Quantifying the effect of slope on extensive green roof stor
更新时间:2023-04-22 04:58:01 阅读量: 实用文档 文档下载
- quantifying推荐度:
- 相关推荐
非常好的资料
ecologicalengineering31(2007)225–231
Quantifyingtheeffectofslopeonextensivegreenroofstormwaterretention
KristinL.Gettera, ,D.BradleyRowea,JeffreyA.Andresenb
ab
DepartmentofHorticulture,MichiganStateUniversity,EastLansing,MI48824,UnitedStatesDepartmentofGeography,MichiganStateUniversity,EastLansing,MI48824,UnitedStates
article
Articlehistory:
infoabstract
Impervioussurfaces,suchasrooftops,parkinglots,androads,increaserunoffandthepotentialfor ooding.Greenrooftechnologies,whichentailgrowingplantsonrooftops,areincreasinglybeingusedtoalleviatestormwaterrunoffproblems.Toquantifytheeffectthatroofslopehasongreenroofstormwaterretention,runoffwasanalyzedfrom12exten-sivegreenroofplatformsconstructedatfourslopes(2%,7%,15%,and25%).Raineventswerecategorizedaslight(<2.0mm)(0.08in.),medium(2.0–10.0mm)(0.08–0.39in.),orheavy(>10.0mm)(>0.39in.).Datademonstratedanaverageretentionvalueof80.8%.Meanreten-
Received12February2007Receivedinrevisedform31May2007
Accepted19June2007
Keywords:VegetatedroofRunoffEco-roof
tionwasleastatthe25%slope(76.4%)andgreatestatthe2%slope(85.6%).Inaddition,runoffthatdidoccurwasdelayedanddistributedoveralongperiodoftimeforallslopes.Curvenumbers,acommonmethodusedbyengineerstoestimatestormwaterrunoffforanarea,rangedfrom84to90,andarealllowerthanaconventionalroofcurvenumberof98,indicatingthatthesegreenedslopesreducedrunoffcomparedtotraditionalroofs.
©2007ElsevierB.V.Allrightsreserved.
1.Introduction
Impervioussurfacescontinuetoexpandasweconstructbuildings,roads,andparkinglots.IntheUnitedStates,itisestimatedthat10%ofresidentialdevelopmentsand71–95%ofindustrialareasandshoppingcentersarecoveredwithimper-vioussurfaces(Ferguson,1998).Two-thirdsofallimperviousareaisintheformofparkinglots,driveways,roads,andhigh-ways(WaterResourcesGroup,1998).
Coveringnaturalsurfacescausesmanyproblems.Greaterrunoff(Scholz-Barth,2001)increasesthepotentialfor ooding,reducesin ltrationintothegroundwatersystem(Barnesetal.,2001),andcanpotentiallycontaminatesurfacewatersduetoparticulatematterintherunoff(USEPA,1994;Ferguson,1998).Otherproblemswithimpervioussurfacesincludehigherambientairtemperatures(USEPA,2003),increasednoise,poorerairquality(LieseckeandBorgwardt,1997;YokTanandSia,2005),andalossofbiopersity(Bastinetal.,1999).
Greenroofsareonepotentialremedyfortheseproblems.Establishingplantmaterialonrooftopsprovidesnumerousecologicalandeconomicbene ts,includingstormwaterman-agement,energyconservation,mitigationoftheurbanheatislandeffect,increasedlongevityofroo ngmembranes,andmitigationofnoiseandairpollution,aswellasamoreaesthet-icallypleasingenvironmentinwhichtoworkandlive(GetterandRowe,2006;Liesecke,1998;LiuandMinor,2005GRHC;MengandHu,2005;SimmonsandGardiner,2007;VanWoertetal.,2005;VillarrealandBengtsson,2005).
Manyconsiderthereductionofstormwaterrunofftobethegreatestenvironmentalservicethatgreenroofsprovide.Inagreenroofsystem,muchoftheprecipitationiscapturedinthemediaorvegetationandeventuallyevaporatesfromthesoilsurfaceorisreleasedbackintotheatmospherebytranspiration.Whilethechosentypeofgreenroofsystem(design,substratedepth,andplantspecies)willaffectreten-tion,researchhasshownreductionsof60–100%inrunoff
Correspondingauthor.Tel.:+15173555191x1341.E-mailaddress:smithkri@msu.edu(K.L.Getter).
0925-8574/$–seefrontmatter©2007ElsevierB.V.Allrightsreserved.doi:10.1016/j.ecoleng.2007.06.004
非常好的资料
226
ecologicalengineering31(2007)225–231
(Liesecke,1998;Moranetal.,2004;DeNardoetal.,2005;VanWoertetal.,2005).
