。稳定期的微生物数量最大并维持稳定。 6.衰亡期(deathphase) 稳定期后,由于营养物质的耗尽和有毒代谢产物的大量积累,使微生物死亡速度逐步增加,活菌减少的时期。 7.二次生长(diauxic growth) 微生物在同时含有速效碳源(或氮源)和迟效碳源(或氮源)的培养基中生长时,微生物会首先利用速效碳源(或氮源)生长直到该速效碳源(或氮源)耗尽,然后经过短暂的停滞后,再利用迟效碳源(或氮源)重新开始生长。这种两相生长或应答称为二次生长。

8.倍增时间(doublingtime) 群体生长中微生物数量增加一倍所需要的时间称为倍增时间。

9.代时(generationtime) 个体生长中,每个微生物分裂繁殖一代所需的时间称为代时。

10.比生长速率(specificgrowth rate) 每单位数量的微生物在单位时间内增加的量。 11.同步培养(synchronousculture) 使群体中不同步的细胞转变成能同时进行生长或分裂的群体细胞的培养方法称为同步培养。

12.同步生长(synchronousgrowth) 以同步培养方法使群体细胞处于同一生长阶段,并同时进行分裂的生长方式。

13.连续培养(continuousculture) 连续培养是指通过一定的方式使微生物能以恒定的比生长速率生长并能持续生长下去的培养方法。一般是通过在微生物培养过程中不断地补充营养和以同样的速率移出培养物来实现微生物的连续培养。 14.恒化器(chemostat) 通过保持培养基中某种必需营养物质的浓度基本恒定的方式,使微生物的生长速度恒定的培养系统。

15.平板计数或菌落计数(plate countor colonycount) 将适当稀释的样品涂布到琼脂培养基表面,培养后活细胞能形成菌落,通过计算菌落数能知道样品中的活菌数,该方法称为平板计数或菌落计数。 16.菌落形成单位(colonyforming unit) 采用平板计数或菌落计数法时,由于不能绝对保证一个菌落只是由一个活细胞形成,计算出的活细胞数称为菌落形成单位。 17.显微镜直接计数(directmicroscopic count) 利用微生物计数板或血细胞计数板,在显微镜对样品中的微生物进行计数的方法称为显微镜直接计数法。该方法虽然简便直观,但若无特别技术不能区分死活细胞的数目。

18,最适生长温度(optimum growth temperature) 微生物生长速度最快的温度。 19.超氧化物歧化酶(superoxidedismutase) 催化超氧化物自由基形成氧和过氧化氢的酶。

20.过氧化氢酶(catalase) 分解过氧化氢形成水和氧气的酶。

21.灭菌(sterilization) 灭菌是指物体中包括芽孢在内的所有微生物都被杀死或消除。 22.抑制(inhibition) 抑制是采用某种因子使微生物的生长停止,但移去该因子后微生物的生长仍然可以恢复。 23.消毒(disinfection) 杀死或灭活物质或物体中所有病原微生物的措施。消毒可起到防止感染或传播的作用。

24.消毒剂(disinfectant) 用于消毒的化学制剂。一般用于对非生物材料的消毒。 25.石炭酸系数或酚系数(phenol coefficient) 在一定温度下将某种消毒剂与试验细菌10rain保温处理后,能杀死试验细菌的消毒剂的最高稀释倍数与能杀死试验细菌的石炭酸(酚)的最高稀释倍数的比值。酚系数可用于判断消毒剂对试验细菌的杀灭效力。酚系数越高,表明消毒剂在该测试条件下的消毒能力越强。 26.防腐(antisepsis) 采用某些化学或物理方法防止和抑制微生物生长的措施。防腐能防止食物腐败或防止其他物质霉变。

27.防腐剂(antiseptic) 用于防腐的化学制剂。防腐剂的毒性一般小于消毒剂,以避免对动物或人体组织产生毒害作用。

28.热致死时间(thermaldeathtime) 在一定温度一定条件下杀死液体中所有微生物的最短时间。

29.十倍减少时间(decimal reduction time,D) 特定温度下杀死某一样品中90%微生物或孢子及芽孢所需的时间。30.高压灭菌(autoclave) 在高压蒸汽的处理下(通常121℃,15rain)杀死包括芽孢在内的所有微生物的灭菌方法。

31.巴斯德消毒法(pasteurization) 在低于沸点的温度下短时间加热处理以杀死牛奶或饮料中的病原微生物的方法称为巴斯德消毒法。较老的做法是63℃处理30rain;现在使用巴氏瞬间消毒法(nashpasteurization) 即72℃处理15s,然后迅速冷却的方法。 32.紫外辐射(UVradiation) 波长为10—400 nm(通常采用260nm)的高能辐射。紫外辐射有较强的致死效应,通常用于对物体表面和空气的灭菌。 [

