2022年全国高考理科数学试题及答案全国1卷

更新时间:2023-04-08 08:49:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

百度文库 - 让每个人平等地提升自我 1 绝密★启用前

2017年普通高等学校招生全国统一考试

理科数学

本试卷5页,23小题,满分150分。考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题

卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答

案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能

答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目

指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;

不准使用铅笔和涂改液。不按以上要求作答无效。

4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一

项是符合题目要求的。

1.已知集合{}|1{|31}x

A x x

B x =<=<,,则 A .{|0}A

B x x =< B .A B =R

C .{|1}A B x x =>

D .A B =?

2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切

圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方

形内随机取一点,则此点取自黑色部分的概率是

A .14

B .8π

C .12

D .

4π 3.设有下面四个命题

1p :若复数z 满足1z

∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =;

4p :若复数z ∈R ,则z ∈R . 其中的真命题为

A .13,p p

B .14,p p

C .23,p p

D .24,p p

百度文库 - 让每个人平等地提升自我 2 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为

A .1

B .2

C .4

D .8

5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1

x f --≤≤的x 的取值范围是

A .[2,2]-

B .[1,1]-

C .[0,4]

D .[1,3] 6.621(1)(1)x x

++展开式中2x 的系数为 A .15

B .20

C .30

D .35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰

直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为

A .10

B .12

C .14

D .16

8.右面程序框图是为了求出满足321000n n

->的最小偶

数n ,那么在和两个空白框中,可以分别填入 A .1000A >和1n n =+

B .1000A >和2n n =+

C .1000A ≤和1n n =+

D .1000A ≤和2n n =+

9.已知曲线122:cos ,:sin(2)3C y x C y x π==+

,则下面结论正确的是

A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移

π6个单位长度,得到曲线2C

B .把1

C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移

π12个单位长度,得到曲线2C

C .把1C 上各点的横坐标缩短到原来的

12倍,纵坐标不变,再把得到的曲线向右平移π6

个单位长度,得到曲线2C

百度文库 - 让每个人平等地提升自我

3 D .把1C 上各点的横坐标缩短到原来的

12倍,纵坐标不变,再把得到的曲线向左平移π12

个单位长度,得到曲线2C 10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交

于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为

A .16

B .14

C .12

D .10 11.设xyz 为正数,且235x y z ==,则

A .235x y z <<

B .523z x y <<

C .352y z x <<

D .325y x z <<

12.几位大学生响应国家的创业号召,开发了一款应用软件。为激发大家学习数学的兴趣,

他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项

是02,接下来的两项是01

2,2,再接下来的三项是0122,2,2,依此类推。求满足如下条件的最小整数:100N N >且该数列的前N 项和为2的整数幂。那么该款软件的激活码是

A .440

B .330

C .220

D .110

二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= .

14.设,x y 满足约束条件21210x y x y x y +≤??+≥-??-≤?

,则32z x y =-的最小值为 .

15.已知双曲线22

22:1(0,0)x y C a b a b

-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点。若60MAN ∠=,则C 的离心率为________。

16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O 。D 、

E 、

F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形。沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D 、E 、F 重合,得到三棱锥。当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3

)的最大值为_______。

百度文库

- 让每个人平等地提升自我

4

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,

每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为2

3sin a A

(1)求sin sin B C ;

(2)若6cos cos 1,3B C a ==,求△ABC 的周长.

18.(12分)

如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.

(1)证明:平面PAB ⊥平面PAD ;

(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.

(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;

(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95 10.12 9.96

9.96 10.01 9.92 9.98 10.04

百度文库 - 让每个人平等地提升自我

5

0.212≈,其中i x 为抽取的第i 个零件的尺寸,1,2,

,16i =???.

用样本平均数x 作为μ的估计值?μ

,用样本标准差s 作为σ的估计值?σ,利用估计值判断是否需对当天的生产过程进行检查?剔除????(3,3)μ

σμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z 服从正态分布2(,)

N μσ,则(33)0.997 4P Z μσμσ

-<<+=, 160.997 40.959 2=0.09≈.

20.(12分)

已知椭圆C :22

22=1x y a b

+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2

)中恰有三点在椭圆C 上. (1)求C 的方程;

(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.

21.(12分)

已知函数2()(2)x x f x ae a e x =+--

(1)讨论()f x 的单调性;

(2)若()f x 有两个零点,求a 的取值范围.

(二)选考题:共

10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。

22.[选修4―4:坐标系与参数方程](10分)

在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=??=?

(θ为参数),直线l 的参数方程为4,1,x a t t y t =+??=-?

(为参数). (1)若a =?1,求C 与l 的交点坐标;

(2)若C 上的点到l a .

23.[选修4—5:不等式选讲](10分)

已知函数2

()4,()|1||1|f x x ax g x x x =-++=++-

百度文库- 让每个人平等地提升自我

6 (1)当1

a 时,求不等式f(x)≥g(x)的解集;

(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.

本文来源:https://www.bwwdw.com/article/efxl.html

Top