Sincegreenroofsretainstormwater,theycanmitigatetheeffectsofimpervioussurfacerunoff.Peck(2005)estimatedthatif6%ofallbuildingsinTorontohadgreenroofs,itwouldresultinthesamestormwaterretentionimpactasbuildinga$60million(CDN)storagetunnel.Likewise,inWashington,DC,if20%ofallbuildingsthatcouldsupportagreenroofhadone,theywouldaddover71millionliters(19milliongallons)tothecity’sstormwaterstoragecapacityandstoreapproxi-mately958millionliters(253milliongallons)ofrainwaterinanaverageyear(Deutschetal.,2005).
InGermany,tworesearchersfoundnosigni cantdiffer-enceinretentionamountsacrossdifferentlyslopedroofs(Liesecke,1999;Schade,2000),whileotherscientistsareestablishingdifferences(VanWoertetal.,2005;VillarrealandBengtsson,2005).Thecontradictingresultsmaybeduetorainfallpatternsatdifferentlocales.Rainfallintensity,dura-tion,andinitialsubstratemoisturecontentallin uenceretention.Drysubstrateconditionspriortorainfallresultingreaterstormwaterretentioncomparedtoinitiallywetcondi-tions(VillarrealandBengtsson,2005;ConnellyandLiu,2005).Environmentaldifferencesmayalsoin uencethechoiceforsubstratedepthandplantmaterial,whichmayinturnin u-encestormwaterretention.
Acommonandwidespreadmethodforestimatingstormwaterrunoffforaregionorareaisthecurvenumber(CN)methoddevelopedbytheUSDASoilConservationServices(USDASCS),nowtheUSDANaturalResourcesConservationService(USDANRCS).ThismethodstatestherelationshipbetweenrainfallandrunoffwiththeequationF/S=Q/P,whereFistheactualretention(P Q),Sthepotentialretention,Qtheactualrunoff,andPthepotentialrunoffortotalrainfall(NRCS,2004).Thepotentialretention(S)canthenbeconvertedtoacurvenumberwiththeformulaCN=25,400/(254+S)whereSisinmm(Hawkins,1993).Curvenumbersaredimensionlessandrangefrom0(norunoff)to100(allprecipitationresultsinrunoff).AllimpervioussurfacessuchaspavedroadsandconventionalroofsareassignedaCNof98(NRCS,2004).
Sincegreenroofsaremorefrequentlybeingusedasatoolformanagingstormrunoff,theobjectiveofthisstudywastoquantifytheeffectofslopeonstormwaterretentionanddevelopcurvenumbersforgreenroofsatfourdifferentslopes.
2.
Materialsandmethods
2.1.
Greenrooftestingplatforms
Twelveroofplatformswithdimensionsof2.44m×2.44m(8.0ft×8.0ft)wereconstructedbyChristenDETROITRoo ngContractors(Detroit,MI)attheMichiganStateUniversityHor-ticultureTeachingandResearchCenter(EastLansing,MI).Eachplatformreplicatedacommercialextensivegreenroof,includinginsulation,protective,andwaterproo ngmem-branelayers.ConstructiondetailsareoutlinedinVanWoertetal.(2005).
Aluminumsheetmetaltroughswereattachedonthelowendoftheplatformstodirectstormwaterrunoffthroughthemeasuringdevicesusedtoquantifyrunoff.Thewood-framed
platformsincludedsidesthatextended20.3cm(8in.)abovetheplatformdeck,alsocoveredwithwaterproo ngmem-brane.Allplatformswereplacedwiththelowendoftheslopefacingsouthtomaximizesunexposure.
2.2.Drainagesystemandvegetationcarrier
EachplatformwascoveredwithaXeroFlorXF108drainagelayer(WolfgangBehrensSystementwicklung,GmbH,GroßIppener,Germany)installedoverthewaterproo ngsystem,whichallowedexcesswaterto owofftheroof.Foradditionalwaterholdingcapacity,a0.75cm(0.26in.)thickmoistureretentionfabric(XeroFlorXF159)capableofretainingupto5.92kgm 2ofwaterwasplacedoverthedrainagelayer.Abovetheretentionfabricwasthevegetationcarrier(XeroFlorXF301).