33.选择毒性(selectivetoxicity) 化疗试剂杀死或抑制病原微生物而对宿主尽可能不产生伤害的性质。

34.化疗(chemotherapy) 利用具有选择毒性的化学物质杀死生物体内的病原微生物或病变细胞,治疗被微生物感染的病变细胞或组织,但对机体本身无毒害作用的治疗措施。 35.抗生素(antibiotic) 抗生素是由某些生物合成或半合成的次级代谢产物或衍生物,能抑制其他微生物生长或杀死其他微生物。

36.抗代谢物(antimetabolite) 能对代谢的某个关键酶产生竞争抑制而阻断代谢途径的化合物。抗代谢物通常与酶的正常底物或中间产物很类似,它与酶的正常底物或中间产物竞争酶的活性部位使反应停止,从而阻断代谢途径。

37.抗药性(drug resistance) 微生物通过改变本身生理生化特性而变得对化学药物不敏感,即微生物的抗药性。

38.相容溶质(compatiblesolute) 适合细胞进行新陈代谢和生长的细胞内高浓度物质,它可使细胞原生质渗透浓度高于周围环境,从而使其质膜紧压在细胞壁上。

二、习 题

填空题

1.一条典型的生长曲线至少可分为 、 、 和 4个生长时期。

2.测定微生物的生长量常用的方法有 、 和 。而测定微生物数量变化常用的方法有 、 、 和 ;以生物量为指标来测定微生物生长的方法有 、 和 。

3.获得细菌同步生长的方法主要有(1) 和(2) ,其中(1)中常用的有 、 和 。

4.控制连续培养的方法有 和 。

5.影响微生物生长的主要因素有 、 、 、 和 等。 6.对玻璃器皿、金属用具等物品可用 或 进行灭菌;而对牛奶或其他液态食品一般采用 灭菌,其温度为 ,时间为 。

7.通常,细菌最适pH的范围为 ,酵母菌的最适pH范围为 ,霉菌的最适pH范围是 。

8.杀灭或抑制微生物的物理因素有 、 、 、 、 和 等。

9.抗生素的作用机制有 、 、 和 。

10.抗代谢药物中的磺胺类是由于与 相似,从而竞争性地与二氢叶酸合成酶结合,使其 不能合成。 选择题

1.以下哪个特征表示二分裂?( ) (1)产生子细胞大小不规则 (2)隔膜形成后染色体才复制

(3)子细胞含有基本等量的细胞成分 (4)新细胞的细胞壁都是新合成的

2.代时为0.5h的细菌由10’个增加到10”个时需要多长时间?( ) (1)40h (2)20h (3)lOh (4)3h

3.某细菌2h中繁殖了5代,该菌的代时是( )。 (1)15min (2)24rain (3)30min (4)45 min 4.代时是指( )。

(1)培养物从接种到开始生长所需要的时间 (2)从对数期结束到稳定期开始的间隔时间

(3)培养物生长的时间 (4)细胞分裂繁殖一代所需要的时间

5.如果将处于对数期的细菌移至相同组分的新鲜培养基中,该批培养物将处于哪个生长期? ( )

(1)死亡期 (2)稳定期 (3)延迟期 (4)对数期

6.细菌细胞进入稳定期是由于:①细胞已为快速生长作好了准备;②代谢产生的毒性物质发生了积累;③能源已耗尽;④细胞已衰老且衰老细胞停止分裂;⑤在重新开始生长前需要合成新的蛋白质( )。

(1) 1,4 (2) 2,3 (3) 2,4 (4) 1,5

7.对生活的微生物进行计数的最准确的方法是( )。

(1)比浊法 (2)显微镜直接计数 (3)干细胞重量测定 (4)平板菌落记数

8.用比浊法测定生物量的特点是( )。 (1)只能用于测定活细胞 (2)易于操作且能精确测定少量的细胞 (3)难于操作但很精确 (4)简单快速,但需要大量的细胞 9.下列哪种保存方法会降低食物的水活度?( ) (1)腌肉 (2)巴斯德消毒法 (3)冷藏 (4)酸泡菜 10.细胞复制时所有的细胞组分都按比例有规律地增加的现象是( )。 (1)对数生长 (2)二分裂 (3)最大生长 (4)平衡生长

