M95128-WBN6TG中文资料

更新时间:2023-04-08 10:37:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1/39

October 2004M95256M95128

256Kbit and 128Kbit Serial SPI Bus EEPROM

With High Speed Clock

FEATURES SUMMARY

■Compatible with SPI Bus Serial Interface (Positive Clock SPI Modes)■

Single Supply Voltage:– 4.5 to 5.5V for M95xxx – 2.5 to 5.5V for M95xxx-W – 1.8 to 5.5V for M95xxx-R ■

High Speed

–10MHz Clock Rate, 5ms Write Time ■Status Register

■Hardware Protection of the Status Register ■BYTE and PAGE WRITE (up to 64 Bytes)■Self-Timed Programming Cycle

■Adjustable Size Read-Only EEPROM Area ■Enhanced ESD Protection

■More than 100000 Erase/Write Cycles ■

More than 40-Year Data Retention

Table 1. Product List

Reference

Part Number

M95256

M95256

M95256-W M95256-R M95128

M95128

M95128-W M95128-R

元器件交易网b22eac2fa5e9856a5612601f

元器件交易网b22eac2fa5e9856a5612601f

M95256, M95128

TABLE OF CONTENTS

FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Table 1.Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Figure 1.Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Figure 2.Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Figure 3.DIP, SO and TSSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Table 2.Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

Serial Data Output (Q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

Serial Data Input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

Serial Clock (C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

Write Protect (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

CONNECTING TO THE SPI BUS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Figure 4.Bus Master and Memory Devices on the SPI Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

SPI Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Figure 5.SPI Modes Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

OPERATING FEATURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Power On Reset: VCC Lock-Out Write Protect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Power-down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Active Power and Standby Power Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Hold Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Figure 6.Hold Condition Activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

WIP bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

SRWD bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Table 3.Status Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Data Protection and Protocol Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Table 4.Write-Protected Block Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Figure 7.Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

Table 5.Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

Figure 8.Write Enable (WREN) Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 2/39

元器件交易网b22eac2fa5e9856a5612601f

M95256, M95128

Write Disable (WRDI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

Figure 9.Write Disable (WRDI) Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

Read Status Register (RDSR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

WIP bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

SRWD bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

Figure 10.Read Status Register (RDSR) Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Table 6.Protection Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Figure 11.Write Status Register (WRSR) Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Figure 12.Read from Memory Array (READ) Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Write to Memory Array (WRITE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Figure 13.Byte Write (WRITE) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Figure 14.Page Write (WRITE) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

POWER-UP AND DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Power-up State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Initial Delivery State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Table 7.Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

Table 8.Operating Conditions (M95xxx). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

Table 9.Operating Conditions (M95xxx-W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

Table 10.Operating Conditions (M95xxx-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

Table 11.AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Figure 15.AC Measurement I/O Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Table 12.Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Table 13.DC Characteristics (M95xxx, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Table 14.DC Characteristics (M95xxx, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Table 15.DC Characteristics (M95xxx-W, Device Grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Table 16.DC Characteristics (M95xxx-W, Device Grade 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

Table 17.DC Characteristics (M95xxx-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

Table 18.AC Characteristics (M95xxx, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

Table 19.AC Characteristics (M95xxx, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Table 20.AC Characteristics (M95xxx-W, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

Table 21.AC Characteristics (M95xxx-W, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Table 22.AC Characteristics (M95xxx-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Figure 16.Serial Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

Figure 17.Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

Figure 18.Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

3/39

M95256, M95128

4/39Figure 19.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . .33 Table 23.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data. . . . . . . . . .33 Figure 20.SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline . . . .34 Table 24.SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data 34

Figure 21.SO8 wide – 8 lead Plastic Small Outline, 200 mils body width, Package Outline. . . . . .35 Table 25.SO8 wide – 8 lead Plastic Small Outline, 200 mils body width, Package Mechanical Data 35

Figure 22.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . .36 Table 26.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data. . . . . . . . . . . .36

PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Table 27.Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Table 28.Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38元器件交易网b22eac2fa5e9856a5612601f

M95256, M95128

SUMMARY DESCRIPTION

These electrically erasable programmable memo-ry (EEPROM) devices are accessed by a high speed SPI-compatible bus. The memory array is organized as 32768 x 8 bit (M95256) and 16384 x 8 bit (M95128).