2.3.Plantestablishment
Growingsubstrate(Table1)wasplacedontopofthevegeta-tioncarrieratadepthof6.0cm(2.4in.).Thewaterretentionfabricandsubstratetogetherhavethepotentialtoholdupto12.0mm(0.5in.)ofrainfall.SeedsweresownandestablishedonthegrowingsubstrateperVanWoertetal.(2005).SpeciesincludedSaxifragagranulataL.(meadowsaxifrage),SedumacreL.(bitingstonecrop),SedumalbumL.(whitestonecrop),SedumkamtschaticumellacombianumFisch.(kamtschatkastonecrop),
Table1–InitialphysicalandchemicalpropertiesofsubstrateComponent
Unit
Totalsand(%)
91.18Verycoarsesand(1–2mm)(%)21.96Coarsesand(0.5–1mm)(%)
40.80Mediumsand(0.25–0.5mm)(%)24.66Finesand(0.10–0.25mm)(%)
3.36Very nesand(0.05–0.10mm)(%)0.40Silt(%)5.60Clay(%)
3.22Bulkdensity(g/cm3)1.16Porespace(%)
41.41Air lledporosity(%)
21.43Waterholdingcapacityat0.01MPa(%)17.07pH
7.9Conductivity(EC)(mmho/cm)3.29Nitrate(ppm)
203Phosphorus(ppm)65.8Potassium(ppm)622Calcium(ppm)214Magnesium(ppm)60Sodium(ppm)164Sulfur(ppm)184Boron(ppm)0.5Iron(ppm)
9.0Manganese(ppm)15.7Zinc(ppm)5.7Copper(ppm)
0.6
AnalysisperA&LGreatLakesLaboratories,Inc.,Ft.Wayne,Indiana.
非常好的资料
ecologicalengineering31(2007)225–231
227
SedumpulchellumMichx.(bird’sclawsedum),Sedumre exumL.(crookedstonecrop),SedumspuriumBieb.‘Coccineum’(creep-ingsedum),andSedumspuriumBieb.‘SummerGlory’(creepingsedum).Fullcoveragewasachieved(nosubstrateexposed)andmaintainedsinceJuly2002.
2.4.Treatments
Platformsweresetatoneoffourslopes(2%,7%,15%,and25%)inacompletelyrandomizeddesign(CRD)witheachslopereplicatedthreetimes.Platformswereadjustedtotheappro-priateslopeinApril2005.Becauseaslopedplatformreducesthehorizontalareauponwhichrainfalls,theeffectiveareaofeachplatformwascalculatedbasedonslopeandoriginalplatformarea.Thus,theeffectiveplatformareaswere5.49m2(59.07ft2),5.48m2(58.94ft2),5.43m2(58.41ft2),and5.32m2(57.26ft2)forthe2%,7%,15%,and25%treatments,respec-tively.
Becausethisstudyutilizedroofplatformsthatwerethreeyearsoldatthebeginningofthestudy,substratesamplesweretakenattheconclusionofthisstudyinordertoquan-tifysubstratechangesovertime.Soilcores(13.0cm(5.1in.))weretakenatthreerandomplacesamongstthetwelveplat-formsandwereanalyzedfororganicmatter(lossonignitionat550 C),porespace,freeairspace,andwaterholdingcapacity(A&LGreatLakesLaboratories,FortWayne,IN).Theseresultswerecomparedwithpreviousanalysisoffreshsubstrate.
2.5.Datacollection
RainfallandrunoffwererecordedonaCR10Xdatalogger(CampbellScienti c,Inc.,Logan,UT)thatwasplacedalong-sidethreeAM16Tmultiplexers.TwelveTE525WStippingbucketraingages(CampbellScienti c,Inc.,Logan,UT)wereeachsituatedunderneathaplatformtocollectrunofffromthealuminumtroughsanda13thtippingbucketmeasuredrain-fall.Thetwelverunofftippingbucketswerecoveredwithaplastic10inroundplantsaucerthataccommodatedaholetoallowwaterfromthealuminumtroughtoentertheraingagewhilealsoexcludingrainfall.Accuracyoftheraingageswasreportedbythemanufacturertobe±1%,+0and 2.5%,and+0and 3.5%forrainfallsof<25.4mmh 1,25.4–50.8mmh 1,and50.8–76.2mmh 1,respectively.
Datawererecordedcontinuouslyfrom26April2005until1September2006.Thedataloggerwasprogrammedtocollectvalueseveryminuteandtotalswereputoutevery5min,24hadaythroughouttheperiod.Dataweredownloadedoffthedataloggerandontoalaptopcomputereveryweek.
2.6.Dataanalysis
Retentiondatawereanalyzedfromallraineventsthatoccurredduringtemperaturesabove0 C(32 F)asapercent-ageoftotalrainfallforeachrainevent.Inordertoexcludemeltingprecipitationinrunoffdata,analysiswaslimitedtodatesbetween26April2005and22November2005andbetween12April2006and1September2006.Retentionisde nedhereasprecipitationthatdidnotrunofftheplat-forms.Independentraineventswerede nedasprecipitationeventsseparatedby6ormorehours.Intheeventrunoffwas
stilloccurring6hafterthe rstevent,thetwoeventswerecombined.Raineventswerearbitrarilycategorizedbyrelativeintensityaslight(<2.0mm)(0.08in.),medium(2.0–10.0mm)(0.08–0.39in.),orheavy(>10.0mm)(>0.39in.).Therangeofeachcategorywaschosentoobtainraineventsamplesizesthatweresimilaracrossallthreecategories.Therewasatotalof62rainevents.