11.连续培养时培养物的生物量是由( )来决定的。 (1)培养基中限制性底物的浓度 (2)培养罐中限制性底物的体积 (3)温度 (4)稀释率 12.最适生长温度低于20℃的微生物被称为( )。 (1)耐冷菌 (2)嗜温菌 (3)耐热菌 (4)嗜冷菌 13.过氧化氢酶能解除( )的毒性。 (1)超氧化物自由基 (2)过氧化物 (3)三线态氧 (4)过氧化氢

14.能导致微生物死亡的化学试剂是( )。 (1)抑菌剂 (2)溶菌剂 (3)杀菌剂 (4)(2)和(3)

15.微生物数量减少十倍所需的时间是( )。(1)十倍减少时间 (2)十倍减少值 (3)热致死时间 (4)对数时间

16.只能用高压灭菌才能杀死的是( )。 (1)结核分枝杆菌 (2)病毒 (3)细菌的内生孢子 (4)霉菌孢子

17.常用的高压灭菌的温度是( )。 (1)121~C (2)200~C (3)63~C (4)100~C

18.巴斯德消毒法可用于( )的消毒。 (1)啤酒 (2)葡萄酒 (3)牛奶 (4)以上所有

19.保存冷冻食品的常用温度是( )。 (1)4~C (2) _20~C (3) -70~C (4)0℃

20.( )能通过抑制叶酸合成而抑制细菌生长。 (1)青霉素 (2)磺胺类药物 (3)四环素 (4)以上所有

是非题

1.细菌分裂繁殖一代所需时间为倍增时间。

2.在群体生长的细菌数量增加一倍所需时间为代时。

—3

3.样品稀释10,后,从中取出0.1 mL涂布在琼脂平板上培养,长出36个菌落,因此样品中的细菌数为36000个/mL。

4.最初细菌数为4个,增殖为128个需经过5代。 5.一般而言,对数生长期的细菌细胞最大。

6.一般显微镜直接计数法比稀释平板涂布法测定出的菌数多。 7.在一密闭容器中接种需氧菌和厌氧菌,需氧菌首先生长。

8.分子氧对专性厌氧微生物的抑制和致死作用,是因为这些微生物内缺乏超氧化物化酶和过氧化氢酶。

9.一切好氧微生物都含有超氧化物歧化酶。

10.分批培养时,细菌首先经历一个适应期,所以细胞数目并不增加,或增加很少。 11.最低生长温度是指微生物能生长的温度下限。最高生长温度是指微生物能生长的温度上限。

12.特定温度下杀死某一样品中90%微生物或孢子及芽孢所需的时间为热致死时间。 13.可采用高压灭菌对抗体进行灭菌。 14.巴斯德消毒法不能杀死细菌的芽孢。

15.对热敏感的溶液可采用巴斯德消毒法来灭菌。 16.腌肉防止肉类腐败的原因是提高了渗透压。 17.酸泡菜较鲜肉更易受大肠菌污染而腐败。

18.四环素能抑制细菌细胞壁的合成,青霉素能抑制细菌蛋白质的合成。

19.1:600稀释时某化学试剂10min内能杀死的金黄色葡萄球菌与1:60稀释的石炭酸相同,该化学试剂的石炭酸系数为10。 问答题

1.试述单个细菌细胞的生长与细菌群体生长的区别。2.用来测定细菌生长量的直接计数法和间接计数法一般采用什么具体的方法?并从实际应用、优点、使用的局限性3个方面加以具体分析。 3.封闭系统中微生物的生长经历哪几个生长期?以图表示并指明各期的特点。如何利用微生物的生长规律来指导工业生产?

4.大肠杆菌在37℃的牛奶中每12.5 min繁殖一代,假设牛奶消毒后,大肠杆菌的含量为1个/100mL,请问按国家标准(30000个/mL),该消毒牛奶在37℃下最多可存放多少时间? 5.与分批发酵相比,连续培养有何优点?

6.说明温度对微生物生长的影响,详述温度对微生物生长的影响的具体表现。 7.详述嗜冷菌、嗜温菌、嗜热菌和极端嗜热菌的不同。

8.哪几种氧形式对细胞有毒性?微生物细胞具有什么酶来解除氧的毒性? 9.过滤除菌有些什么方法?哪种方法较为经济实惠? 。 10.近年来是什么原因导致抗生素不敏感的抗性菌株的增多?

