Stochastic convergence analysis and parameter selection of the standard particle swarm optimization
更新时间:2023-06-03 03:05:01 阅读量: 实用文档 文档下载
- stochastic推荐度:
- 相关推荐
粒子群优化
InformationProcessingLetters102(2007)
8–16
/locate/ipl
Stochasticconvergenceanalysisandparameterselectionofthestandardparticleswarmoptimizationalgorithm
M.Jiang ,Y.P.Luo,S.Y.Yang
DepartmentofAutomation,TsinghuaUniversity,Beijing100084,ChinaReceived18January2006;receivedinrevisedform20October2006
Availableonline17November2006CommunicatedbyF.MeyeraufderHeide
Abstract
Thisletterpresentsaformalstochasticconvergenceanalysisofthestandardparticleswarmoptimization(PSO)algorithm,whichinvolveswithrandomness.Byregardingeachparticle’spositiononeachevolutionarystepasastochasticvector,thestandardPSOalgorithmdeterminedbynon-negativerealparametertuple{ω,c1,c2}isanalyzedusingstochasticprocesstheory.Thestochasticconvergentconditionoftheparticleswarmsystemandcorrespondingparameterselectionguidelinesarederived.©2006ElsevierB.V.Allrightsreserved.
Keywords:Particleswarmoptimization;Analysisofalgorithms;Stochasticconvergenceanalysis;Stochasticoptimization;Parameterselection
1.Introduction
Theparticleswarmoptimization(PSO)isanalgo-rithmfor ndingoptimalregionsofcomplexsearchspacesthroughtheinteractionofindividualsinapop-ulationofparticles[2].ItwasdevelopedbyKennedyandEberhart[3]basedonthesocialbehaviormetaphor.Thealgorithmsearchesasolutionspacebyadjustingthetrajectoriesofindividualvectors,called“particles”astheyareconceptualizedasmovingpointsinmultidi-mensionalspace.Eachparticleisassignedarandomizedvelocity.Theindividualparticlesareattractedstochas-ticallytowardthepositionsoftheirownbest tnessachievedsofarandthebest tnessachievedsofarbyanyoftheirneighbors.
*Correspondingauthor.
E-mailaddress:jming99@(M.Jiang).0020-0190/$–seefrontmatter©2006ElsevierB.V.Allrightsreserved.doi:10.1016/j.ipl.2006.10.005
Sincethe rstformalanalysisofasimpleparticleswarmsystempresentedbyOzcanandMohan[4,5],thePSOalgorithmhasbeentheoreticallyanalyzedbyvandenBergh[8],ClercandKennedy[2],Yasudaetal.[9],andTrelea[7].Althoughthoseresultsprovidein-sightsintohowparticleswarmsystemworks,allthoseanalysisdiscardtherandomnessinthestandardPSOal-gorithm,andareallbasedonasimpli eddeterministicalgorithm.Obviously,thoseanalyticalresultsmoreorlessdeviatefromtherealparticleswarmsystemduetothelossofrandomness.
Byregardingeachparticle’spositiononeachevo-lutionarystepasastochasticvector,thestandardPSOalgorithmcanbeanalyzedusingstochasticprocessthe-ory.Theexpectationandvarianceoftheparticle’sposi-tioninasimpli edone-particleone-dimensionalparti-cleswarmsystemiscalculated,andcorrespondingcon-vergencepropertyisanalyzed.Afterthat,thepresentworkgivesconvergenceanalysistothestandardpar-
粒子群优化
M.Jiangetal./InformationProcessingLetters102(2007)8–169
ticleswarmsystem,consideringtherandomin uencethoroughly.Asfartotheauthors’knowledge,thisisthe rstcontributiontoanalyzethestochasticstandardPSOalgorithm,insteadofasimpli eddeterministicone.ThetermConvergenceiswidelyusedinthisletter,withdifferentmeanings.Ifitisusedtodescribeade-terministicsequence{A(t)},t=0,1,...,Convergencereferstothepropertythatthelimit
t→∞
limA(t)=A
exists,whereAistheconvergentvalue(aconstant),andbothA(t)andAarescalarsorvectors.
Whendealingwithaparticleswarmsystem,becauseparticles’positionsinvolverandomness,thusnodeter-ministicconvergentresultcanbeobtained.Inthislet-ter,Convergenceofaparticleswarmisde nedasthe
propertythatfor inmeansquaretoP
i∈{1,2,...,M}, i(t)converges(i.e.limt→∞E|X X
i(t) P |2=0),whereMisthepopulationsizeoftheswarm,P
isapo-sitioninthesearchspace,andX
i(t)isthepositionoftheithparticleintheswarmattimet.Underthissitua-tion,itissaidthattheparticleswarmsystemconverges
toP
.GivenEX i(t)astheexpectationofX i(t)andDX
i(t)thevariance,obviouslyconvergesinmean theconditionthatX i(t)equalstoconvergestoP
square toP
thatEX i(t)andDXi(t)convergesto0simultane-ously.
Generallyspeaking,thisworkcanbeseenasanex-tensionofvandenBergh’swork[8],thoughtheper-spectivesaredifferent.Theresultderivedinthisletterextendsallabovementionedtheoreticalanalysisresults.Astochasticconvergentconditionofthestandardparti-cleswarmsystemisderived.Guidelinesforparameterselectionaredirectlygivenbytheanalysisresult,bothinformularandgraphicalform.