Datawereanalyzedtwoways.Inthe rst,meanper-centretentionperraineventwasanalyzedusinganANOVAmodelwithroofslopeandrainfallcategoryas xedeffects.Althoughoriginalmeansarepresented,allretentionvaluesweretransformedpriortoanalysisusinganarcsinesquareroottransformationtostabilizethevarianceandnormal-izethedataset(Underwood,1998).Signi cantdifferencesbetweentreatmentsweredeterminedusingmultiplecompar-isonsbyLSD(PROCMIXED,SASversion8.02,SASInstitute,Cary,NC).Thesecondanalysiswastodeterminecurvenum-bersforeachgreenroofslopebyregressingforSintheformulaF/S=Q/P(PROCREG,SASversion8.02,SASInstitute,Cary,NC)andthenconvertingStoacurvenumberwiththeequationCN=25,400/(254+S)whereSisinmm(CarterandRasmussen,2006).
3.Resultsanddiscussion
Duringthestudytherewere94dayswithquanti ableprecip-itation,resultinginatotalof62raineventsthatwereusedinanalysis(Fig.1).Themaximumprecipitationfor1daywas38.1mmduringthestudy,whileamaximumsingleraineventexceeded40mm(Fig.2).Rainfallwasdistributedas16light(<2mm),24medium(2–10mm),and22heavy(>10mm)rainevents(Fig.2).Dailyminimumambientairtemperaturesdur-ingthedatacollectionperiodrangedfrom 6.7 Cto25.3 C(19.9–77.5 F)anddailymaximumambientairtemperaturesrangedfrom 2.3 Cto34.8 C(27.9–94.6 F)(Fig.1).
TheANOVAmodelshowedraincategoryandslope,aswellastheinteractionofboth,tobesigni cant(Table2).Represen-tativehydrographs(Fig.3)andcumulativehydrographs(Fig.4)illustratetheeffectofroofslopeonquantityofrunoffandoveralldelayforlight,medium,andheavyrainevents.Initialrunoffdelayfortheseraineventsisminimalforallslopes.ThiscontradictsDeNardoetal.(2005),VanWoertetal.(2005),andCarterandRasmussen(2006)whoreported4h,40min,and34mininitialdelays,respectively.Perhapstheintensityoftherainfallormoistureconditionofthesubstratepriortothesestormeventsexplainsthedifference.Anotherexplanationforthesecontradictingresultsisthatwiththeexceptionofthe2%slope,allslopesevaluatedinthisstudyaresteeperthanDeNardoetal.(2005),VanWoertetal.(2005),andCarterandRasmussen(2006)andthisstudyalsohasashallowermediadepththanDeNardoetal.(2005)andCarterandRasmussen(2006).
Inaddition,thisroofecosystemhadbeenestablishedfor3yearspriortocommencingthisstudy,whichisolderthanallofthepreviouslymentionedstudies.Thisgreatermatu-ritymayeffectthehydraulicconductivityofthesubstrate.Mentensetal.(2006)indicatedthatroofagewasnotcorrelatedtothequantityofretention,butroofagemayaffectthetimepatternofretention.Overallporespaceandchangesinpore
非常好的资料
228
ecologicalengineering31(2007)
225–231
Fig.2–Frequencyofraineventsincludedinthestudyfrom26April2005to22November2005and12April2006to1September2006.Rainfallmeasurementsweretakenfromtippingbucketraingaugesmountedattheresearchsite.
Fig.1–Dailymaximumandminimumtemperatures( C)andprecipitation(mm)throughoutthestudy(1April2005to1September2006).DataarefromtheMichiganAutomatedWeatherNetwork’sEastLansingweatherstationlocatedadjacenttotheresearchsite.
sizemayoccurovertimeasaresultofsettlingorasaresultofchangesinorganicmattercontent.Inthisstudy,maturesubstrateexhibitedgreatervaluesforporosity,freeairspace(macropores),organicmatter,andwaterholdingcapacityattheconclusionofthisstudyrelativetotheinitialsubstrate(Table3).Increasedfreeairspace,resultingfromchannelsformedbydecayingrootsorburrowinginsects,mayincreasepreferentialmacropore owthroughthesubstrate,therebyresultinginquickerinitial
runoff.