三、习题解答

填空题 1.迟缓期 对数生长期 稳定生长期 衰亡期 2.单细胞计数 细胞物质的重量 代谢活性

培养平板计数法 膜过滤法 液体稀释法 显微镜直接计数 比浊法 重量法 生理指标法

3.机械法 环境条件控制法 离心法 过滤分离法 硝酸纤维素滤膜法 4.恒浊法 恒化法 5.营养物质 水活性 温度 pH 氧 6.高压蒸汽灭菌法 干热灭菌法 超高温灭菌 135

-150~C 2—6s 7.6.5—7.5 4.5~5.5 4.5—5.5 8.温度 辐射作用 过滤 渗透压

干燥 超声波 9.抑制细菌细胞壁合成 破坏细胞质膜 作用于呼吸链以干扰氧化磷酸化

抑制蛋白质和核酸合成 10.对氨基苯甲酸 叶酸 选择题

1, (3) 2. (3) 3. (2) 4. (4) 5. (4) 6. (2) 7. (4) 8. (4) 9. (1) 10. (4) 11. (4) 12. (4) 13. (4) 14. (4)

15. (1) 16. (3) 17. (1) 18. (4) 19. (2) 20. (2) 是非题 ,

1.— 2。- 3.- 4.+ 5.— 6.+ 7. + 8.+ 9.+ 10.+ 11.+ 12.- 13.- 14.十 15.— 16.+ 17.- 18.- 19.+ 问答题

1.单个细菌细胞的生长,是细胞物质按比例不可逆地增加使细胞体积增大的过程;细菌群体生长,是细胞数量或细胞物质量的增加。细菌的生长与繁殖两个过程很难绝对分开,接种时往往是接种成千上万的群体数量,因此,微生物的生长一般是指群体生长。

2.直接计数法通常是利用细菌计数板或血细胞计数板,在显微镜下直接计算一定容积里样品中的微生物的数量。该方法简便、易行,成本低,且能观察细胞大小及形态特征。该法的缺点是:样品中的细胞数不能太少,否则会影响计数的准确性,而且该法不能区别活细胞和死细胞。间接计数法又称活菌计数法,一般是将适当稀释的样品涂布在琼脂培养基表面,培养后活细胞能 形成清晰的菌落,通过计算菌落数就可以知道样品中的活菌数。平板涂布和倾倒平板均可用于活菌计数。平板计数简单灵敏,广泛应用于食品、水体及土壤样品中活菌的计数。该法的缺点有:可能因为操作不熟练使得细胞未均匀分散或者由于培养基不合适不能满足所有微生物的需要而导致结果偏低,或使用倾倒平板技术时因培养基温度过高损伤细胞等原因造成结果不稳定等。

3.细菌生长曲线图参见教材第六章。封闭系统中微生物的生长经历迟缓期、对数期、稳定期和衰亡期等4个生长时期。在迟缓期中细胞体积增大,细胞内RNA、蛋白质含量增高,合成代谢活跃,细菌对外界不良条件反应敏感。在迟缓期细胞处于活跃生长中,但分裂迟缓。在此阶段后期,少数细胞开始分裂,曲线略有上升。对数期中细菌以最快的速度生长和分裂,导致细菌数量呈对数增加,细胞内所有成分以彼此相对稳定的速度合成,细菌为平衡生长。由于营养物质 消耗,代谢产物积累和环境变化等,群体的生长逐渐停止,生长速率降低至零,进入稳定期。稳定期中活细菌数最高并保持稳定,细,菌开始储存糖原等内含物,该期是发酵过程积累代谢产物的重要阶段。营养物质消耗和有害物的积累引起环境恶化,导致活细胞数量下降,进入衰亡期。衰亡期细菌代谢活性降低,细菌衰老并出现自溶,产生或释放出一些产物,菌体细胞呈现多种形态,细胞大小悬殊。在工业发酵和科学研究中迟缓期会增加生产周期而产生不利影响,因此需采取必要措施来缩短迟缓期。对数期的培养物由于生

活力强,因而在生产上普遍用作“种子”,对数期的培养物也常常用来进行生物化学和生理学的研究。稳定期是积累代谢产物的重要阶段,如某些放线菌抗生素的大量形成就在此时期,因此如果及时采取措施,补充营养物或去除代谢物或改善培养条件,可以延长稳定期以获得更多的菌体或代谢产物。 4. 答:最多能放4.5h。

5.由于连续培养中微生物的生长一直保持在对数期,生物量浓度在较长时间内保持恒定,因此与单批发酵相比,连续培养:能缩短发酵周期,提高设备利用率;便于自动控制;降低动力消耗及体力劳动强度;产品质量较稳定。