2.Particleswarmoptimizationalgorithm2.1.Standardalgorithm
ThestandardPSOalgorithmmaintainsapopula-tionofMparticles,thePSOformulaede neeachparticleasapotentialsolutiontoaproblemmensionalspace,withparticleirepresentedX
inD-di-i=(Xi1,Xi2,...,XiD),wherei=1,2,...,M.EachparticlealsomaintainsP
amemoryofitspreviousbestposition,i=(Pi1,Pi2,...,PiD),andmension,represented avelocityalongeachdi-i=(Vi1,Vi2,...,ViD).TheP
asV
vectoroftheparticlewiththebest tnessintheborhoodisdesignatedP
g.Ateachiteration,P neigh-gP
andthevectorofthecurrentparticlearecombinedtoadjustthevelocityoftheparticlealongeachdimension,and
thatvelocityisthenusedtocomputeanewpositionfortheparticle.Theportionoftheadjustmenttotheveloc-ityin uencedbytheindividual’spreviousbestpositionisconsideredthecognitioncomponent,andtheportionin uencedbythebestintheneighborhoodisthesocialcomponent[3].
Withoutlossofgenerality,consideraminimizationtaskandusesymbolftodenotetheobjectivefunctionthatisbeingminimized.TheupdateequationfortheddimensionofthepersonalbestpositionP
th
iispresentedinEq.(1),withthedependenceonthetimesteptmadeexplicit.
P1)=
Pid(t)iff(X i(t+1)) f(P i(t)),id
(t+Xdi
(t+1)iff(X i(t+1))<f(P i(t)).(1)InstandardPSOalgorithm[6],atiterationt,thedthdimensionofparticlei’svelocityandpositionareup-datedusingEqs.(2)and(3)separately,whereω,cc2arenon-negativeconstantrealparameters,r1d1and
,i
(t)andr2d,i(t)aretwoindependentuniformrandomnumbersdistributedintherange[0,1].
Vid(t+1)=ωVid(t)+cd dd
+c2r 1r1,i
(t)Pi(t) Xi(t)2d,i(t)Pgd(t) Xd
(t) i,
(2)Xdi(t+1)=Xd
i(t)+Vid(t+1).
(3)
Thevelocityupdateequationcanalsobedescribedus-ingEq.(4),whereχ, 1and 2arenon-negativecon-stantrealparameters[2].Obviously,bychoosingap-propriateparameters,Eqs.(2)and(4)areidentical.Inthisletter,Eqs.(1)–(3)areusedasstandardPSOupdateequations.
V)=χ V id(t+1id(t)+ 1r1d,i
(t)Pid(t) Xd
i(t)+ 2r2d ,i(t)Pgd(t) Xd
i(t).(4)Thereexistmanyfactorsthatwouldin uencethe
convergencepropertyandperformanceofPSOalgo-rithm,includingselectionofω,c1andc2,velocityclamping,positionclamping,topologyofneighbor-hood,etc.Thisletterfocusesonanalyzingtherela-tionshipbetweenconvergencepropertyofthestandardPSOalgorithmandtheparameterrangeofω,c1andc2.Factorssuchasvelocityclamping,positionclamping,topologyofneighborhooddomayin uencetheconver-gencepropertyandperformanceofthestandardPSOalgorithm,butthediscussionofthosefactorsisbeyondthescopeofthisletter.Atthesametime,thesituationwithvariableparametervaluesduringevolutionisalsonotdiscussedhere.Thatmeans,thestandardPSOalgo-rithmstudiedhereisonlydeterminedby xedparame-tertuple{ω,c1,c2}.Velocityandpositionclampingare
粒子群优化
10M.Jiangetal./InformationProcessingLetters102(2007)8–16
notconsidered,andstartopologyisinvestigated,i.e.,theneighborhoodofanyparticleisthewholeswarm.2.2.One-dimensionalalgorithm
Whentheparticleswarmoperatesontionproblem,thevaluesofP
anoptimiza-iandPgareconstantlyupdated,asthesystemevolvestowardanoptimum.
Foranalysis iandP
purpose,considerthesituationthatP
gkeepconstantduringaperiodoftime,thenallparticlesevolveindependently.Thus,onlyparti-cleineedstobestudied.Foriischosenarbitrarily,theresultcanbeappliedtoallotherparticles.Atthesametime,itappearsfromEqs.(2)and(3)thateachdimensionisupdatedindependentlyfromtheothers.Thus,withoutlossofgenerality,thealgorithmdescrip-tioncanbereducedtotheone-dimensionalcase.Byomittingparticleanddimensionnotations,andcon-sideringdiscretetimesituation,updateequationsbe-come:
Vt+1=ωVt+c1r1,t(Pi Xt)+c2r2,t(Pg Xt),(5)Xt+1=Xt+Vt+1.
(6)
Itshouldbenoticedthattheabovesimpli cationisonlyforanalysispurpose,theoriginalstandardalgorithmwillberecalledaftertheanalysisis nished.
Accordingto[8],bysubstitutingEq.(5)intoEq.(6),thefollowingnon-homogeneousrecurrencerelationisobtained:
Xt+1= 1+ω (c1r1,t+c2r2,t)
Xt
ωXt 1+c1r1,tPi+c2r2,tPg.