Runoffwasspreadoutovertimeacrossalltreatmentswiththe nalrunofflasting4h20min,10h45min,and13h45minforlight,medium,andheavyrainevents,respectively,afterrainfallstopped.TheseresultsaresimilartoVanWoertetal.(2005),Liu(2003),andMoranetal.(2004).LiuandMoranalsofoundthatthisdelayedrunoffwasatalower owrate.Byslowingdowntherateofrunoffandreleasingitoutoveralongerperiodoftime,greenroofscanhelpmitigatetheero-sionalpowerofrunoffthatdoesenterstreams,eitherthroughdirectrunofforstormsewers.Itcanalsopreventcombinedstormwatersewersystemsfromover owing,byallowingittoprocessrunoffforalongertimeatalower owrate.Theseresultsmayin uencestormwatermanagementpracticesordesignofmunicipalstormwaterandsewagesystems.
Thegreenroofsretainedanaverageof80.2%ofprecipi-tationaveragedacrossallslopesandraincategories(Table4).Meanretentionwasleastatthe25%slope(75.3%)andgreatestatthe2%slope(85.2%).Inaddition,retentionvaluesdecreasedasslopeincreased.Retentionvalueswerehighestforlightrainevents(94.2%)andlowestforheavyrainevents(63.3%).
Table2–ANOVAtableforrainfallretentionoverthe2-yearperiod(26April2005to22November2005and12April2006to1September2006)fromfourroofplatformtreatmentsreplicatedthreetimesSourceofvariation
Model
RaincategoryaSlopeb
Category×slopeError
Correctedtotal
Degreesoffreedom
11236598609
Sumofsquares
80.574.61.52.663.3143.8
Meansquares
7.337.30.50.40.1
F-Statistic
69.1352.24.74.1
P-value
<.0001<.0001.0029.0005
Retentionisthedependentvariable.Roofslopeandraincategoryareindependentvariables.
ab
Vegetatedroofplatformssetat2%,7%,15%,and25%slopewith6.0cm(2.4in.)ofsubstrate.
Raineventcategorieswerelight(<2.0mm)(0.08in.)(n=16),medium(2.0–10.0mm)(0.08–0.39in.)(n=24),heavy(>10.0mm)(>0.39in.)(n=22),andoverall(n=62).
非常好的资料
ecologicalengineering31(2007)225–231
229
Fig.3–Runoffhydrographsofselectedrepresentativerainevents:(A)heavy(23.37mm)(0.92in.),(B)medium
(5.08mm)(0.2in.),and(C)light(1.02mm)(0.04in.).Linesrepresentrunoff(mm)froma2%,7%,15%,or25%roofslopewith6.0cm(2.4in.)ofmedia.Valuesareaveragesofthreereplicationsmeasuredusingtippingbucketraingaugesmountedattheresearchsite.
Fig.4–Cumulativehydrographsofselectedrepresentativerainevents:(A)heavy(23.37mm)(0.92in.),(B)medium(5.08mm)(0.2in.),and(C)light(1.02mm)(0.04in.).Linesrepresentrunoff(mm)froma2%,7%,15%,or25%roofslopewith6.0cm(2.4in.)ofmedia.Valuesareaveragesofthreereplicationsmeasuredusingtippingbucketraingaugesmountedattheresearchsite.
Thisdemonstratesthatthesubstratehasalimitedstoragecapacity;onceitissaturatedtheprecipitationrunsoff.
RetentiondataagreewithVanWoertetal.(2005)andCarterandRasmussen(2006).However,ourretentionvaluesaremuchhigherthanDeNardoetal.(2005),Liesecke(1998),andMentensetal.(2006)whoallreportedanaverageof45%,40–50%,and45%retention,respectively.Thismaybedue
to
differencesinsubstratedepth,antecedentsubstratemois-turestatus,slope,orprecipitationpatterns.Butitismostlikelyduetothefactthatallofthelatterresearchersusedlargestormsintheirstormwatertesting.Inaddition,Liesecke(1998)andMentensetal.(2006)followedFLL(http://www.f-l-l.de/english)guidelineswhichemploynearlysaturatedantecedentmoistureconditionsfollowedbyasimulatedrainthatconstitutesa100-yearstorm.Thisisverydifferentfrom
Table3–Organicmattercontentandphysicalpropertiesofinitialsubstratepriortoplanting(2002)andafter5yearsonagreenroof(2006)Sample
InitialsubstrateMaturesubstrate
Organicmatter(%)
2.334.25
Porespace(%)
41.4181.84
Freeairspace(%)
21.4314.40
Waterholdingcapacity(%)
17.0767.44
AnalysisperA&LGreatLakesLaboratories,Inc.,Ft.Wayne,Indiana.