6.微生物的生长具有相当高的温度依赖性,有最低、最适和最高生长温度这几个基本温度。最适温度总是更靠近最高生长温度而不是最低生长温度。温度对微生物生长的影响的具体表现在:①影响酶活性,温度变化会影响酶促反应速率,最终影响细胞物质合成。②影响细胞质膜的流动性,温度高则流动性高,有利于物质的运输;温度低则流动性低,不利于物质的运输。因此,温度变化影响营养物质的吸收和代谢物质的分泌。③影响物质的溶解度,温度上升,物质的溶解度升高,温度降低,物质的溶解度降低,机体对物质的吸收和分泌受影响,最终微生物的生长受影响。温度过高时酶和其他蛋白质变性,细胞质膜熔化崩解,细胞受到损害。温度很低时,细胞质膜冻结,酶也不能迅速工作,因此,在温度高于或低于最适生长温度时生长速度会降低。,

7.嗜冷菌生长的温度范围是0—20~C,最适生长温度为15℃;嗜温菌生长的温度范围是15— 45℃,最适生长温度为20~45℃;嗜热菌生长的温度范围是45~80~C以上,最适生长温度为 55—65℃;极端嗜热菌生长的温度范围是80℃以上,最适生长温度为80~113℃,低于55℃通常不会生长。嗜冷菌的运输系统和蛋白质合成系统在低温下能很好地发挥功能,其细胞膜含有大量的不饱和脂肪酸,能在低温下保持半流质状态。当温度高于20cC时,细胞膜被破坏,细胞内组分流出。嗜热菌具有能在高温条件下发挥功能的酶和蛋白质合成系统,细胞膜脂类物质的饱和程度高,因此融点高,能保持高温下的细胞完整。

8.氧气受到辐射可被还原为超氧化物自由基、过氧化氢、羟基自由基等,它们是强氧化剂,能迅速破坏细胞组分。专性好氧和兼性厌氧微生物的细胞中含有超氧化物歧化酶和过氧化氢酶,能破坏超氧化物自由基、过氧化氢。另外,细胞中的过氧化物酶也能降解过氧化氢。 9.过滤除菌有3种:深层过滤、膜过滤和核孔过滤。深层过滤器是由纤维或颗粒状物质制成的过滤板层;膜过滤器是由醋酸纤维素、硝酸纤维素或其他合成物质制成的具有微孑L的滤膜;核孔过滤器是由核辐射处理后再经化学蚀刻的薄聚碳酸胶片而制成。深层过滤较为经济实惠,多用于工业发酵,后两种方法主要用于科学研究。

10.主要有以下5个原因:①细胞质膜透性改变使药物不能进入细胞;②药物进入细胞后又被细胞膜中的移位酶等泵出胞外;③细菌产生了能修饰抗生素的酶使之失去活性;④药物作用靶发生改变从而对药物不再具有敏感性;⑤菌株改变代谢途径以绕过受药物抑制的过程或增加靶代谢物的产物。

表6—6 抗菌药物的作用机制

抗菌素

药 物 作用机制

抑制细胞壁合成:青霉素卢—内酰胺环结构与D—丙氨酸末端结构相似,从 而能占据D—丙氨酸的位置与转肽酶结合,并将酶灭活,肽链之间无法彼

此连接,抑制了细胞壁的合成

抑制蛋白质合成:与细菌核糖体的30 S亚基结合,抑制蛋白质合成,引起

mRNA错读

抑制蛋白质合成:与细菌核糖体的30S亚基结合,干扰氨酰tRNA的结合

青霉素(penicillin)

链霉素(streptomycin) 四环素(tetracycline)

氯霉素(chloramphenic01)

抑制蛋白质合成:与细菌核糖体的50S亚基结合,通过抑制肽基转移酶阻

断肽键形成

抑制蛋白质合成:与细菌核糖核蛋白体的50S亚单位相结合,抑制肽酰基转 移酶,影响核糖核蛋白体移位过程,妨碍肽链增长,抑制细菌蛋白质的合成 抑制核酸合成:通过结合和抑制DNA依赖的RNA聚合酶阻断RNA合成 代谢颉颃作用:由于很多细菌需要自己合成叶酸而生长,磺胺是叶酸组成 部分对氨基苯甲酸的结构类似物,因而磺胺能阻止细菌叶酸的合成。磺胺

红霉素(erythromycin) 利福平(rifampicin)

代 谢 物

磺胺类药物(sulfadrug)