(7)
NoticethatthereexistrandomnumbersinEq.(7),andthatX0,X1arealsorandomnumbers,thuseachXtshouldberegardedasarandomvariable,andtheiter-ativeprocess{Xt}shouldberegardedasastochasticprocess.TheexpectationandvarianceofeachrandomvariableXtcanthenbecalculated,andtheconvergencepropertyoftheiterativeprocesscanbeanalyzed.3.Convergenceanalysis
Asstatedinlastsection,consideringtheone-particleone-dimensionalPSOalgorithmwith xedPiandPg,theparticle’spositionatiterationt,i.e.,Xtisarandomvariable,thusparticle’strajectorycanberegardedasastochasticprocess.Inthissection,particleposition’sexpectationandvariancewillbecalculated,whicharedeterministicprocessesratherthanstochasticprocesses,thusthecorrespondingguaranteedconvergenceproper-
tiescanbedirectlyanalyzed.TheanalysisisbasedonEq.(7)insteadofEqs.(5)and(6).Afterthat,theas-sumptionof xedPiisremoved,andtheconvergencepropertyofparticle’scognitionisanalyzed.Remem-berthatthoseanalysisarebasedonthesimpli edone-particleone-dimensionalPSOsystem.InSection3.4,theoriginalstandardM-particleD-dimensionalPSOsystemwillberecalled,andtheresultobtainedfromone-particleone-dimensionalPSOsystemcanbeap-pliedtoanalyzetheconvergentconditionofthestandardPSOsystem.
3.1.Convergenceanalysisoftheexpectationofparticle’sposition
Inthissubsection,theiterationequationofEXtisobtained,whereEXtistheexpectationofrandomvari-ableXt.Basedontheiterationequation,theconvergentconditionofsequence{EXt}isanalyzed.
AccordingtoEq.(7),iterationequationofsequence{EXt}canbeobtained.
EX+ω
ct+1=11+c2
2
EXt ωEXct 1+
1Pi+c2Pg
2.(8)Thecharacteristicequationoftheiterativeprocessshown
inEq.(8)is
λ2 1+ω c1+c2
2λ+ω=0.(9)
Theorem1.Givenω,c1,c2 0,ifandonlyif0 ω<1and0<c1+c2<4(1+ω),iterativeprocess{EXt}isguaranteedtoconvergeto(c1Pi+c2Pg)/(c1+c2).Proof.Theconvergentconditionofiterativeprocess{EXt}isthattheabsolutevalues(orcomplexmodulus)ofbotheigenvaluesλ1,λ2arelessthan1.Thatis,
1 c+c2 c1+c2 2 1+ω 12±1+ω 22 4ω <1.
Considertwocases.
(1)(1+ω c2
botheigenvalues)<4ω.
Here,|λ2|2=1(1+ω carecomplexnumbers.|λ1|2=
,|λ)2+1
[4ω (1+ω c2ω,somax{|λ)]=1|2|}<1requiresonlyω<1.tion(1)itselfrequires√ω>0and2(1+ω 2√Condi-<c1+c2<2(1+ω+2.
粒子群优化
M.Jiangetal./InformationProcessingLetters102(2007)8–16
11
(2)(1+ω c)2
4ω.
Here,botheigenvaluesarerealnumbers.Rememberthatω,c1,c2areallnon-negativerealnumbers,condi-tion(2)isequaltoω 0,2 2√andc1+c2 2(1+ω 2√
orc1+c. (12+(1ω++ω2Ifc1+c2 2√
,max{|λ1|,|λ2|}<1requiresonly
1
21+ω c1+c22+1+ω c 1+c222
4ω
<1.
Thus√itleadstoω<1and0<c1+c2 2(1+ω
2.Ifc1+c2 2(1+ω+2√
,max{|λ1|,|λ2|}<1requiresonly
1
c1+c2 21+ω 2 1+ω c1+c22
2 4ω
> 1.
Thusitleadstoω<1and2(1+ω+2√
c1+c2<4(1+ω).
Synthesizecases(1)and(2),theguaranteedconver-gentconditionofiterativeprocess{EXt}is0 ω<1and0<c1+c2<4(1+ω).
(10)
Wheniterativeprocess{EXt}isconvergent,thecon-vergentvalueEXcanbecalculatedω c)EX ωEX+cPusingEX=(1+
1i+c2Pg.ThatgetsEX=(c1Pi+c2Pg)/(c1+c2).2
Asamatteroffact,if0 ω<1andc1=c2=0,
thenXt=X0+ω(1 ωt)
notconsideredV0.Thatisnotaninterestingcase,andisconvergentinthisletter.Sim-ilarresultscanbefoundin[7–9],butnoneofthoseresultsexplicitlytakesparticle’spositionasastochasticvariable,sothoseresultsaresomewhatvagueincon-cept,andareasonableexplanationishardtobegiven.Fromaboveanalysis,itisnowclearwhatthoseresultsactuallymean.