The device is accessed by a simple serial interface that is SPI-compatible. The bus signals are C, D and Q, as shown in Table 2. and Figure 2..

The device is selected when Chip Select (S) is tak-en Low. Communications with the device can be interrupted using Hold (HOLD).

sions, and how to identify pin-1.

Table 2. Signal Names

C Serial

Clock

D Serial Data Input

Q Serial Data Output S Chip Select

W Write

Protect HOLD Hold

V CC Supply Voltage

V SS Ground

元器件交易网b22eac2fa5e9856a5612601f

5/39

M95256, M95128

6/39

SIGNAL DESCRIPTION

During all operations, V CC must be held stable and within the specified valid range: V CC (min) to V CC (max).

All of the input and output signals must be held High or Low (according to voltages of V IH , V OH , V IL or V OL , as specified in Table 13. to Table 17.).These signals are described next.

Serial Data Output (Q).This output signal is used to transfer data serially out of the device.Data is shifted out on the falling edge of Serial Clock (C).

Serial Data Input (D).This input signal is used to transfer data serially into the device. It receives in-structions, addresses, and the data to be written.Values are latched on the rising edge of Serial Clock (C).

Serial Clock (C).This input signal provides the timing of the serial interface. Instructions, address-es, or data present at Serial Data Input (D) are latched on the rising edge of Serial Clock (C). Data on Serial Data Output (Q) changes after the falling edge of Serial Clock (C).

When this input signal is High,the device is deselected and Serial Data Output

(Q) is at high impedance. Unless an internal Write cycle is in progress, the device will be in the Stand-by Power mode. Driving Chip Select (S) Low se-lects the device, placing it in the Active Power mode.

is required prior to the start of any instruction. pause any serial communications with the device without deselecting the device.

During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data Input (D)and Serial Clock (C) are Don’t Care.

To start the Hold condition, the device must be se-The main purpose of this in-put signal is to freeze the size of the area of mem-ory that is protected against Write instructions (as specified by the values in the BP1 and BP0 bits of the Status Register).

This pin must be driven either High or Low, and must be stable during all write instructions.

元器件交易网b22eac2fa5e9856a5612601f

M95256, M95128 CONNECTING TO THE SPI BUS

These devices are fully compatible with the SPI protocol.

All instructions, addresses and input data bytes are shifted in to the device, most significant bit first. The Serial Data Input (D) is sampled on the first rising edge of the Serial Clock (C) after Chip All output data bytes are shifted out of the device, most significant bit first. The Serial Data Output (Q) is latched on the first falling edge of the Serial Clock (C) after the instruction (such as the Read from Memory Array and Read Status Register in-structions) have been clocked into the device. Figure 4. shows three devices, connected to an MCU, on a SPI bus. Only one device is selected at a time, so only one device drives the Serial Data Output (Q) line at a time, all the others being high impedance.

元器件交易网b22eac2fa5e9856a5612601f

7/39

M95256, M951288/39SPI Modes

These devices can be driven by a microcontroller with its SPI peripheral running in either of the two following modes:

–CPOL=0, CPHA=0

–CPOL=1, CPHA=1

For these two modes, input data is latched in on the rising edge of Serial Clock (C), and output data is available from the falling edge of Serial Clock (C).The difference between the two modes, as shown in Figure 5., is the clock polarity when the bus master is in Stand-by mode and not transferring data:– C remains at 0 for (CPOL=0, CPHA=0)– C remains at 1 for (CPOL=1, CPHA=1)

元器件交易网b22eac2fa5e9856a5612601f

M95256, M95128 OPERATING FEATURES

Power-up

When the power supply is turned on, V CC rises from V SS to V CC.

During this time, the Chip Select (S) must be al-lowed to follow the V CC voltage. It must not be al-lowed to float, but should be connected to V CC via a suitable pull-up resistor.

sensitive as well as level sensitive. After Power-up, the device does not become selected until a falling edge has first been detected on Chip Select

been High, prior to going Low to start the first op-eration.