对人体细胞无毒性,因为人缺乏从对氨基苯甲酸合成叶酸的相关酶——二 氢叶酸合成酶,不能用外界提供的对氨基苯甲酸自行合成叶酸,而必须直

接利用叶酸为生长因子进行生长

第七章 病毒

一、术语或名词

1.致细胞病变效应(cytopathic effect,CPE) 动物病毒感染敏感细胞培养引起的其显微表现的改变,如细胞聚集成团、肿大、圆缩、脱落、细胞融合成多核细胞及细胞内出现包涵体,乃至细胞裂解等。

2.盲传(blindpassage) 将取自经接种而未出现感染症状的宿主或细胞培养的材料,再接种传递给新的宿主或细胞培养,即重复接种,以提高病毒的毒力或效价。

3.感染性测定(assayofinfectivity) 因感染引起宿主或细胞培养某种特异性病理反应的感染性病毒颗粒数量的测定。

4.感染单位(infectionsunit,IU) 能够引起宿主细胞培养一定特异性病理反应的病毒最小剂量。

5.效价(title) 又称滴度,以单位体积(mL)待测病毒样品液中所含的病毒感染性单位的数目(1U/mL)。

6.噬菌斑(plague) 经适当稀释的噬菌体标本接种于细菌平板,经过一定时间培养后,在细菌菌苔上形成的圆形局部透明溶菌区域。

7.蚀斑(plague) 又称空斑,经适当稀释动物病毒标本接种于动物单层细胞培养,并辅以染色,在细胞单层上形成的可识别的局部病变区域。

8.半数效应剂量(50%effectdose) 使试验单元群体中的半数(50%)个体出现某一感染反应所需的病毒剂量,其值以50%试验单元出现感染反应的病毒稀释液的稀释度的倒数的对数值表。

9.中和作用(neutralization) 特异性的病毒抗体与病毒毒粒作用,使其失去感染性、抑制病毒的繁殖。

10.中和抗体(neutralizingAbs) 能够中和病毒感染性的病毒抗体。

11.毒粒(virion) 病毒的细胞外颗粒形式,亦是病毒的感染性形式。Dulbacco等(1985)指出,毒粒是一团能够自主复制的遗传物质(DNA或RNA),它们被蛋白质外壳包围,有的

还有一附加膜(包膜)以保护其遗传物质免遭环境破坏,并作为将遗传物质从一个宿主细胞传递给另一宿主细胞的载体。

12.壳体(capsid) 又称衣壳,包围着病毒核酸的蛋白质外壳。

13.蛋白质亚基(proteinsubunit) 以次级键结合,构成病毒壳体的蛋白质单体,其同义语为原体(protomer).

14.壳粒(capsomer) 在病毒的二十面体壳体构成中,一定数目的蛋白质亚基,以特殊方式聚集所形成的在电镜下可见的结构,其同义语为形态学单位(morphologicalunit) 15.五聚体(pentamers) 由5个蛋白质亚基聚集形成的壳粒,因其在壳体结构中与5个其他的壳粒相邻,所以又称五邻体(penton)。

亚6.六聚体(hexmers) 由6个蛋白质亚基聚集形成的壳粒,因其在壳体结构中与6个其他的壳粒相邻,所以又称六邻体(hexoH)。

17.核壳(nucleocapsid) 又称核衣壳,病毒的壳体与其包闭着的核酸和内部蛋白一起所构成的复合结构,一些简单的病毒的毒粒就是一个核壳结构。 18.包膜(envelope) 又称囊膜,一些病毒核壳外所覆盖着的脂蛋白膜,系病毒成熟时,自细胞质膜、核膜或高尔基体膜等以芽出的方式成熟时,由细胞膜衍生而来。病毒包膜的结构与生物膜相似,是脂双层膜,在包膜形成时,细胞膜蛋白被病毒编码的包膜糖蛋白取代。 19.刺突(spike) 又称钉状物,病毒表面的向外凸出的突起,包膜表面的糖蛋白突起称包膜突起(peplomer),或称膜粒。

20.正链RNA(plusstrandRNA) 若病毒的ssRNA可以作为mRNA直接进行翻译,则规定它为正极性(+意义),即为正链RNA(+RNA)。

21.负链RNA(minusstrand RNA) 若病毒的ssRNA序列与其mRNA互补,则规定它为负极性(—意义),即为负链(—RNA)。 ·

22.双意RNA(ambisenseRNA) 病毒的ssRNA部分为正极性,部分为负极性。

23.转染(transfection) 将从病毒毒粒或病毒感染的细胞中分离纯化的病毒核酸实验性地导入细胞,现在已用来泛指将外源核酸导人细胞。

24.感染性核酸(infectiousnucleicacid) 以转染方式导入细胞后能够完成复制循环,产生病毒子代的病毒核酸,否则为非感染性核酸。

25.分段基因组(segmentedgenome) 由数个不同的核酸分子构成的病毒基因组。 26.结构蛋白(structureprotein) 构成一个形态成熟的感染性病毒颗粒所必需的蛋白质,包括壳体蛋白,包膜蛋白和毒粒酶。

