高等数学-习题答案-方明亮-第四章

更新时间:2023-12-26 18:55:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

习 题 4-1

1.求下列不定积分: (1)解:?(1xx1235?5xx)dx??(xx??5x2)dx?2x?2x2?C

(2)解:?(2?3)dx?x242ln2?2?6xln6?9x2ln3?C

(3)略. (4) 解:?(1x?12?cot2x)dx??1x?12dx??(csc2x?1)dx

=arcsinx?cotx?x?C

(5) 解:?102dx ??108dx??80dx?x3xxxx80xln8012?C

(6) 解:?sin(7)?cos2x2x2dx=??21(1?cosx)dx?212x?sinx?C

cosx?sinxdx ??cosx?sin2xcosx?sinxcos2dx??(cosdx?x?sinx)dx??sinx?cosx?C

(8) 解:?cos2xcos2xsin2xdx??x?sin22xcosxsin2x?(1sin2x?1cos2x)dx

??cotx?tanx?C

(9) 解: ?secx(secx?tanx)dx??sec2xdx??secxtanxdx?tanx?secx?C

??x,x??1?(10) 解:设f(x)?max{1,x},则f(x)??1,?1?x?1.

?x,x?1??f(x)在(??,??)上连续,

?12??2x?C1,x??1??1?x?1又?F(x)须处处连续,有F(x),F(x)??x?C2,?1?x2?C3,x?1?212x?C1) ,即?1?C2??122则必存在原函数

x??1lim?(x?C2)?lim?(?x??112?C1,

x?1lim?(12x?C3)?lim?(x?C2) ,即x?12?C3?1?C2,

1

.

联立并令C1?C,可得C2?12+C,C3?1?C.

?12??2x?C,x??1?1?故?max{1,x}dx??x??C,?1?x?1.

2??12x?1?2x?1?C,?2. 解:设所求曲线方程为y?f(x),其上任一点(x,y)处切线的斜率为从而

y?dydx?x3,

?xdx?314x?C4

由y(0)?0,得C?0,因此所求曲线方程为 y?3.解:因为

?1?sin?2214x4.

???1x??sinxcosx,??cos??22??x??cosxsinx ??1?1???cos2x??sin2x?sinxcosx

2?4?

所以sin2x、 ?2112cos2x、 ?14cos2x都是sinxcosx的原函数.

习 题 4-2

1.填空. (1)

1x2dx = d(?1x + C) (2)dx = d(lnx+ C)

x1(3)exdx = d(ex+ C) (4) sec2xdx = d(tanx+ C) (5)sinxdx = d(?cosx+ C) (6) cosxdx = d(sinx+ C) (7)

11?x2dx = d(arcsinx+ C) (8)

x1?x1x?122dx = d(1?x2+ C)

(9)tanxsecxdx = d(secx+ C) (10)

dx = d(arctanx+ C)

2

(11)

1(x?1)xdx = d(2arctanx+ C) (12) xdx = d(

x22+ C)

2.求下列不定积分: (1) 解:?

xx?412dx ??1x?42d(x?422)?12?(x?4)2?12 d(x?4)

2

?(x2?4)2?C?ln42x?4?C

(2) 解:?xx1dx??ln1x4xd(lnx)?ln5x5?C

(3) 解:?exx2dx??ed(?1x1)??ex?C

13e3x(4) 解:?(e2x?2e3x?2)exdx??(e2x?2e3x?2)d(ex)?dx4?9x2?12e4x?2e?Cx

(5) 解:???dx21?(3x2)2?13d(3x2)?)2?131?(3x2arcsin3x2?C

(6) 解:?(7) 解:?(8) 解:?1?lnx(xlnx)12dx??(xln1x)2d(xlnx)??1xlnx?C1

d(lnlnx)?lnlnlnx?Cxlnxlnlnx1e?e4x?xdx??ln12x1xlnlnxxd(lnx)??lnlnxx

dx??e?1d(e)?arctane?C

2(9) 解:?cosxdx??( ??(?4?1?cos2x2cos2x42)dx?2?1?2cos2x?cos2x41?cos4x2dx

1cos2x2??)dx ?x?sin2x4??dx

3x?sin2x4sin4x4?C

12(10) 解:?3sinx?cosxsinx?cosx3dx??3sinx?cosxd(sinx?cosx)?2(sinx?cosx)3?C

(11) 解:?cosxdx??cosxcosxdx??1?sinxd(sinx)?sinx?22sin3x3?C

3

(12) 解:?10arccosxdx??10arccosx1?x2?10arccosxd(arccosx)??ln10?C

(13) 解:?arcsinx2x?

