2017届苏教版 古典概型 课后限时自测
更新时间:2024-05-28 17:28:02 阅读量: 综合文库 文档下载
- 2017苏教版科学推荐度:
- 相关推荐
课后限时自测(六十)
[A级 基础达标练]
一、填空题
1.(2014·盐城模拟)袋中装有2个红球和2个白球,这四个小球除颜色外其余均相同.现从中任意摸出2个小球,则摸出的两球颜色不同的概率为________.
[解析] 任意摸出2个小球的情况有(红1,红2),(红1,白1),(红1,白2),(红2,白1),(红2,白2),(白1,白2)共6种情况,其中两球颜色不同的有(红1,白1),(红1,白2),(红2,白1),(红2,白2)共4种情况.
42所以所求概率P=6=3. 2
[答案] 3 2.(2014·课标全国卷Ⅱ)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.
[解析] 甲、乙两名运动员选择运动服颜色有(红,红),(红,白),(红,蓝),(白,白),(白,红),(白,蓝),(蓝,蓝),(蓝,白),(蓝,红),共9种.
而同色的有(红,红),(白,白),(蓝,蓝),共3种. 31所以所求概率P=9=3. 1
[答案] 3 3.(2013·浙江高考)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于__________.
[解析] 用A,B,C表示三名男同学,用a,b,c表示三名女同学,则从6名同学中选出2人的所有选法为:AB,AC,Aa,Ab,Ac,BC,Ba,Bb,Bc,Ca,Cb,Cc,ab,ac,bc,共15种选法,其中31都是女同学的选法有3种,即ab,ac,bc,故所求概率为15=5. 1
[答案] 5 4.从个位数字与十位数字之和为奇数的两位数中任取一个,其个位数为0的概率是________.
[解析] (1)当个位为奇数时,有5×4=20(个)符合条件的两位数. (2)当个位为偶数时,有5×5=25(个)符合条件的两位数. 因此共有20+25=45(个)符合条件的两位数,其中个位数为0的两位数有5个,
51所以所求概率为P=45=9. 1
[答案] 9 5.一名同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xOy中,以(x,y)为坐标的点落在直线2x+y=8上的概率为________.
[解析] 依题意,以(x,y)为坐标的点共6×6=36个, 其中落在直线2x+y=8上的点有(1,6),(2,4),(3,2),共3个,故31
所求事件的概率P=36=12.
1
[答案] 12
6.(2015·扬州调研)在一个袋子中装有分别标注数字1,2,3,4,5的5个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是________.
[解析] 五个球中任取两个,有10种方法,其中两数之和为33或6的情形有3种:1和2,1和5,2和4,其概率为10.
3
[答案] 10
7.(2014·陕西高考改编)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________.
[解析] 取两个点的所有情况为C2所有距离不小于正方形5=10,63边长的情况有6种,概率为10=5.
3
【答案】 5 8.(2014·无锡调研)甲、乙两人玩数学游戏,先由甲心中任想一个数字记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且a,b∈{3,4,5,6},若|a-b|≤1,则称甲、乙“心有灵犀”,现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为________.
[解析] a,b各自选择方案有4种,共4×4=16种,其中|a-b|≤1的有:(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6),105共10种,从而甲、乙二人“心有灵犀”的概率大小为P=16=8.
5
[答案] 8 二、解答题
9.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙
校1男2女.
(1)若从甲校和乙校报名的教师中各任选1名,求选出的2名教师性别相同的概率;
(2)若从报名的6名教师中任选2名,求选出的2名老师来自同一学校的概率.
11
[解] (1)从甲、乙两校报名的教师中各选1名,共有n=C3×C3=
9种选法.
记“2名教师性别相同”为事件A,则事件A包含基本事件总数m=C11+C11=4, 2·2·
m4∴P(A)=n=9.
2
(2)从报名的6人中任选2名,有n=C6=15种选法.
记“选出的2名老师来自同一学校”为事件B,则事件B包含基本事件总数m=2C23=6.