非常好的资料
230
ecologicalengineering31(2007)225–231
Table4–Meanpercentage±thestandarddeviationoftotalrainfallretentionoverthe2-yearperiod(26April2005–22November2005and12April2006–1September2006)fromfourroofplatformtreatmentsreplicatedthreetimesTreatmenta
2%7%15%25%Overall
ab
Lightb(%)
93.394.094.095.5
±±±±3.4bAc3.1cA3.2cA2.9cA
Medium(%)
92.289.588.687.8
±±±±
9.5bA12.7bA13.3bA16.3bA
Heavy(%)
71.466.458.457.1
±±±±
18.1aC18.5aB17.4aA16.1aA
Overall(%)
85.282.278.075.3
±±±±15.9B18.3AB21.0A22.3A
94.2±3.3c89.5±12.8b63.3±18.4a80.2±19.6
c
Retentionfromvegetatedroofplatformssetat2%,7%,15%,and25%slopewith6.0cm(2.4in.)ofsubstrate.
Raineventcategorieswerelight(<2.0mm)(0.08in.)(n=16),medium(2.0–10.0mm)(0.08–0.39in.)(n=24),heavy(>10.0mm)(>0.39in.)(n=22),andoverall(n=62).
Meanseparationinrows
andcolumnsbyLSD(P≤0.05).Lowercaselettersdenotecomparisonsacrossraincategorieswithininpidualslopes(n=12).Uppercaselettersincolumnsdenotedifferencesamongslopes(n=12).
ournaturalconditions,whichwouldhavevaryingantecedentmoistureconditionsandvaryingstormvolumes.Forexam-ple,on18June2006,42.2mm(1.7in.)ofprecipitationoccurredfollowinganearlierraineventof7.62mm(0.3in.).Theserela-tivelydryantecedentconditionsretained68%,64%,57%,58%for2%,7%,15%,and25%slopes,respectively.Incontrast,on28August2006,28.7mm(1.1in.)ofrainfellafterarainjust1.5daysbeforeof8.1mm(0.32in.).Therelativelywetantecedentconditionsretained45%,30%,27%,29%for2%,7%,15%,and25%slopes,respectively.
Inaddition,organicmattercompositionandageofthesub-stratemayaffectretentionvolumesaswell.WhilereportsfromGermany(Mentensetal.,2006)indicatethatroofagedoesnotaffectthequantityofretention,our5-year-oldsubstratehadnearlytwicethewaterholdingcapacityasnewsubstrate(Table3).Increasesinorganicmatterandmicroporesmayincreasewater-holdingcapacity,whichincreasestotalreten-tion,butincreasedmacropores(channels)alsoreducedtheinitialdelay.
Schade(2000)andLiesecke(1998)concludedthatgreenroofslopedidnotaffectretentionamountsforslopesrangingfrom2%to58%.Ourresultsarecontradictoryinthattheeffectof
roofslopewassigni cantwhencomparing2%and15%slopes,aswellas2%and25%slopes.Thisdifferenceagainisproba-blyduetotheseresearchersusingwetantecedentmoistureconditionsand100-yearstormwatervolumesinsimulatedconditions,whichisdifferentfromourstudydesign.Maybefora100-yearstormevent,slopedoesnotin uenceretention,butfornormalraineventsitdoes.Greenroofswillfunctionthemajorityofthetimeundernormalweatherconditions,notin100-yearstormswherethesubstrateisinundatedwithwater.Curvenumberswerecalculatedtobe84,87,89,and90for2%,7%,15%,and25%slopes,respectively.Allofthesenumbersarelowerthanaconventionalroofcurvenumberof98,indi-catingthatallofthesegreenedslopeshadlessrunoffthantraditionalblackroofs(Fig.5).ThisagreeswithVanWoertetal.(2005)whocomparedconventionalgravelballastedroofswithgreenroofsandfoundthattraditionalroofsretainedtheleastrainfall.Curvenumbersalsoincreaseinvalueasslopeincreased,indicatingmorerunoffasslopesbecamesteeper(Fig.5).UsingthesecurvenumbersintheequationCN=25,400/(254+S)andsolvingforpotentialretention(S)we ndthatSrangesfrom28.2mmto48.4mm(1.1–1.9in.).These ndingsaresimilartoCarterandRasmussen(2006)whofoundacurvenumberof86(S=40.5mm)(S=1.6in.)foragreenroofwith<2%slopeand7.62cm(3.0in.)ofsubstrate.Otherlandandsurfacecovertypeswhichhavethesimilarcurvenum-berstotheserangefromclaysoilpasturesinfairconditiontogravelroadsatopclaysoil(NRCS,2004).Thesecurvenumberswillassistengineersandstormwatermanagersinestimatingstormwaterrunoffpeakratesandrunoffquantitiesoflargerwatershedsthatimplementgreenroofs.
4.Conclusion
Fig.5–Curvenumbers(CN)fromvegetatedroofplatformssetat2%,7%,15%,and25%slopeswith6.0cm(2.4in.)ofsubstrateoverthe2-yearperiod(26April2005–22
November2005and12April2006–1September2006)fromfourroofplatformtreatmentsreplicatedthreetimes.