3.2.Convergenceanalysisofthevarianceofparticle’sposition
Asweknow,asequenceofstochasticvariablesmaynotconvergeevenifcorrespondingexpectationsequenceconverges.Tofurtherstudytheconvergenceproperty,thevariancesequenceshouldbestudied.Inthissubsection,theiterationequationofDXtisob-tained,whereDXtisthevarianceofrandomvariableXt.Basedontheiterationequation,theconvergentcon-ditionofsequence{DXt}isanalyzed.InordertomaketheprocedureofcalculatingDXt
clear,somesymbolsshouldbeintroduced rstly.Letν=(c1+c2)/2,μ=(c1Pi+c2Pg)/(c1+c2),ψ=1+ω ν,Rt=c1r1,t+c2r2,t ν,Qt=((c1c2)/(c1+c2))(r2,t r1,t)(Pg Pi),andYt=Xt μ,thenfromEq.(7),itgets
Yt+1=(ψ Rt)Yt ωYt 1+Qt.
(11)
Obviously,Ytisalsoarandomvariable,andDYμ.Sincert=DXt,EYt=EXt 1,t,r2,taretwoinde-pendentuniformrandomnumbersrangedin[0,1]obviousthatERt=EQt=0,DRt=ERt2=1,it(c2is
1+c2E(R2t=EQ2t=1),DQ(c1c2
/(c1+c2))2(Pg Pi)2,andtQt)=(c1c2(c2 c1)/12(c1+c2))(Pg Pi).No-ticethatDRt,DQtandE(RtQt)areconstants,letR=DRt,Q=DQt,andT=E(RtQt).
NoticethatYt,Yt 1arebothindependentonRt,QbutYtandYt 1aredependent.ThusEY2t,
asfollows:
t2+1,EYt+2,and
E(Yt+1Yt)canbecalculatedEYt2+1=(ψ2+R)EYt2+ω2EYt2
1+Q
2ωψE(YtYt 1) 2TEYt,
(12)EYt2+2=(ψ2+R)EYt2+1+ω2EYt2
+Q
2ωψE(Yt+1Yt) 2TEYt+1,
(13)E(Yt+1Yt)=ψEYt2 ωE(YtYt 1).
(14)
Then,(12) ω+(13)iscalculatedtoeliminateitemsE(Yt+1Yt)andE(YtYt 1),get
EYt2+2+ωEYt2
+1
=(ψ2+R) EYt2+1
+ωEYt2
+ω2 EY t2+ωEYt2 1
+Q(1+ω) 2ωψ2EYt2 2T(EYt+1+ωEYt).
(15)SubstituteDYt=EYt2 (EYt)2,EYt+2=ψEYt+1 ωEYt,andωEYt 1=ψEYt EYt+1intoEq.(15),theiterationequationofDYtisobtained.
DYt+2=(ψ2+R ω)DYt++ω3DYt 1+R 1 ω(ψ2 R ω)DY(EYt+1)2+ω(EYt)2
t
2T(EYt+1+ωEYt)+Q(1+ω).
(16)
RememberthatDYt=DXt,EYt=EXt μ,theiter-ationequationofDXtcanbeobtained.DXt+2=(ψ2+R ω)DXt+1
ω(ψ2 R ω)DXt+ω3DXt 1
+R
(EXt+1 μ)2+ω(EXt μ)2
2T
EXt+1 μ+ω(EXt μ) +Q(1+ω).
(17)
粒子群优化
12M.Jiangetal./InformationProcessingLetters102(2007)8–16
ThecharacteristicequationoftheiterativeprocessshowninEq.(17)is
λ3 (ψ2+R ω)λ2+ω(ψ2 R ω)λ ω3=0.
(18)Theiterationequationandcharacteristicequationofit-erativeprocess{DXt}arebothquitecomplex,anditishardtoanalyzethesetwoequationsdirectly.Fortu-nately,theconvergentconditionoftheiterativeprocess{DXt}de nedinEq.(17)iscomparativelysimple.Beforediscussingconvergencepropertyofiterativeprocess{DXt},anauxiliarytheoremisintroduced.Letf(λ)=λ3 (ψ2+R ω)λ2+ω(ψ2 R ω)λ ω3,andλ1,λ2,λ3arethreerootsofthecharacteristicequa-tion(18).
Theorem2.Given0 ω<1andc1+c2>0,thenf(1)>0isthenecessaryandsuf cientconditionofmax{|λ1|,|λ2|,|λ3|}<1.
Proof.Ifω=0,thentwoamongthreeeigenvaluesarezeros.Withoutlossofgenerality,letλcan1isbeequaleasily2=tofobtainedλ3=0,thenλ1=ψ2+R>0.Italso(1)>0.thatf(1)=1 λ1.Thus|λ1|<Consideranotherspecialcase.Ifψ=0,i.e.,c(1+ω),thenωλ1+c2=212== ωandλ2,λ1√0,0.itObviously,3arerootsofequationλ2 Rλ getsmax|{|λλ1|=ω<1.SinceR>0andω2 2|,|λ3|}=(R+√.Thus,theconvergentconditionis1(R+)<1.Thisleadsto1 R ω2>0.Atthispoint,f(1)=(1 R ω2)(1+ω).Obvi-ously,1 R ω2>0andf(1)>0areequal,somax{|λ2|,|λ3|}<1isequaltof(1)>0.