Power On Reset: V CC Lock-Out Write Protect In order to prevent data corruption and inadvertent Write instructions during Power-up, a Power On Reset (POR) circuit is included. The internal reset is held active until V CC has reached the Power On Reset (POR) threshold voltage, and all operations are disabled – the device will not respond to any instruction. In the same way, when V CC drops from the operating voltage, below the Power On Reset (POR) threshold voltage, all operations are dis-abled and the device will not respond to any in-struction.

A stable and valid V CC must be applied before ap-plying any logic signal.

Power-down

At Power-down, the device must be deselected.

voltage applied on V CC.

Active Power and Standby Power Modes When Chip Select (S) is Low, the device is select-ed, and in the Active Power mode. The device consumes I CC, as specified in Table 13. to Table 17..

lected. If an Erase/Write cycle is not currently in progress, the device then goes in to the Standby Power mode, and the device consumption drops to I CC1.

Hold Condition

The Hold (HOLD) signal is used to pause any se-rial communications with the device without reset-ting the clocking sequence.

During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data Input (D) and Serial Clock (C) are Don’t Care.

To enter the Hold condition, the device must be Normally, the device is kept selected, for the whole duration of the Hold condition. Deselecting the de-vice while it is in the Hold condition, has the effect of resetting the state of the device, and this mech-anism can be used if it is required to reset any pro-cesses that had been in progress.

The Hold condition starts when the Hold (HOLD) signal is driven Low at the same time as Serial Clock (C) already being Low (as shown in Figure 6.).

The Hold condition ends when the Hold (HOLD) signal is driven High at the same time as Serial Clock (C) already being Low.

Figure 6. also shows what happens if the rising and falling edges are not timed to coincide with Serial Clock (C) being Low.

元器件交易网b22eac2fa5e9856a5612601f

9/39

M95256, M95128

10/39

Status Register

Figure 7. shows the position of the Status Register in the control logic of the device. The Status Reg-ister contains a number of status and control bits that can be read or set (as appropriate) by specific instructions.

WIP bit.The Write In Progress (WIP) bit indicates whether the memory is busy with a Write or Write Status Register cycle.

WEL bit.The Write Enable Latch (WEL) bit indi-cates the status of the internal Write Enable Latch.BP1, BP0 bits.The Block Protect (BP1, BP0) bits are non-volatile. They define the size of the area to be software protected against Write instructions. SRWD bit.The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write Protect (W) signal. The Status Register signal allow the device to be put in the Hardware Protected mode. In this mode, the non-volatile bits of the Status Register (SRWD, BP1, BP0) become read-only bits.

Table 3. Status Register Format

Data Protection and Protocol Control

Non-volatile memory devices can be used in envi-ronments that are particularly noisy, and within ap-plications that could experience problems if memory bytes are corrupted. Consequently, the device features the following data protection mechanisms:■Write and Write Status Register instructions

are checked that they consist of a number of clock pulses that is a multiple of eight, before they are accepted for execution.■All instructions that modify data must be

preceded by a Write Enable (WREN) instruction to set the Write Enable Latch

(WEL) bit. This bit is returned to its reset state by the following events:–Power-up

–Write Disable (WRDI) instruction

completion

–Write Status Register (WRSR) instruction

completion

–Write (WRITE) instruction completion ■The Block Protect (BP1, BP0) bits allow part of

the memory to be configured as read-only. This is the Software Protected Mode (SPM).■The Write Protect (W) signal allows the Block

Protect (BP1, BP0) bits to be protected. This is the Hardware Protected Mode (HPM).

For any instruction to be accepted, and executed,Chip Select (S) must be driven High after the rising edge of Serial Clock (C) for the last bit of the in-struction, and before the next rising edge of Serial Clock (C).

Two points need to be noted in the previous sen-tence:

–The ‘last bit of the instruction’ can be the

eighth bit of the instruction code, or the eighth bit of a data byte, depending on the instruction (except for Read Status Register (RDSR) and Read (READ) instructions).

–The ‘next rising edge of Serial Clock (C)’ might

(or might not) be the next bus transaction for some other device on the SPI bus.