Thisstudydemonstratedthatgreenroofslopedoeshaveaneffectonrunoffretentionquantities.Retentionvaluesdecreasedasslopeincreasedandwassigni cantforslopesbetween2%and15%aswellasbetween2%and25%.Inaddition,greenroofcurvenumberswereshowntobemuchlowerthantraditionalroo ngmaterials,whicharetypicallyassignedacurvenumberof98.Inthisstudy,curvenumbersrangedfrom84to90,resultinginapotentialretention(S)rangingfrom28.2mmto48.4mm(1.1–1.9in.).
TheseconclusionsareapplicabletothemidwesternUnitedStatesandothergeographicalareaswithsimilarclimates.
非常好的资料
ecologicalengineering31(2007)225–231
231
TheMichiganStateUniversitycampuscovers21.0km2(5200acres)andhas1.1km2(12millionft2)of atroofsurface.Ifalloftheseroofsweregreenedsimilartotheroofplat-formsinthisstudy,thenbasedonameanretentionof80.2%,theseroofswouldhaveretained377,041m3(99,603,827gal-lonsor13,315,095ft3)during2005.Ofcourse,retentiononanyroofdependsonrainfalldistributionthroughouttheyear,theintensityofeachevent,ambientairtemperatures,plantselec-tion,andthein uenceoflocalenvironmentalconditionsonevapotranspiration.
references
Barnes,K.,Morgan,J.,Roberge,M.,2001.Impervioussurfacesand
thequalityofnaturalbuiltenvironments.ReportpreparedforTowsonUniversity’sNASA/Raytheon/Synergyproject.
Bastin,L.,Thomas,C.D.,1999.Thedistributionofplantspeciesin
ndscapeEcol.14,493–507.Carter,T.L.,Rasmussen,T.C.,2006.Hydrologicbehaviorof
vegetatedroofs.J.Am.WaterRes.Assoc.42(5),1261–1274.Connelly,M.,Liu,K.,2005.GreenroofresearchinBritish
Columbia—anoverview.In:Proceedingsofthe3rdNorthAmerican:GreenRoofConferenceonGreeningRooftopsforSustainableCommunities,Washington,DC,May4–6.TheCardinalGroup,Toronto,pp.416–432.
DeNardo,J.C.,Jarrett,A.R.,Manbeck,H.B.,Beattie,D.J.,Berghage,
R.D.,2005.Stormwatermitigationandsurfacetemperaturereductionbygreenroofs.Trans.ASAE48(4),1491–1496.Deutsch,B.,Whitlow,H.,Sullivan,M.,Savineau,A.,2005.
Re-greeningWashington,DC.Agreenroofvisionbasedonenvironmentalbene tsforairqualityandstormwatermanagement.In:Proceedingsofthe3rdNorthAmerican:GreenRoofConferenceonGreeningRooftopsforSustainableCommunities,Washington,DC,May4–6.TheCardinalGroup,Toronto,pp.379–384.
Ferguson,B.K.,1998.IntroductiontoStormwater:Concept,
Purpose,Design.JohnWileyandSons,Inc.,NewYork.
Getter,K.L.,Rowe,D.B.,2006.Theroleofextensivegreenroofsin
sustainabledevelopment.HortScience41(5),1276–1285.Hawkins,R.H.,1993.Asymptoticdeterminationofrunoffcurve
numbersfromdata.J.Irrig.Drain.Eng.119(2),334–345.Liesecke,H.J.,Borgwardt,H.,1997.Abbauvonluftschadstoffen
durchextensivedachbegrunungen¨(degradationofair
pollutantsbyextensivegreenroofs).StadtundGrun
¨46(5),245–251.
Liesecke,H.J.,1998.Dasretentionsvermogen¨von
dachbegrunungen¨(waterretentioncapacityofvegetated
roofs).StadtundGrun
¨47(1),46–53.Liesecke,H.J.,1999.Extensivebegrunung¨bei5 dachneigung
(extensiveroofgreeningsona5 slope).StadtundGrun
¨48(5),337–346.
Liu,K.,2003.Engineeringperformanceofrooftopgardens
through eldevaluation.In:Proceedingsofthe18th
InternationalConventionoftheRoofConsultantsInstitute,pp.93–103.
Liu,K.,Minor,J.,2005.Performanceevaluationofanextensive
greenroof.In:Proceedingsof3rdNorthAmericanGreenRoofConference:GreeningRooftopsforSustainableCommunities,Washington,DC,May4–6.TheCardinalGroup,Toronto,pp.385–398.
Meng,Q.,Hu,W.,2005.Roofcoolingeffectwithhumidporous
medium.EnergyBuildings37,1–9.
Mentens,J.,Raes,D.,Hermy,M.,2006.Greenroofsasatoolfor
solvingtherainwaterrunoffproblemintheurbanized21stcentury?LandscapeUrbanPlan.77,217–226.