1?x2d?arcsinxd(arcsinx)?arcsinx2?C(14) 解:?cosx1sinxdx??sinxd(sinx)?2sinx?C

(15) 解:?arctanxdx?2xxx(1?x)?arctan1?xdx?2?arctan1?(x)2d(x)

?2?arctanxd(arctanx)?(arctanx)2?C

(16) 解:?sin3xcos5xdx??sin2xcos5xdcosx???(1?cos2x)cos5xdcosx?118cos8x?6cos6x?C

(17) 解:?tan3xsec5xdx?tan2xsec4xdsecx??(sec2x?1)sec4xdsecx

?117secx7x?55secx?C

(18) 解:?cos5xsin4xdx??sin9x?sinx2dx??118cos9x?12cosx?C

(19) 解:?tan3xsec4xdx??tan3xsec2xdtanx??tan3x(tan2x?1)dtanx

?16156tanxx?4tanx?C

(20) 解:令6x?t,则x?t6,dx?6t5dt,代入原式得

2?1x(1?3x)dx??15t3(1?t2)6tdt?6?t?1?1t2?1dt?6t?6arctant?C

=66x?6arctan6x?C

(21) 解:令x?sect,t?[0,?2],dx?secttantdt,则

?1tdt?xx2dx??1?1secttantsecttan?dt?t?C=arccos1x?C

1(22) 解:?1??x21?x2dx?1d(?1???xd(1)x(12x)x)?1(1)2x

x?1 4

??2?112()?1xd((1x)?1)??2()?1?2x2121?xx2?C

习 题 4-3

求下列不定积分 (1)解:?xsin2xdx???x2cos2x?1?214xd(?cos2x)??x2cos2x?1cos2xdx ?2sin2x?C

(2)解:?xe?xdx???xde?x??xe?x??e?xdx??xe?x?e?x?C (3)解:?xlnxdx??lnxd(2x33)?x33lnx??x33d(lnx)?x33lnx??x23dx

?x33lnx?x39?C

(4)略.

(5)解:?x2cosxdx??x2dsinx?x2sinx??sinxdx2?x2sinx??2xsinxdx

?xsinx?22?2xdcosx?xsinx?2xcosx?2?cosxdx

2

?xsinx?2xcosx?2sinx?C(6)解:因为?e?xsin2xdx???sin2xde?x??e?xsin2x??e?xd(sin2x)

??e??e?xsin2x?2?cos2xd(esin2x?2e?x?x) ??e?xsin2x?2e?xcos2x?2?e?xd(cos2x)

?x?xcos2x?4?esin2xdx?x

?C

于是?e?xsin2xdx??e?xsin2x?2e5x3cos2x(7)解:?xarctanxdx??arctanxd23?x33arctanx??x33darctanx

?x33x3arctanx?1?31?x2x32dx?x33arctanx?1?3x?x?x1?x23dx

?3arctanx?13x?ln(1?x)?C

2 5

(8)解:?xcosxdx??x21?cos2x2dx?12?(x?xcos2x)dx?1x24?1xcos2xdx ?2?x24x2?1?4xdsin2x?x24?14xsin2x??sin42xdx

?4?14xsin2x?18cos2x?C

(9)解:?

1xarcsinxdx?2?arcsinxdx?2xarcsinx?2?xdarcsinx?2xarcsinx??111?xdx?2xarcsinx?21?x?C

(10)解:?xedx?23x?3xde23x?xe33x23x?2?3e3xxe3xdx?xe323x??xde923x

?xe323x?29xe?227?C

(11)解:因为?coslnxdx?xcoslnx??xdcoslnx?xcoslnx??sinlnxdx

?xcoslnx?xsinlnx??xdsinlnx ?coslnxdx

?C?xcoslnx?xsinlnx?于是?coslnxdx?xcoslnx?xsinlnx2

(12)解:?xf??(x)dx??xdf?(x)?xf?(x)??f?(x)dx?xf?(x)?f(x)?C

习 题 4-4

求下列不定积分 (1)解:?x3x3x?1x2dx??x?1?1x?13dx??(x?x?1)dx?2?x?1dx

1?3?25?x?lnx?1?C

(2)解:?