Table 4. Write-Protected Block Size

b7 b0SRWD

0 0 0 BP1 BP0 WEL WIP

Status Register Write Protect

Block Protect Bits Write Enable Latch Bit

Write In Progress Bit

Status Register Bits Protected Block

Array Addresses Protected BP1 BP0

M95256

M95128

0 0 none none none 0 1 Upper quarter 6000h - 7FFFh 3000h - 3FFFh 1 0 Upper half 4000h - 7FFFh 2000h - 3FFFh 1

1

Whole memory

0000h - 7FFFh

0000h - 3FFFh

元器件交易网b22eac2fa5e9856a5612601f

元器件交易网b22eac2fa5e9856a5612601f

M95256, M95128 MEMORY ORGANIZATION

The memory is organized as shown in Figure 7..

11/39

M95256, M9512812/39INSTRUCTIONS

Each instruction starts with a single-byte code, as summarized in Table 5..

If an invalid instruction is sent (one not contained in Table 5.), the device automatically deselects it-self.Table 5. Instruction Set Instruc tion Description Instruction Format WREN

Write Enable 0000 0110WRDI

Write Disable 0000 0100RDSR

Read Status Register 0000 0101WRSR

Write Status Register 0000 0001READ Read from Memory Array 0000 0011

WRITE Write to Memory Array

0000 0010元器件交易网b22eac2fa5e9856a5612601f

M95256, M95128

Write Enable (WREN)

The Write Enable Latch (WEL) bit must be set pri-or to each WRITE and WRSR instruction. The only way to do this is to send a Write Enable instruction to the device.As shown in Figure 8., to send this instruction to the device, Chip Select (S) is driven Low, and the bits of the instruction byte are shifted in, on Serial Data Input (D). The device then enters a wait state. It waits for a the device to be deselected, by Chip Select (S) being driven High.

One way of resetting the Write Enable Latch (WEL) bit is to send a Write Disable instruction to the device.

As shown in Figure 9., to send this instruction to the device, Chip Select (S) is driven Low, and the bits of the instruction byte are shifted in, on Serial Data Input (D).The device then enters a wait state. It waits for a the device to be deselected, by Chip Select (S) be-ing driven High.

The Write Enable Latch (WEL) bit, in fact, be-comes reset by any of the following events:

–Power-up

–WRDI instruction execution

–WRSR instruction completion

–WRITE instruction completion.

元器件交易网b22eac2fa5e9856a5612601f

13/39

M95256, M95128

14/39

Read Status Register (RDSR)

The Read Status Register (RDSR) instruction al-lows the Status Register to be read. The Status Register may be read at any time, even while a Write or Write Status Register cycle is in progress.When one of these cycles is in progress, it is rec-ommended to check the Write In Progress (WIP)bit before sending a new instruction to the device.It is also possible to read the Status Register con-tinuously, as shown in Figure 10..

The status and control bits of the Status Register are as follows:

WIP bit.The Write In Progress (WIP) bit indicates whether the memory is busy with a Write or Write Status Register cycle. When set to 1, such a cycle is in progress, when reset to 0 no such cycle is in progress.

WEL bit.The Write Enable Latch (WEL) bit indi-cates the status of the internal Write Enable Latch.When set to 1 the internal Write Enable Latch is set, when set to 0 the internal Write Enable Latch is reset and no Write or Write Status Register in-struction is accepted.

BP1, BP0 bits.The Block Protect (BP1, BP0) bits are non-volatile. They define the size of the area to be software protected against Write instructions.These bits are written with the Write Status Regis-ter (WRSR) instruction. When one or both of the Block Protect (BP1, BP0) bits is set to 1, the rele-vant memory area (as defined in Table 3.) be-comes protected against Write (WRITE)instructions. The Block Protect (BP1, BP0) bits can be written provided that the Hardware Protect-ed mode has not been set.

SRWD bit.The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write Protect (W) signal. The Status Register Write Disable (SRWD) bit and Write Protect (W)signal allow the device to be put in the Hardware Protected mode (when the Status Register Write Disable (SRWD) bit is set to 1, and Write Protect bits of the Status Register (SRWD, BP1, BP0) be-come read-only bits and the Write Status Register (WRSR) instruction is no longer accepted for exe-cution.

元器件交易网b22eac2fa5e9856a5612601f

M95256, M95128

Write Status Register (WRSR)

The Write Status Register (WRSR) instruction al-lows new values to be written to the Status Regis-ter. Before it can be accepted, a Write Enable (WREN) instruction must previously have been ex-ecuted. After the Write Enable (WREN) instruction has been decoded and executed, the device sets the Write Enable Latch (WEL).