27.非结构蛋白(non—structureprotein) 由病毒基因组编码、在病毒复制时产生并在其中具有一定功能,但不结合于毒粒之中的蛋白质。

28.吸附(attachment) 病毒通过其表面蛋白与敏感宿主细胞的受体特异性结合,导致病毒颗粒固着于细胞表面的过程,吸附是病毒复制的第一阶段。

29.一步生长试验(one—step growth experiment) 以适量的病毒同步感染处于标准培养的高浓度敏感细胞,以致可由细胞群体发生的病毒复制事件推知单个细胞发生的病毒复制的试验。

30.潜伏期(1atentperiod) 从病毒吸附于细胞到受染细胞释放出子代病毒所需的最短时间。

3重.裂解量(burstsize) 每个受染细胞所产生的子代病毒颗粒的平均数目,其值等于稳定期病毒效价与潜伏期病毒效价之比。

32.隐蔽期(eclipse period) 自病毒颗粒形式在受染细胞内消失到新的感染性病毒子代颗粒出现的时间。

33.病毒入胞(viropexis) 病毒利用细胞的内吞功能进入细胞。

34.前基因组(progenome) 乙型肝炎病毒在受染细胞核内利用宿主RNA聚合酶转录产生的3.4kb mRNA,为病毒利用逆转录酶进行DNA合成的模板。

35.装配(assembly) 在病毒感染的细胞内,新合成的病毒结构组分以一定方式结合,装配成完整的病毒颗粒的过程,亦称成熟(maturation)或形态发生(morphogenesis)

36.允许细胞(permissivecell) 病毒能在其内完成复制循环,产生子代病毒的细胞,反之病毒不能在其内复制的细胞为非允许细胞。 37.非增殖性感染(uon—productiveinfection) 由于病毒或是细胞的原因,致使病毒的复制在病毒进入细胞后的某一阶段受阻,结果没有子代病毒产生的感染。 38.限制性感染(restrivtiveinfection) 因细胞的瞬时允许性产生,其结果或是病毒持续存在于受染细胞内不能复制,直到细胞成为允许细胞,病毒能繁殖,或是一个细胞群体仅有少数细胞产生病毒子代。

39.缺损病毒(defectiveviruses) 基因组有缺损,必须依赖于其他病毒基因或病毒基因组才能复制的病毒。有生物活性的缺损病毒包括干扰缺损病毒、卫星病毒、条件缺损病毒和整合的病毒基因组。

40.干扰缺损病毒(defective interferingviruses) 完全病毒复制时产生的一类亚基因组的缺失突变体。在病毒以高感染复数感染时能以较高频率产生。由于其基因组有缺损,所以必须依赖于同源的完全病毒才能复制,同时亦能干扰其完全病毒的复制。 41.卫星病毒(Satilliteviruses) 存在于自然界中的一种绝对缺损病毒,其必须依赖于与之无关的辅助病毒的基因产物才能复制,同时亦可干扰其辅助病毒的复制。

42.条件缺损病毒(coditionally defective viruses) 即基因组发生了突变的病毒条件致死突变体。它们在允许条件下能够正常繁殖,在非允许条件或称限制条件下导致流产感染发生。

43.整合感染(integratedinfection) 病毒感染细胞后,因病毒与细胞的性质,病毒基因组整合于宿主染色体,并随细胞分裂传递给子代细胞。

44.烈性噬菌体(virulentphage) 感染细菌后,能在细胞内正常复制,并最终杀死细胞的噬菌体。 45.溶源性(1ysogeny) 感染细胞后噬菌体不能完成复制循环,噬菌体基因组长期存在于宿主细胞内,没有子代噬菌体产生的现象。

46.温和噬菌体(temperate phage) 能够导致溶源性发生的噬菌体,又称溶源性噬菌体(1ysogenic phage)。

47.原噬菌体(prophage) 整合于细菌染色体或以质粒形式存在的温和噬菌体基因组。 48.溶源性细菌(1ysogeniec bacteria) 细胞中含有以原噬菌体状态存在的温和噬菌体基因组的细菌。

