高桩码头课程设计计算书

更新时间:2023-07-20 03:31:02 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

天津大学高桩码头课程设计!

目 录

第一章 设计资料 .......................................................................................................................... 1

1.1 码头用途 .......................................................................................................................... 1 1.2 工艺要求 ............................................................................................................................ 1 1.3自然条件 ............................................................................................................................. 1

1.3.1地形 .......................................................................................................................... 1 1.3.2 原有护岸情况 ....................................................................................................... 1 1.3.3地基土壤物理力学性质指标 .................................................................................. 2 1.3.4 水位 ......................................................................................................................... 3 1.4 建材供应 ............................................................................................................................ 3 1.5 施工条件 ............................................................................................................................ 3 1.6 码头规划尺度 .................................................................................................................... 3 第二章 码头结构选型 .................................................................................................................... 4 第三章 码头结构布置及构造 ........................................................................................................ 5

3.1 码头结构总尺度的确定 .................................................................................................... 5

3.1.1码头结构的宽度 ...................................................................................................... 5 3.1.2 码头结构沿码头长度方向的分段 ......................................................................... 5 3.1.3 桩顶高程 ................................................................................................................. 5 3.2 码头上工艺设备的型式及布置 ........................................................................................ 5

3.2.1 门机轨道的布置 ..................................................................................................... 5 3.2.2 工艺管沟的位置和尺寸 ......................................................................................... 5 3.2.3 系船柱的型式和布置 ............................................................................................. 6 3.2.4 橡胶防冲设备的型式和布置 ................................................................................. 6 3.2.5 护轮槛 ..................................................................................................................... 7 3.3码头上部结构系统的布置和型式 ..................................................................................... 8

3.3.1 横向排架 ................................................................................................................. 8 3.3.2 纵梁 ......................................................................................................................... 9 3.3.3 面板和面层 ............................................................................................................. 9 3.3.4 靠船构件 ............................................................................................................... 10

天津大学高桩码头课程设计!

3.4 基桩的布置及构造 .......................................................................................................... 11

3.4.1 横向排架中桩的布置 ........................................................................................... 11 3.4.2桩的纵向布置 ........................................................................................................ 11 3.4.3 桩的构造 ............................................................................................................... 11 3.4.4 桩帽的构造 ........................................................................................................... 11

第四章 码头荷载 ........................................................................................................................ 13

4.1 永久荷载 .......................................................................................................................... 13

4.1.1 永久荷载计算图示 ............................................................................................... 13 4.1.2 永久荷载的计算 ................................................................................................... 13 4.2 可变荷载 .......................................................................................................................... 14

4.2.1 船舶荷载 ............................................................................................................... 14 4.2.2 堆货荷载 ............................................................................................................... 16 4.2.3 门机荷载 ............................................................................................................... 17 4.3 作用效应组合设计值的确定 .......................................................................................... 18 第五章 横向排架计算 .................................................................................................................. 20

5.1 计算基本假定 .................................................................................................................. 20 5.2 桩的刚性系数 .................................................................................................................. 20 5.3 桩上荷载及符号定义 ...................................................................................................... 22 5.4 桩顶的变位 ...................................................................................................................... 22 5.5 桩顶断面的内力 .............................................................................................................. 23 5.6 静力平衡方程 .................................................................................................................. 23 5.7 基桩承载力验算 .............................................................................................................. 24 第六章 附件………………………………………………………………………………………26 (1) 高桩码头平面图与立面图……………………………………………………………..26 (2)高桩码头断面图………………………………………………………………………..26

天津大学高桩码头课程设计!

第一章 设计资料

1.1 码头用途

拟设计的码头系天津港所属船舶修理厂的配套工程之一,供待修船舶系靠、检修、修理和新建船舶舾装之用。

1.2 工艺要求

满足主机马力为1900HP,长45.79米宽9.8米型深5.0米,最大吃水4.5米港作拖轮停靠和修理要求,满足长度为67.52米载重量1000吨,满载排水量为1830吨供游轮停靠要求。

满足轨距为10.5米,起重量为10吨,荷载代号为Mh-4-25门座起重机(1台)在码头上作业的要求。

满足自重为23.8吨,最大其中量为16.8吨,使用吊重为9吨(打支腿工作)的Q161型轮胎吊在码头上作业的要求。

满足码头上堆置15kN/m2的负荷要求。

码头前沿设两条工艺管沟,一条供敷设水、乙炔、压缩空气之用,一条供敷设电缆用。

码头前沿设置供船舶和电焊机使用的供电箱4个和供门机使用的供电箱1个。

码头前沿设置船桩和防冲设备以供船舶安全方便系靠。

1.3自然条件

1.3.1地形

修船码头位于海河下游左侧凹岸内,现有岸坡稳定,水深无明显变化。

1.3.2 原有护岸情况

现有护岸为木桩基L型钢筋混凝土结构,横断面如图1-1所示,经唐山大地震考验,安全可靠可继续使用,护岸前岸坡平均坡度为1:5。

天津大学高桩码头课程设计!