The Write Status Register (WRSR) instruction is by the instruction code and the data byte on Serial Data Input (D).

The instruction sequence is shown in Figure 11.. The Write Status Register (WRSR) instruction has no effect on b6, b5, b4, b1 and b0 of the Status Register. b6, b5 and b4 are always read as 0. Chip Select (S) must be driven High after the rising edge of Serial Clock (C) that latches in the eighth bit of the data byte, and before the next rising edge of Serial Clock (C). Otherwise, the Write Status Register (WRSR) instruction is not executed. As soon as Chip Select (S) is driven High, the self-timed Write Status Register cycle (whose duration is t W) is initiated. While the Write Status Register cycle is in progress, the Status Register may still be read to check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1 dur-ing the self-timed Write Status Register cycle, and is 0 when it is completed. When the cycle is com-pleted, the Write Enable Latch (WEL) is reset. The Write Status Register (WRSR) instruction al-lows the user to change the values of the Block Protect (BP1, BP0) bits, to define the size of the area that is to be treated as read-only, as defined in Table 3..

The Write Status Register (WRSR) instruction also allows the user to set or reset the Status Register Write Disable (SRWD) bit in accordance with the Write Protect (W) signal. The Status Register Write Disable (SRWD) bit and Write Protect (W) signal allow the device to be put in the Hardware Protected Mode (HPM). The Write Status Register (WRSR) instruction is not executed once the Hard-ware Protected Mode (HPM) is entered.

The contents of the Status Register Write Disable (SRWD) and Block Protect (BP1, BP0) bits are fro-zen at their current values from just before the start of the execution of Write Status Register (WRSR) instruction. The new, updated, values take effect at the moment of completion of the ex-ecution of Write Status Register (WRSR) instruc-tion.

Table 6. Protection Modes

Note: 1.As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register, as shown in Table 6..

The protection features of the device are summa-rized in Table 4..

When the Status Register Write Disable (SRWD) bit of the Status Register is 0 (its initial delivery state), it is possible to write to the Status Register provided that the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN) in-struction, regardless of the whether Write Protect (W) is driven High or Low.

When the Status Register Write Disable (SRWD) bit of the Status Register is set to 1, two cases need to be considered, depending on the state of Write Protect (W):–If Write Protect (W) is driven High, it is possible to write to the Status Register

provided that the Write Enable Latch (WEL) bit has previously been set by a Write Enable

(WREN) instruction.

–If Write Protect (W) is driven Low, it is not possible to write to the Status Register even if the Write Enable Latch (WEL) bit has

previously been set by a Write Enable

(WREN) instruction. (Attempts to write to the Status Register are rejected, and are not

accepted for execution). As a consequence,

all the data bytes in the memory area that are software protected (SPM) by the Block Protect

W Signal SRWD

Bit

Mode

Write Protection of the

Status Register

Memory Content

Protected Area1Unprotected Area1

10

Software

Protected

(SPM)Status Register is Writable

(if the WREN instruction

has set the WEL bit)

The values in the BP1 and

BP0 bits can be changed

Write Protected

Ready to accept Write

instructions

00 11

01Hardware

Protected

(HPM)

Status Register is

Hardware write protected

The values in the BP1 and

BP0 bits cannot be

changed

Write Protected

Ready to accept Write

instructions

元器件交易网b22eac2fa5e9856a5612601f

15/39

M95256, M9512816/39(BP1, BP0) bits of the Status Register, are

also hardware protected against data

modification.

Regardless of the order of the two events, the Hardware Protected Mode (HPM) can be entered:–by setting the Status Register Write Disable –or by driving Write Protect (W) Low after

setting the Status Register Write Disable

(SRWD) bit.The only way to exit the Hardware Protected Mode (HPM) once entered is to pull Write Protect (W)High.Hardware Protected Mode (HPM) can never be activated, and only the Software Protected Mode (SPM), using the Block Protect (BP1, BP0) bits of the Status Register, can be used.