Nowconsidergeneralsituationswhen0<ω<1,c1+c2>0andc1+c2=2(1+ω).Inordertogoonwiththeproof,somefunctionvaluesshouldbeevalu-ated rstly.f(0)= ω3<0;
f(ω)= 2ω2R<0;
f( ω)= 2ψ2ω2<0.
Basedonpropertyofcubicequationwithoneunknown,itisknownthatλ1λ2λ3=ω3>0.Thismeansthatthecharacteristicequation(18)hasthreepositiveroots,oronepositiverootandtwonegativeroots.
Toprovethenecessity,reductiontoabsurdityisadopted.f(1)shouldnotequaltozero,otherwise1istheeigenvalue,violatingconditionmax{|λ1|,|λ2|,|λ3|}<1.Thenassumef(1)<0.Accordingtoconclusionsinelementarymathematics,becausef( ω),f(0),f(ω)andf(1)havethesamesign,thenumberofrootsintheinterval( ω,0),(0,ω),and(ω,1)mustallbeeven.
Thustheremustbeatleastonerootlocatedininterval(1,∞)tosatisfyλ1λ<2λ1.
3=ω3>0,violatingconditionmax{|λ1|,|λ2|,|λ3|}Nowthesuf ciency.Sincef(1)>0andf(ω)<0,sothenumberofthecharacteristicequation’srootsintheinterval(ω,1)shouldbeodd.Thenumberofrootsintheinterval(ω,1)couldnotbe3,forthiswillcauseλ1λ2λ3>ω3,sothenumbercouldonlybe1.Withoutlossofgenerality,lettherootbeλ1.Becausef( ω),f(0)andf(ω)havethesamesign,thenum-berofrootsintheinterval( ω,0),(0,ω)mustallbeeven.Thus,theothertworootsλ2,λ3canbothbelo-catedintheinterval( ω,0)or(0,ω);orbelocatedininterval( ∞, ω)or(1,∞).Obviously,λ2,λ3can-notbelocatedininterval( ∞, ω)or(1,∞),forthatcause|λ1λ2λ3|>ω3.Thus,λ2,λ3canonlybelocatedintheinterval( ω,0)or(0,ω).Apparently,max{|λ1|,|λ2|,|λ3|}<1issatis ed.2
Nowtheparameterrangetoguaranteethecon-vergenceofsequence{DXt}canbecalculatedusingf(1)>0,where
f(1)= (c1+c2)ω2
+
1 2126c1+6c2+12c1c2ω+c1+c2 13c211 3c21
2 2
c1c2.
LetA=c1+c2,B= (1c21+1c22+1c1c2),C=1c21+
1c22+1
c1c2 c1 c2.Knowingthatf(1)>0andωisarealnumber,itiseasytogetthatbothAω20shouldbesatis ed.That+Bωis,
+C<0andB2 4AC g(c1,c2)=(c1+c2)4 48(c1+c2)3
+2(c1c2+72)(c1+c2)2
+24c1c2(c1+c2)+c21c2
2
0,(19)
c21+c22
+3c1c2 √1212(c12)
<ω<
c21+c22
+3c1c2+√1212(c.(20)
12)
Asamatteroffact,Eqs.(19)and(20)impliesthatc1+c2<4(1+ω);or,inotherwords,f(1)>0impliesthatc1+c2<4(1+ω).Thisisbecause
g(c1,c2)<g(c1,c2)+2+c2)= 3(c1+c2)2(c12
2(c+c12(c 12)2 1+c2) c1c2 and2(c1+c2)2 12(c1+c2) c1c2<0holdsintheparameterrangedeterminedbyEq.(19).Thus,
粒子群优化
M.Jiangetal./InformationProcessingLetters102(2007)8–1613
c21+c22
+3c1c2 √1212(c12)
2>
c1+c22+3c1c2+2(c1+c2)2 12(c1+c2) c1c212(c12)
=1
4
(c1+c2) 1and(c2+c2+3cc √12(c+c)implies112121<ωthat2
2c1+c2<4(1+ω).
Theorem3.Givenω,c+c1,c2 0,ifandonlyif0 ω<1,c12>0andf(1)>0areallsatis edto-gether,iterative1process{DXt}isguaranteedtovergeto(c1c2/(c1+c2))2(Pg Pi)2con-(1+ω)/f(1),
wheref(1)= (c1+c2)ω2+(1c21+1c22+1c1c2)ω+
c1+c2 1c21 1c22 1c1c2.Proof.TheiterationequationofDXt,Eq.(17),con-tainsitemsrelatedtoEXt,thustheconditionshownin
Theorem1shouldbesatis ed rstlytomakeDXtcon-vergent.Asstatedabove,f(1)>0impliesthatc1+c2<4(1+ω).Thusconditions0 ω<1,c1+c2>0,andf(1)>0togethermakesurethattheconditionsstatedinTheorem1aresatis ed.
AfterEXtisconvergent,theconvergentconditionofiterativeprocess{DXt}isthattheabsolutevalues(orcomplexmodulus)ofthethreeeigenvaluesλ1,λ2,λ3arealllessthan1.Theorem2provesthat,given0 ω<1andc1+c2>0,f(1)>0isthenecessaryandsuf cientconditionofmax{|λ+c1|,|λ2|,|λ3|}<1.