Moran,A.,Hunt,B.,Jennings,G.,2004.ANorthCarolina eld
studytoevaluategreenroofrunoffquantity,runoffquality,andplantgrowth.In:Proceedingsofthe2ndNorthAmericanGreenRoofConference:GreeningRooftopsforSustainableCommunities,Portland,OR,June2–4.TheCardinalGroup,Toronto,pp.446–460.
NRCS,2004.NationalEngineeringHandbook:Hydrology.National
SoilConservationService(FormerlySoilConservationService),USDA,Washington,DC(Chapter4).
Peck,S.W.,2005.Toronto:AModelforNorthAmerican
InfrastructureDevelopment.In:EarthPledge.GreenRoofs:EcologicalDesignandConstruction.SchifferBooks,Atglen,PA,pp.127–129.
Schade,C.,2000.Wasserruckhaltung¨undAb u beiwertebei
dunnschichtigen¨extensivbegrunungen.¨StadtundGrun¨49(2),95–100.
Scholz-Barth,K.,2001.Greenroofs:stormwatermanagement
fromthetopdown.Environ.Des.Constr.4(1),63–70.
Simmons,M.,Gardiner,B.,2007.Theeffectsofgreenroofsina
sub-tropicalsystem.GRHC.
Underwood,A.J.,1998.ExperimentsinEcology:TheirLogical
DesignandInterpretationusingAnalysisofVariance.UniversityPress,Cambridge.
USEPA(UnitedStatesEnvironmentalProtectionAgency),1994.
TheQualityofOurNation’sWater:EPAOf ceofWater,Washington,DC,EPA-841-S-94-002.
USEPA,2003.CoolingSummertimeTemperatures:Strategiesto
EPA,Washington,DC,EPA-430-F-03-014.
VanWoert,N.D.,Rowe,D.B.,Andresen,J.A.,Rugh,C.L.,Fernandez,
R.T.,Xiao,L.,2005.Greenroofstormwaterretention:effectsofroofsurface,slope,andmediadepth.J.Environ.Qual.34(3),1036–1044.
Villarreal,E.L.,Bengtsson,L.,2005.ResponseofaSedum
green-rooftoinpidualrainevents.Ecol.Eng.25(1),1–7.WaterResourcesGroup,1998.Waterlaws:understandingthe
problemsfacingurbanwatersheds,20October2005./guest/guest1.
YokTan,P.,Sia,A.,2005.Apilotgreenroofresearchprojectin
Singapore.In:Proceedingsof3rdNorthAmericanGreenRoofConference:GreeningRooftopsforSustainableCommunities,Washington,DC,May4–6.TheCardinalGroup,Toronto,pp.399–415.
正在阅读:
Quantifying the effect of slope on extensive green roof stor04-22
营养支持翻译论文05-24
硫酸氢氯吡格雷片在多种溶出介质中溶出曲线的比较研究05-30
什么是美学01-02
周历2014记事横排05-21
信息化时代微课应用于大学英语教学的思考01-04
STUDIO生成主子孙单据开发说明05-01
- 1Twyman-Green干涉实验 - 图文
- 2Nuclear family-Green day
- 3Effect of Annealing Temperature of ZnO on the Energy
- 4Twyman-Green干涉实验 - 图文
- 5Metabolic Profiling Reveals the Protective Effect of Diammon
- 6Critical Casimir Effect in superfluid wetting films
- 7Photocatalysis. A multi-faceted concept for green chemistry
- 8Poster 1039-Investigation the effect of different methods of
- 9affect-effect-influence的区别
- 10Enhancement of the anomalous Hall effect and spin glass beha
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Quantifying
- extensive
- effect
- slope
- green
- roof
- stor
- 可畅(左羟丙哌嗪片)
- 托管中心传染病制度
- 《笔顺描红》教学计划
- 4-(4-氯苯基)-3-甲基-2,4-二酮基丁酸乙酯的制备
- 女人一定要知道:影响女人一生的7个资本!
- 2022-2022年中国大型锻件市场全景调查与发展趋势研究报告
- 英语人教版九年级上册英语作文总结
- 冠词a和an的用法及练习
- 2011年青海省国民经济和社会发展统计公报
- 小学数学教学个人工作计划
- 人才城 需求确认清单(软件)
- 大学体验英语2口语Unit 14 Government Control
- 基于PEST分析法的中国教育培训市场外部环境分析
- 百科知识竞赛题库题
- 明清传奇中的美学_丑角不丑
- 实例解析托福听力主旨题-智课教育旗下智课教育
- 敬廉崇洁主题班会活动教案
- 基于Internet的学生选课信息管理系统的设计与实现
- 弱电系统国家相关规范和规定
- 高层建筑结构计算程序SATEWE的计算结果分析