Alevel Excel数学 Mathemactics 05_C3_June_2006
更新时间:2024-06-06 06:04:01 阅读量: 综合文库 文档下载
- alevel推荐度:
- 相关推荐
Paper Reference(s)
6665/01
Edexcel GCE
Core Mathematics C3 Advanced Level
Monday 12 June 2006 ? Afternoon Time: 1 hour 30 minutes
Materials required for examination Items included with question papers Mathematical Formulae (Green) Nil
Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI 89, TI 92, Casio CFX 9970G, Hewlett Packard HP 48G.
Instructions to Candidates
Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C3), the paper reference (6665), your surname, initials and signature.
Information for Candidates
A booklet ‘Mathematical Formulae and Statistical Tables’ is provided. Full marks may be obtained for answers to ALL questions.
There are 8 questions in this question paper. The total mark for this paper is 75.
Advice to Candidates
You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.
N23581A
This publication may only be reproduced in accordance with London Qualifications copyright policy.?2006 London Qualifications Limited.
1.
3x2?x?2(a) Simplify . 2x?1(3)
3x2?x?21(b) Hence, or otherwise, express – as a single fraction in its simplest form. 2x(x?1)x?1(3)
2.
Differentiate, with respect to x, (a) e3x + ln 2x,
(3)
(b) (5?x).
(3)
232N23581A
2
3.
y y = f(x)
Figure 1
O
(0, –2) P Q (3, 0) x Figure 1 shows part of the curve with equation y = f(x), x ? ?, where f is an increasing function of x. The curve passes through the points P(0, –2) and Q(3, 0) as shown. In separate diagrams, sketch the curve with equation (a) y = ?f(x)?,
(3)
(b) y = f–1(x),
(c) y = 1f(3x). 2(3)
Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes. (3)
N23581A
3 Turn over
4.
A heated metal ball is dropped into a liquid. As the ball cools, its temperature, T ?C, t minutes after it enters the liquid, is given by
T = 400e–0.05t + 25, t ? 0.
(a) Find the temperature of the ball as it enters the liquid.
(1)
(b) Find the value of t for which T = 300, giving your answer to 3 significant figures.
(4)
(c) Find the rate at which the temperature of the ball is decreasing at the instant when t = 50. Give
your answer in ?C per minute to 3 significant figures.
(3) (d) From the equation for temperature T in terms of t, given above, explain why the temperature of
the ball can never fall to 20 ?C.
(1)
N23581A
4
5.
O
Figure 2
O P Figure 2 shows part of the curve with equation
y = (2x – 1) tan 2x, 0 ? x <
? 4x ?. 4
The curve has a minimum at the point P. The x-coordinate of P is k. (a) Show that k satisfies the equation
4k + sin 4k – 2 = 0.
(6)
The iterative formula
xn + 1 = 1(2 – sin 4xn), x0 = 0.3, 4
is used to find an approximate value for k.
(b) Calculate the values of x1, x2, x3 and x4, giving your answers to 4 decimals places.
(3)
(c) Show that k = 0.277, correct to 3 significant figures.
(2)
N23581A
5 Turn over
6.
(a) Using sin2 ? + cos2 ? ? 1, show that the cosec2 ? – cot2 ? ? 1.
(2)
(b) Hence, or otherwise, prove that
cosec4 ? – cot4 ? ? cosec2 ? + cot2 ?.
(2)
(c) Solve, for 90? < ? < 180?,
cosec4 ? – cot4 ? = 2 – cot ?.
(6)
7.
For the constant k, where k > 1, the functions f and g are defined by
f: x ? ln (x + k), x > –k, g: x ? ?2x – k?, x ? ?.
(a) On separate axes, sketch the graph of f and the graph of g.
On each sketch state, in terms of k, the coordinates of points where the graph meets the coordinate axes.
(5) (b) Write down the range of f.
(1)
?k?(c) Find fg?? in terms of k, giving your answer in its simplest form.
?4?(2)
The curve C has equation y = f(x). The tangent to C at the point with x-coordinate 3 is parallel to the line with equation 9y = 2x + 1.
(d) Find the value of k.
(4)
N23581A
6
8.
(a) Given that cos A = 3, where 270? < A < 360?, find the exact value of sin 2A. 4(5)
??????(b) (i) Show that cos ?2x?? + cos ?2x?? ? cos 2x.
3?3???(3)
Given that
??????y = 3 sin2 x + cos ?2x?? + cos ?2x??,
3?3??? TOTAL FOR PAPER: 75 MARKS
END
(ii) show that
dy = sin 2x. dx (4)
N23581A
7
正在阅读:
Alevel Excel数学 Mathemactics 05_C3_June_200606-06
市交通运输局交通建设多篇工作总结精选和2022年工作思路08-03
我们身边的龙文化作文450字06-27
格构式井架安装计算书(PKPM计算)04-14
鄂教版六年级语文上册期末调研测试题511-30
中南大学网络教育课程考试《护理教育学》答卷 - 文本资料05-05
双层拉森钢板桩专项施工方案05-18
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- Mathemactics
- 数学
- Alevel
- Excel
- June
- 2006
- 05
- 水上交通事故原因分析
- 开学通知index
- 2017-2022年中国晒衣架市场分析预测报告(目录) - 图文
- 知识产权读本
- 西安翻译学院实践报告写作要求及技术规范
- 浙江省宁波市2018年中考科学真题试卷及答案(word版)
- 财务战略联盟 ——青岛海尔与通用电气并购案例分析
- 人教版高中历史选修1《历史上重大改革回眸》复习提纲 - 图文
- 止水钢板项目可行性研究报告
- 电建公司安全培训教材电力建设施工安全技术
- 面神经麻痹的偏方
- 可园一期高支模施工方案
- 汉语史、音韵学重点
- 讨论 手机消费者调查问卷
- 2012吉林公务员考试:公务员聘任制不能流于形式
- 考研政治
- 2009届毕业论文(设计、调查报告)格式
- 砼裂缝原因及防护措施毕业论文 - 图文
- 趣味数学教学计划 Microsoft Word 文档(3)
- 《岳池县中小学民主理财管理办法》等十四个制度