Thus,0 ω<1,c12>0,andf(1)>0togethergivethenecessaryandsuf cientconditiontoguaranteeiterativeprocess{DX{DXt}convergent.Ifiterativeprocesst}isconvergent,theconvergentvaluecanbecal-culatedusing
DX=(ψ2+R ω)DX ω(ψ2 R ω)DX
+ω3
DX+Q(1+ω)
+R
(EX μ)2+ω(EX μ)2
2T EX μ+ω(EX μ) .
ThatgetsDX=1(c1c2/(c1+c2))2(Pg Pi)2(1+
ω)/f(1).2
3.3.Convergenceanalysisofparticle’scognitionInandP
aboveanalysis,itissupposedthatthevaluesofP
igkeepconstant,whichisnotthecaselemsolving.Here,theassumptionthatP
inrealprob-ikeepscon-stantP
isremoved.Thatis,duringtheevolutionprocess,iisconstantlyupdatedaccordingtoEq.(1).ButthevalueofP
gisstillsupposedtokeepconstantandbethebestpositionfoundsofar.Asamatteroffact,thisas-sumptionisreasonable,becausethevalueofP
gonlyin uencesthe nalconvergentposition,anditdoesnotin uencetheconvergencepropertyatall.
Herewestillfocusontheone-dimensionalone-par-ticlesimpli edPSOsystem.TherelationshipbetweenPiandPgisgiveninthefollowingtheorem.
Theorem4.Givenω,c1,c2 0,ifiterativeprocess{DXt}isguaranteedtoconvergeandf(1)<c2(1+ω)
theniterativeprocess{P,i(t)}willconvergetoPgwithprobability1.
Proof.Iftheiterativeprocess{DXt}isguaranteedtoconverge,theniterativeprocess{EXt}isalsoguaran-teedtoconverge.SoXtwillconvergetoarandomdistri-butionwithexpectationEX=(c1Pi+c2Pg)/(c1+c2)
andvarianceDX=1.Nomatter(c1c2/(c1+c2))2(Pg Pi)2(1+
ω)/f(1)whatthevalueofPiis,iff(1)<c2(1+ω),then(Pg EX)2=(c1/(c1+c2))2(Pg Pi)2
<DX.HenceitisobviousthatProb(Xt=Pg)>0,whichdirectlyleadstoProb(limt→∞Pi(t)=Pg)=1duetotheupdateequationofPi.AndifPi(t)=Pg,itwillbestablethere.Thusitisevidentthatitera-tiveprocess{Pi(t)}willconvergetoPgwithprobabil-ity1.2
Itshouldbenoticedthattheconditionf(1)<
c2(1+ω)isonlyasuf cientconditiontoensurethecon-vergence,butnotanecessaryone.Asamatteroffact,
thisconditionistoberelaxedinfuture.
3.4.Convergenceanalysisofstandardparticleswarmsystem
Theaboveanalysisinthissectionareallbasedontheone-particleone-dimensionalsimpli edPSOsystem.Here,theoriginalstandardM-particleD-dimensionalstochasticPSOsystemisrecalled.
Whentheparticleswarmoperatesproblem,thevalueofP
iandP onanoptimization
gareconstantlyupdated,asthesystemevolvestowardanseefromaboveanalysis,whenP
optimum.Aswecan
tainconditions,P
gis xed,undercer-iwillevolvetowardP g.AndifP changes,P
giwillevolvetothenewP g.RegardingtheconvergencepropertyofthestandardPSOsystem,The-orem5canbeobtained.
Theorem5.Givenω,c1,c2 0,if0 ω<1,c1+c2>0,and0<f(1)<
c2(1+ω)areallsatis edto-
粒子群优化
14M.Jiangetal./InformationProcessingLetters102(2007)8–16
gether,thestandardparticleswarmsystemdeterminedbyparametertuple{ω,c1,c2}willsquaretoP
convergeinmean
g.Proof.Fromtheω,c1,c2 0,ifP
resultsofTheorems1and3,given
iandP gkeepconstantduringape-riodoftime,thenif0 ω<1,c1+c2>0,andf(1)>0areallsatis edtogether,foreachdimension
dofparticlei,theconclusionisthat{EXd(t)}con-vergesto(c1Pid+c2Pd)/(c+c),and{DXi
d(t)}con-vergesto1g12(c1c2/(c1+c2))2(Pgd Pid)2i
(1+ω)/f(1).
ItappearsfromEqs.(2)and(3)thateachdimensionofparticleiisupdatedindependentlyThus,itcanbeconcludedthat{E fromtheothers.