49.自发裂解(spontaneons!ysis) 自然情况下的溶源性细菌的裂解,但裂解量较少。 50.诱发裂解(inductive!ysis) 经紫外线、环氧化合物等理化因子处理,溶源性细菌发生的大量裂解。

51.杀细胞感染(cytocidalinfection) 病毒的感染给细胞造成巨大的影响,最终导致细胞死亡和裂解。与之相反的则为非杀细胞感染。

52.溶源转变(1ysogenicconversion) 由原噬菌体引起的溶源性细胞除免疫性外的其他表型改变,包括溶源菌细胞表面性质的改变和致病性转变。

53.从外部融合(fusionfromvithout) 病毒以高感染复数感染时,由毒粒具细胞融合活性的病毒糖蛋白所引起的细胞间的融合。

54.从内部融合(fusionfrom within) 因受染细胞内表达的具细胞融合活性的病毒糖蛋白结合于细胞表面,从而导致的受染细胞与相邻细胞的融合。

55.半数致死剂量(50%lethal dose,LDso) 使半数试验宿主死亡的病毒剂量。 56.半数感染剂量(50%binfective dose,IDso) 使半数试验宿主发生感染的病毒剂量。

57.半数组织培养感染剂量(50%tissue culture infective dose,TCIDso) 使半数组织培养物发生感染的病毒剂量。

58.包涵体(inclusionbody) 病毒感染细胞内出现的特异性染色区域。不同病毒所形成的包涵体在细胞质和/或细胞核内的定位不同;其染色性质亦不同,即有的嗜酸性染料,有的嗜碱性染料;并且其大小、形态和数量亦有所区别,所以包涵体在病毒的实验诊断具有一定的意义。包涵体是病毒复制所产生的复制复合物、转录复合物、装配中间体,所合成的核壳和毒粒累积在宿主细胞的特定区域内而形成的,称之为病毒工厂的结构。

59.致病性(pathogenicity) 特定的微生物种引起宿主疾病的潜在能力,或致病的状态或特性,是病毒种的特征。

60.卫星RNA(satelliteRNA,satRNA) 必须依赖于辅助病毒进行复制的小分子单链RNA片段,它被包装在其辅助病毒的壳体中,其对于辅助病毒的复制不是必需的,它们与辅助病毒基因组无明显的同源性,但其存在往往可影响辅助病毒引起的感染症状。

61.类病毒(viroid) 一类低相对分子质量侵染性的RNA,它们没有蛋白质外壳,亦无编码功能,在细胞内利用宿主的依赖于DNA的RNA聚合酶Ⅱ进行复制,大多数类病毒RNA都呈高度碱基配对区与单链环状区相间排列的杆状构型。

62.朊病毒(prion) 一种蛋白质侵染颗粒(proteinaceous infectionus particle,PrP),系引起哺乳动物的亚急性海绵样脑病的病原因子。据认为它们不含任何核酸,而是一种细胞组成型基因表达蛋白PrP‘构型发生改变所产生的同分异构体。62.毒力(virulence) 一种有机体(如病毒)致病性的程度或强度,以病例致死率和或侵染宿 主组织并致病的能力表示,是病毒株的特征。

二、习 题

填空题

1.病毒的存在范围是病毒能够感染并在其中复制的 。

2.从原核生物中分离的病毒统称噬菌体,它们包括 、 和 等。 3. 病毒属名的词尾是 、科名的词尾是 、亚科名的词尾是 ,目名的词尾是 。 4. 纯化的病毒制备物应保持其 和 。

5. 血凝抑制试验是根据特异性的病毒抗体与病毒表面蛋白作用可能抑制 性质设计的。 6. 螺旋对称病毒体的直径是由 决定的,而其长度则是由 所决定的。

7 .病毒蛋白质根据其是否存在于毒粒中分为 和 两类。

8. 病毒包膜糖蛋白是由多肽链骨架与寡糖侧链,通过 将糖链的 与肽链的 连接形成。

9. 由一步生长曲线可获得病毒繁殖的两个特征性数据,即潜伏期和裂解量。前者为所需的最短的时间,后者为 的平均数目。

10. 病毒的复制过程依其发生事件顺序分为以下 、 、 、 和 5个阶段。 11. 动物病毒进入细胞的方式包括 、 、 、 等。

12. 动物病毒基因组DNA转录产生的初始转录要经过包括 、 、 和 等修饰才能成熟为功能性mRNA。

13. 病毒的非增殖性感染有 、 和 3种类型。

14. 流产感染的发生或是由于病毒感染的细胞是 或是由于感染的病毒是 。

本文来源:https://www.bwwdw.com/article/etxp.html

Top