元器件交易网b22eac2fa5e9856a5612601f

M95256, M95128

Read from Memory Array (READ)

As shown in Figure 12., to send this instruction to bits of the instruction byte and address bytes are then shifted in, on Serial Data Input (D). The ad-dress is loaded into an internal address register, and the byte of data at that address is shifted out, on Serial Data Output (Q).

internal address register is automatically incre-mented, and the byte of data at the new address is shifted out.When the highest address is reached, the address counter rolls over to zero, allowing the Read cycle to be continued indefinitely. The whole memory can, therefore, be read with a single READ instruc-tion.

The Read cycle is terminated by driving Chip Se-lect (S) High. The rising edge of the Chip Select (S) signal can occur at any time during the cycle. The first byte addressed can be any byte within any page.

The instruction is not accepted, and is not execut-ed, if a Write cycle is currently in progress.

Note:The most significant address bits (b15 for the M95256, and bits b15 and b14 for the M95128) are Don’t Care.

元器件交易网b22eac2fa5e9856a5612601f

17/39

M95256, M95128

18/39

Write to Memory Array (WRITE)

As shown in Figure 13., to send this instruction to bits of the instruction byte, address byte, and at least one data byte are then shifted in, on Serial Data Input (D).

The instruction is terminated by driving Chip Se-In the case of Figure 13., this occurs after the eighth bit of the data byte has been latched in, in-dicating that the instruction is being used to write a single byte. The self-timed Write cycle starts,and continues for a period t WC (as specified in Ta-ble 18. to Table 22.), at the end of which the Write in Progress (WIP) bit is reset to 0.

If, though, Chip Select (S) continues to be driven Low, as shown in Figure 14., the next byte of input data is shifted in, so that more than a single byte,starting from the given address towards the end of the same page, can be written in a single internal Write cycle.

Each time a new data byte is shifted in, the least significant bits of the internal address counter are incremented. If the number of data bytes sent to the device exceeds the page boundary, the inter-nal address counter rolls over to the beginning of the page, and the previous data there are overwrit-ten with the incoming data. (The page size of these devices is 64 bytes).

The instruction is not accepted, and is not execut-ed, under the following conditions:

–if the Write Enable Latch (WEL) bit has not

been set to 1 (by executing a Write Enable instruction just before)

–if a Write cycle is already in progress

–if the device has not been deselected, by Chip

boundary (after the eighth bit, b0, of the last data byte that has been latched in)–if the addressed page is in the region

protected by the Block Protect (BP1 and BP0) bits.

元器件交易网b22eac2fa5e9856a5612601f

元器件交易网b22eac2fa5e9856a5612601f

M95256, M95128

19/39

M95256, M9512820/39POWER-UP AND DELIVERY STATE Power-up State

After Power-up, the device is in the following state:–Standby Power mode

–deselected (after Power-up, a falling edge is required on Chip Select (S) before any instructions can be started).

–not in the Hold Condition

–the Write Enable Latch (WEL) is reset to 0–Write In Progress (WIP) is reset to 0

The SRWD, BP1 and BP0 bits of the Status Reg-ister are unchanged from the previous power-down (they are non-volatile bits).Initial Delivery State The device is delivered with the memory array set at all 1s (FFh). The Status Register Write Disable (SRWD) and Block Protect (BP1 and BP0) bits are initialized to 0.

元器件交易网b22eac2fa5e9856a5612601f

21/39

M95256, M95128

MAXIMUM RATING

Stressing the device outside the ratings listed in Table 7. may cause permanent damage to the de-vice. These are stress ratings only, and operation of the device at these, or any other conditions out-side those indicated in the Operating sections of this specification, is not implied. Exposure to Ab-solute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 7. Absolute Maximum Ratings

Note: b22eac2fa5e9856a5612601fpliant with JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST ECOPACK ? 7191395 specification, and

the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU

2.AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500?, R2=500?)

Symbol Parameter

Min.Max.Unit T STG Storage Temperature

–65

150

°C T LEAD Lead Temperature during Soldering See note 1°C V O Output Voltage –0.50V CC +0.6V V I Input Voltage –0.50 6.5V V CC Supply Voltage

–0.50 6.5V V ESD

Electrostatic Discharge Voltage (Human Body model) 2

–4000

4000

V

元器件交易网b22eac2fa5e9856a5612601f

本文来源:https://www.bwwdw.com/article/eoxl.html

Top