i(t)}convergesto(c1P
X
i+c2P g)/(c1+c2),and{DX 1i(t)}convergesto(c1c2/(c1+c2))2(P g P i)2
(1+ω)/f(1).Andfrom
theresultofTheorem4,iff(1)<c2
(1+ω),eachP
iconvergestoP
gwithprobabilitydiatelyP
obtained that{EX
1,thusitcanbeimme-i(t)}will nallyconvergetog,and{DXi(t)}will nallyconvergeto0.Thatmeans,eachP
sequence{X
i(t)}willstochasticallyevolvetowardguntilitconvergesinmeansquaretoP g.Thiscon-clusionappliestoeachparticle,thusthewholeparticle
swarmsystemwillconvergetoP
g.2ItshouldbenoticedthatTheorem5onlydeclaresthateachparticleinthestandardparticleswarmwouldconvergeinmeansquarefarbytheswarm,i.e.,P
tothebestpositionfoundso
g.Itdoesnotmeanthatthecon-vergentpositionisanoptimalone,orevenalocalopti-malone.Ifalocaloptimalpositionisdesired,theideafromGuaranteedLocallyConvergenceParticleSwarmOptimiser(GCPSO)proposedinvandenBergh[8]canbeadopted,whichwouldnotin uencetheanalysisre-sultsderivedinthisletter.4.Parameterselectionguidelines
Theconvergenceanalysisoftheexpectationandvarianceofparticle’sposition,andconvergenceanaly-sisofparticle’scognitioninSection3leadtosomelimitationontherelationshipamongtheparametertu-pleusedinstandardPSOalgorithm,thatis,0 ω<1,c1+c2>0,and0<f(1)<c2(1+ω)
beusedtoeffectivelyguide.Theseconditionscantheparameterselec-tionofPSOalgorithm.Althoughthisparameterareaisquiterestricted,thesuggestedandwidelyusedpa-rametersinliteraturesallfallintothisarea,suchasω=0.729,c=c1=2.8 ω,c2==01..6,3 cω[1],ω=0.729,c12=1.49[2],andω1=c2=1.7
[7].
Fig.1.Parameterrangetoguaranteetheconvergenceofiterative
process{EXt}.Thecyan(light)areacorrespondstocasewithcom-plexeigenvalues,theblue(dark)areacorrespondstocasewithrealeigenvalues.(Forinterpretationofthereferencestocolorinthis g-urelegend,thereaderisreferredtothewebversionofthis
article.)
Fig.2.Relationshipbetweenc1andc2toguaranteetheconvergenceofiterativeprocess{DXt}.
Maybetheanalysisresultpresentedinthisworkcanhelptoexplainwhythoseparametersworkwell.
Thecorrespondinggraphicalillustrationsofparame-terrangesaregivenasfollowsinthissection.
Theparameterrangetoguaranteetheconvergenceofiterativeprocess{EXt}isillustratedinFig.1.Thecyan(light)areainFig.1correspondstocase(1)discussedinTheorem1,andtheblue(dark)areainFig.1corre-spondstocase(2)discussedinTheorem1.
Theparameterrangestoguaranteetheconvergenceofiterativeprocess{DXt}areillustratedinFigs.2–4.InFig.2,therelationshipbetweenc1andc2,whichisdeterminedbyEq.(19),isillustrated.Therelationshipbetweenlowerandhigherrangeofωandc1,c2,whichisdeterminedbyEq.(20)andω 0,areillustratedinFigs.3and4,separately.
粒子群优化
M.Jiangetal./InformationProcessingLetters102(2007)8–16
15
Fig.3.Relationshipbetweenlowerrangeofωandc1,c2toguaranteetheconvergenceofiterativeprocess{DXt}
.
Fig.4.Relationshipbetweenhigherrangeofωandc}.
1,c2toguaranteetheconvergenceofiterativeprocess{DXtBecausetheconditionf(1)<c2(1+ω)
condition,therelationshipamongisonlyasuf -cientparametertuple{ω,c1,c2}determinedbythisconditionisnotillus-trated.
IfweusePSEtodenotetheparametersettoguaran-teetheconvergenceofiterativeprocess{EXt},usePSDtodenotetheparametersettoguaranteetheconvergenceofiterativeprocess{DXt},andusePSCtodenotetheparametersettosatisfy0<f(1)<c2(1+ω),thenitisobviousthattherelationshipshouldbePSE PSD PSC.IfweusePSStodenotetheparametersettoen-suretheconvergenceofiterativeprocess{Pi(t)},itisobviousthattherelationshipshouldbePSD PSSandPSS PSC.
TheparameterselectionofPSOalgorithminlitera-turesfavorsc1=c2=c,somoredetaileddiscussiononthisconditionisgiven.Atthistime,Eq.(10)becomes0 ω<1and0<c<2(1+ω).(21)
Andf(1)>0
becomes
Fig.5.Relationshipbetweenωandcwhenc1=c2=ctosimultane-ouslyguaranteetheconvergenceofiterativeprocesses{EXt},{DXt},and{Pi(t)}.Theblack(dark)areashowstheconvergenceconditionofprocess{EXt}.Thecyan(light)areashowstheconvergencecondi-tionofprocess{DXt}.Andtheblue(grey)areashowsaconvergenceconditionofprocess{Pi(t)}andthetotalparticleswarm.(Forinter-pretationofthereferencestocolorinthis gurelegend,thereaderisreferredtothewebversionofthisarticle.)