x?x?8x?x34dx??(x2?x?1)dx??x?x?8x?x32dx

6

??(x?x?1)dx??(x328x?4x?1?3x?1)dx

?3?x222?x?8lnx?4lnx?1?3lnx?1?C

(3)解:?2x?2x?13(x?2)(x?1)122dx??x?2121dx???x?2x?132dx??(x2?3x?42?1)2dx

?lnx?2??2d(x?1)x?122?2?x?1dx??2(xd(x?1)22?1)??(x42?1)2dx

?lnx?2?12ln(x?1)?2arctanx?232(x?1)2?2xx?12?2arctanx?C

(上式最后一个积分用积分表公式28) (4)解:?6x?11x?4x(x?1)22dx?1?[4x?2x?1?1(x?1)22]dx

1x?1?4lnx?2lnx?1?xx?x?x?11432x?1?C?2lnx(x?1)??C

12(5)解:??12dx??(x?1)(x12x2?1)dx?12?x?1dx??xx?12?1dx

lnx?1?dx3?sin2ln(x?1)?2dx2arctanx?C

du(6)解:?x??7?cos2xu?tanx?3?4u2?1?3du1?(23u)2

?123arctan2tanx3?C

(7)解:?(8)解:?dx1?31?xt?31?x?3tdt1?t2?3?(t?1?11?t)dt?32t?t?lnt?1?C2

1?xx1?xdxt?1?x1?x?(t4t222?1)(t?1)dt??(1t?1?1t?1?2t?12)dt

?lnt?1t?1?2arctant?C

习 题 4-5

利用积分表计算下列不定积分:

7

(1)?dx5?4x?x2

解:因为?dx?d(x?2)5?4x?x2?

1?(x?2)2在积分表中查得公式(73)

?dx22C

x2?a2?ln(x?x?a)?现在a?1,x?x?2,于是

?dx?ln(x?5?4x?x2?2)?C

5?4x?x2(2)?ln3xdx

解:在积分表中查得公式(135)

?lnnxdx?x(lnx)n?n?lnn?1xdx

现在n?3,重复利用此公式三次,得

?ln3xdx?xln3x?3xln2x?6xlnx?6x?C.

(3)?1(1?x2)2dx

解:在积分表中查得公式(28)

?11dx(b?ax2)2dx?x2b(ax2?b)?2b?ax2?b

于是现在a?1,b?1,于是

?11dxx(1?x2)2dx?

x2(x2?1)?2?x2?1?2(x2x?1)?arctan?C(4)?dxxx2

?1解:在积分表中查得公式(51)

?1dx?1axx2?aaarccosx?C

于是现在a?1,于是

?dx1xx2 ?arccos?1x?C

8

(5)?x2x2?2xdx 解:令t?x?1,因为

?x2x2?2xdx??x2(x?1)2?1dx??(t2?2t?1)t2?1dt

由积分表中公式(56)、(55)、(54)

?x2x2?a2dx?x2222a2228(2x?a)x?a?8lnx?x?a?C

?xx2?a2dx?12233(x?a)?C

?x2?a2dx?x222x2?a?a22lnx?x2?a?C

于是

?x2x2?2xdx?x?12228[2(x?1)?a)(x?1)?a2

2?5a1?(x?1)2?a2?128lnx?3[(x?1)?a2]3?C(6)?dxx2

2x?1解:在积分表中查得公式(16)、(15)

?dx??ax?badxx2ax?bbx?2b?

xax?b?dx?2arctanax?bax?b?b?b?C

x于是现在a?2,b??1,于是

?dxx?12

2x?1dxx2x?1?x??x2x?1?2x?2arctan2x?1?C(7) ?cos6xdx

解:在积分表中查得公式(135)

?cosnxdx?1n?1ncosxsinx?n?1n?2n?cosxdx

现在n?6,重复利用此公式三次,得

?cos6xdx?153sinx?15(1x6cosxsinx?524?cosx244sin2x?2)?C.

(8)?e?2xsin3xdx

.

9

解:在积分表中查得公式(128)

?e?eaxsinbxdx?1a?b22eax(asinbx?bcosbx)?C

现在a??2,b?3,于是

?2x

113e113axsin3xdx?(?2sin3x?3cos3x)?Cax .

??e(2sin3x?3cos3x)?C

本章复习题 A

一、填空. (1)已知F(x)是

sinxx的一个原函数,则d(F(x)) = 22sinxx2dx.

(2)已知函数y?f(x)的导数为y??2x,且x?1时y?2,则此函数为

y?x?1.

2(3)如果 ?f(x)dx?xlnx?C,则f(x)= lnx?1.

(4)已知?f(x)dx?sinx?x?C,则?exf(ex?1)dx=sin(ex?1)?ex?1?C. (5)如果 ?f(sinx)cosxdx?sin2x?C,则f(x)=2x. 二、求下列不定积分.

1?cos2(1)解:?x1?cos2xdx??1?2cos1?cos22xx?1dx?1?21?coscos22xxdx??(1?sec2x)dx

?x?tanx?C

e?x(2)解:?dx1?ex??1?edx?x???d(e?x?1)?x1?e??ln(e?1)?Cx

3x2()x?xxx22?3?5?23x14?5?C dx?2?()dx?5?()dx?(3)解:?x42ln3?ln4ln24(4)解:?(arcsinx)2dx?xarcsin2x?2?arcsinx?x1?x2dx