62∴选出2名教师来自同一学校的概率P(B)=15=5. 10.(2012·福建高考)在等差数列{an}和等比数列{bn}中,a1=b1
=1,b4=8,{an}的前10项和S10=55.
(1)求an和bn;
(2)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.
[解] (1)设数列{an}的公差为d,数列{bn}的公比为q.依题意得10×9
S10=10+2d=55,b4=q3=8,
解得d=1,q=2, 所以an=n,bn=2n-1.
(2)分别从{an}和{bn}的前3项中各随机抽取一项,得到的基本事
件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).
符合题意的基本事件有2个:(1,1),(2,2). 2
故所求的概率P=9. [B级 能力提升练]
一、填空题
1.(2014·南京模拟)将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此口袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的事件发生的概率为________.
[解析] 由题意知(a,b)的所有可能结果有4×4=16个.其中满足a-2b+4<0的有(1,3),(1,4),(2,4),(3,4),共4个.所以所求概1率为4.
1
[答案] 4 2.已知集合A={(x,y)|x-2y-1=0},B={(x,y)|ax-by+1=0},其中a,b∈{1,2,3,4,5,6},则A∩B=?的概率为________.
[解析] 由a,b∈{1,2,3,4,5,6}知, 有序数对(a,b)共有n=6×6=36个. 又A∩B=?,
∴直线x-2y-1=0与ax-by+1=0平行, ∴a∶b=1∶2.
因此满足A∩B=?,共有(1,2),(2,4),(3,6)三个基本事件,故所31
求事件的概率P=36=12.
1
[答案] 12 二、解答题
3.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.
[解] (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.
从袋中取出的球的编号之和不大于4的事件共有1和2,1和3两个.
21
因此所求事件的概率P=6=3. (2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:
(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.
又满足条件n≥m+2的事件为(1,3),(1,4),(2,4),共3个, 3
所以满足条件n≥m+2的事件的概率为P1=16. 13
故满足条件n<m+2的事件的概率为1-P1=16.
1
[答案] 12 二、解答题
3.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.
[解] (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.
从袋中取出的球的编号之和不大于4的事件共有1和2,1和3两个.
21
因此所求事件的概率P=6=3. (2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:
(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.
又满足条件n≥m+2的事件为(1,3),(1,4),(2,4),共3个, 3
所以满足条件n≥m+2的事件的概率为P1=16. 13
故满足条件n<m+2的事件的概率为1-P1=16.
正在阅读:
2017届苏教版 古典概型 课后限时自测05-28
施工准备及临时工程2 - 图文10-13
汽车修理工技师理论复习资料01-16
论《草房子》中桑桑的形象12-17
九只鸟“打一字”02-07
中外大学生创业教育培养体系的对比研究07-17
语文:4.10《变形记》测试(3)(人教大纲版第五册)01-14
建筑工地视频监控系统解决实施方案03-24
工厂供电阶段练习一答案12-01
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 自测
- 课后
- 限时
- 古典
- 苏教版
- 2017
- 吉大16秋学期《药物治疗学》在线作业二答案
- 实验心理学实验指导书
- 学生写数学日记好处
- 练习题(2014.4)
- 装饰公司各部门职能、职责和主要工作流程及工作标准
- 客户关系管理考试重点
- 太原理工大学系统分析实验报告2014
- 高考地理一轮复习 第一部分 地球和地图 新人教版
- ATB-25沥青路面技术交底
- 视频会议操作说明 - 图文
- 《管理经济学》
- 建筑工程材料进场审核要求 - 图文
- 人教版九年级最新单元测试题Unit6试卷+答案
- 桥梁监理实施细则
- 商务谈判实训小结
- 杨帆三国法笔记
- 望城 才子城安全生产施工组织设计
- 建筑工程概预算试卷及答案
- 工程测量试题库(参考答案)
- 2019-2020学年八年级语文下册 第一单元 1《藤野先生》教学实录