5c
√
24<ω<
5c+√
24
.(22)Thesyntheticconvergenceconditionsaresimultane-ouslyillustratedinFig.5.Therelationshipbetweenωandc,whichisdeterminedbyEq.(21),isillustratedintheblack(dark)areainFig.5.Therelationshipbe-tweenωandc,whichisdeterminedbyEq.(22)andω 0,isillustratedinthecyan(light)areainFig.5.Therelationshipbetweenωandc,whichisdeterminedby0<f(1)<c2(1+ω)
Fig.5.Obviously,,isillustratedintheblue(grey)areaintheconvergenceconditionofiterativeprocess{DXt}ismuchstrongerthantheconvergenceconditionofiterativeprocess{EXt},andtheconvergenceconditionofparticle’scognitionisthestrongest.5.Conclusions
Thestochasticprocesstheoryisappliedtoanalyzethestandardparticleswarmoptimizationalgorithmde-terminedbyparametertuple{ω,c1,c2},consideringtherandomnessthoroughly.Theanalysisresultsleadtoaconvergentconditionforthestandardparticleswarmsystem,andthecorrespondingparameterranges,bothinformularandgraphicalform,aregiven.ThisresultishelpfultounderstandthemechanismofstandardPSOalgorithmandselectappropriateparameterstomakePSOalgorithmmorepowerful.
粒子群优化
16M.Jiangetal./InformationProcessingLetters102(2007)8–16
Theresultderivedinthisletterdeclaresthatthestan-dardparticleswarmsystemcanconvergeinasenseofprobability,butonlyasuf cientconditionensuringtheconvergenceisgiven,andthedetailedconvergentpro-cedureisstillnotquiteclearnow.
Somemorefactorsin uencingtheconvergenceofparticleswarmsystemareneededtobeconsideredinfuture.FurtherresearchisalsoneededtoclarifytherelationshipbetweenPSOperformanceandparameterselectiontoguaranteeconvergence.References
[1]A.Carlisle,G.Dozier,Anoff-the-shelfPSO,in:Proceedings
oftheWorkshoponParticleSwarmOptimization,Indianapolis,USA,2001.
[2]M.Clerc,J.Kennedy,Theparticleswarm-explosion,stability,and
convergenceinamultidimensionalcomplexspace,IEEETransac-tionsonEvolutionaryComputation6(1)(2002)58–73.
[3]J.Kennedy,R.C.Eberhart,Particleswarmoptimization,in:Proc.
IEEEInternationalConferenceonNeuralNetworks,Piscataway,NJ,1995,pp.1942–1948.
[4]E.Ozcan,C.K.Mohan,Analysisofasimpleparticleswarmop-timizationsystem,in:IntelligentEngineeringSystemsthroughArti cialNeuralNetworks,1998,pp.253–258.
[5]E.Ozcan,C.K.Mohan,Particleswarmoptimization:sur ngthe
waves,in:Proc.IEEECongressonEvolutionaryComputation(CEC1999),Washington,DC,USA,1999,pp.1939–1944.
[6]Y.Shi,R.C.Eberhart,Amodi edparticleswarmoptimizer,in:
ProceedingsoftheIEEECongressonEvolutionaryComputation(CEC1998),Piscataway,NJ,1998,pp.69–73.
[7]I.C.Trelea,Theparticleswarmoptimizationalgorithm:Conver-genceanalysisandparameterselection,InformationProcessingLetters85(2003)317–325.
[8]F.vandenBergh,Ananalysisofparticleswarmoptimizers,PhD
Dissertation,UniversityofPretoria,Nov.2001.
[9]K.Yasuda,A.Ide,N.Iwasaki,Adaptiveparticleswarmoptimiza-tion,in:ProceedingsoftheIEEEInternationalConferenceonSystems,Man,andCybernetics,2003,pp.1554–1559.
正在阅读:
Stochastic convergence analysis and parameter selection of the standard particle swarm optimization06-03
上半年林业行政执法大队工作完成情况09-12
《Internet网络系统与实践》1-4平时作业答案01-05
2018《中国共产党党内监督条例》知识竞赛题目及答案10-25
我读《草房子》作文600字06-25
响水中学2020-2021学年高一上学期第一次学情分析考试 数学试题(含答案)05-08
2015年信息技术学业水平考试单选题讲解05-20
- 1voa,standard,english
- 2Practical Feature Subset Selection for Machine Learning
- 3ABAQUS_Standard_63_中文
- 4ABAQUS_Standard_63_中文
- 5NonClinical Dose Formulation Analysis Method Validation and Sample Analysis
- 6Analysis of Major Characters
- 7Employment- Employment Contract(Standard)
- 8Leveraging Standard Electronic Business Interfaces to
- 9An Analysis of Jane Eyre
- 10Error analysis and compensation for the
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- optimization
- convergence
- Stochastic
- parameter
- selection
- analysis
- standard
- particle
- swarm
- 氯化铅活度积的测定
- 春季皮衣服饰色彩搭配法
- 卡罗拉 花冠 威驰 发动机培训资料
- 2015浙江温州公务员面试辅导:观点类综合分析题
- 农业科技培训内容
- 空气处理机组(AHU)的蒸汽盘管运行状况分析
- 2014年农业综合开发存量资金土地治理项目施工组织设计
- 遵义医学院《儿科学》理论教学大纲
- 新目标英语八上测试题(6-10单元)
- 第六章 绿色植物的光合作用和呼吸作用2
- 沙盘实战模拟训练简介
- 铁、铜及其化合物重要方程式汇总
- 私营企业车辆管理制度
- 精益营销管理案例
- 浅谈房屋建筑渗漏的原因与防治
- 气压爆破技术试验
- 2011年《财经法规与会计职业道德》教材更新了部分内容
- 万达哲学读后有感
- 名校2013年广东中考化学模拟卷
- 语文版七年级下册语文教案全集