10

?xarcsin2x?2?arcsinxd1?x2?xarcsin2x?21?x2arcsinx?2?1?x2darcsinx

?xarcsin2x?21?x2arcsinx?2x?C

(5)解:令t?x?1,则x?t2?1,于是

?dx?2tdt?2dt1)dt?lnt?1xx?1?(t2?1)t?t2?1??(1t?1?t?1t?1?C

3(6)解:?xx(1?x2)2dx??[xx1?x2?(1?x2)2]dx??1?x2dx??x(1?x2)2dx?1ln(1?x2)?122(1?x2)?C

(7)解:?dx??1?C

(arcsinx)21?x2?(arcsinx)?2d(arcsinx)?arcsinx(8)解:?1?xx?1dx?dx

9?4x2d?9?4x2?x9?4x23?13?2d(2x)?114x2)

1?(2238?9?4x2d(9?3x)?12arcsin2x13?49?4x2?C

(9)解:?tan5xsec4xdx??tan4xsec3xdsecx??(sec2x?1)2sec3xdsecx86??(sec7x?2sec5x?sec3x)dsecx?secx8?secxsec4x3?4?C

(10)解:令x?sint,t?(?π2,π2),于是 ?dx?costdt1dtd(t1?1?x2?1?cost??1?cost?1?costdt?t??1?cost?t??2) cos2t2

11

?t?tant22sin?C?arcsinx?2cos2t2tsinsint2?C?arcsinx?1?t21?xxx22?C

(11)解:?x3exdx?1?xde2x22212x21?xe??exdx2?1xe2?1ex2?C

22222(12)解:?lnlnxxdx?lnlnxdlnx?lnlnx?C

?1,x?0三、设 f(x)???x?1,0?x?1,求?f(x)dx.

??2x,x?1解:?f(x)在(??,??)上连续,则必存在原函数F(x),使得

?x?C?1,x?0F(x)???12x2?x?C2,0?x?1 , ??x?1?x2?C3,又?F(x)须处处连续,有

lim1?(x?C1)?limx2?x?C ,即Cx??0??0?(x22)1?C2,

limx2?Clim12?C3x?1?(3)??(x?xx?122) ,即 1?C3?2?C2

联立并令C11?C,可得C2?2+C,C3?1?C.

??x?C,?.x?0故?f(x)dx???12x2?x?C,0?x?1. ??x?1??x2?12?C,四、若In??tannxdx,n?2,3,?,证明:I1n?1n?n?1tanx?In?2.

证明:因为

12

In???tan?tan1nxdx?xsec2?tann?2xtan2xdx??tann?2x(sec2x?1)dx

n?2xdx??tann?2xdx??tann?2xdtanx??tann?2xdx

?n?1tann?1x?In?2

故 In?

1n?1tann?1x?In?2.

本章复习题B

一、填空. (1) ?12e?x1x; (2) x?213x?c; (3)

34155x2?433x2?c1x?c2

(4) (?2x2?1)e?x?c 二、求下列不定积分.

arctanee2xx(1)?dx

解:?arctanee2xxdx??12?arctanedex?2x=?[e?2xarctanex??2111?(e)xe2x1e2xdx]

=?[e21?2xarctane?x?(1ex?ex2x1?e)dx]=?12(e?2xarctane?ex?x?arctane)?Cx。 (2)?dxsin2x?2sinxx2

2t1?t2解:令t?tan是

,则sinx?,cosx?1?t1?t22,x?arctant,dx?11?t2dt。于

?sindx2x?2sinx2?111x1(?t)dt?lntan?tan?4t4282x2?C

(3)?ln(x?1?x)dx;

13

解:?ln(x?1?x2)dx?x?ln(x?1?x2)??x?ln(x?1?x)?2?xdln(x?1?x)

22?xdx1?x2

2?x?ln(x?1?x)?dx

1?x?C。

(4)?xexxe?12e?1,则x?ln(1?u),dx?解:令u?x2u1?u2du,于是有

?xexxdx?e?12?(1?u)ln(1?u)u4u22222u1?u2du?2?ln(1?u2)du

?2uln(1?u)??1?uxdu?2uln(1?u)?4u?arctanu?C

2?2xe?1?4e?1?arctanxe?1?C。

x(5)略,(6)略, (7)略, (8)略, (9)略. 三、略.

四、设F(x)是f(x)的原函数,且当x?0时,有f(x)F(x)?sin22x,又F(0)?1,

F(x)?0,求f(x).

解:因F(x)是f(x)的原函数,则f(x)=F?(x).于是

sin22x?f(x)F(x)?F?(x)F(x)

上式两端积分得:

?sin22xdx??F?(x)F(x)dx

?sin4x8?C

F(x)2122?x2又F(0)?1,F(x)?0,得C?,故F(x)?x?sin4x4?1,从而

f(x)=F?(x)?1?cos4x4x?4?sin4x.

14

15

本文来源:https://www.bwwdw.com/article/erzx.html

Top