图1-1 原有护岸的横断面图

1.3.3地基土壤物理力学性质指标

地基土壤物理力学性质指标见表1-1:

表1-1 地基土壤物理力学性质指标

当桩尖打至 20.0m以下时,桩端极限阻力R 1600KN/m。

2

天津大学高桩码头课程设计!

1.3.4 水位

设计高水位:+3.50米; 设计低水位:+1.00米; 平均水位:+2.20米。

1.4 建材供应

钢筋、水泥、木材按计划满足供应,钢筋品种、规格按实际构造需要选用,橡胶防冲设备可采用天津市工厂生产的产品,砂石料由外地供应宜节约使用。

1.5 施工条件

码头施工可委托一航局一公司承担,该公司技术力量雄厚,施工经验丰富,有规模大、机械化程度高的构件预制厂,能制作各种规格的钢筋混凝土和预应力混凝土构件(桩、梁、板、靠船物件等)有大型和小型的起重运输机械和各种工程船舶(打桩船、起重船、拖轮、驳船等)可满足施工需要。

1.6 码头规划尺度

码头平行于护岸布置,码头前沿线距钢筋混凝土L型挡土墙32.5m。 码头长90m,码头宽度可根据使用要求和选用的结构形式确定。 码头前沿标高+4.5M 码头前水深-4.0M。

天津大学高桩码头课程设计!

第二章 码头结构选型

天津港海岸地貌为淤泥质海岸类型,土质较软,多为粘性土壤,承载能力差,

适合打桩,故选用高桩码头。

由此码头的用途和工艺要求可知,码头上部结构中除了面板、靠船构件等主要组成外,还应布置工艺管沟和门机轨道梁等。所以对于其上部结构,承台式适用于水位变化较大,且岸坡土质较好的情况;无梁板式只能采用非预应力面板,且跨度不宜太大,桩的承载力不能充分发挥,码头面不能承受集中荷载;桁架式构造复杂,易损坏,难维修,造价往往就高。

梁板式高桩码头将码头面上的堆货荷载和流动机械荷载通过面板传给纵梁和横梁;门机荷载直接由门机轨道梁承受;作用在靠船构件和系船柱块体上的船舶荷载通过横梁传给桩基,故梁板式码头各构件受力合理明确;由于采用预应力钢筋混凝土结构,提高了构件抗裂性能,减少了钢筋用量;横向排架跨度大,桩的承载力能充分发挥,装配程度高,施工速度较承台式和桁架式快;因横梁位置较低,靠船构件的悬臂长度较无梁板式短;适用于荷载较大且复杂的大型海港码头。故此码头上部结构采用梁板式。

由于此地区地基中软土层较厚、土质差,且土坡已经较为稳定,所以可以建造宽桩台式高桩码头,这样既可以保证码头建筑物的整体稳定性,还可以减少填方。由于码头宽度较大,通常将整个码头结构用纵向变形缝分成前后桩台。

天津大学高桩码头课程设计!

第三章 码头结构布置及构造

3.1 码头结构总尺度的确定

3.1.1码头结构的宽度

由于本码头采用宽桩台式高桩码头,码头结构宽度较大,而在此宽度内前后区域所受的荷载差异较大,故把码头用纵向变形缝分为前方桩台和后方桩台。前方桩台的宽度一般采用码头前沿地带的宽度,此码头的码头前沿地带设有宽度为

10.5m的门机,且从码头前沿线到门机后轨外1.5m处的范围内。故码头前沿地带

宽度为14m,且门机轨道下分别设有纵梁。后方桩台宽度取为32.5 14 18.5m。

3.1.2 码头结构沿码头长度方向的分段

为避免在结构中产生过大的温度应力和沉降应力,沿码头长度方向设置变形缝。变形缝的宽度取为25mm,变形缝内用泡沫塑料的功能柔性材料填充,以保证结构自由伸缩。本码头长度为90m,采用梁板式高桩码头,故变形缝的间距取为45m。变形缝的形式取为悬臂梁式,悬臂的长度取为1.5m。为防止相邻两分段水平位移不一致,造成轨道错牙,变形缝在平面上应作成凹凸形,凹凸缝的齿高为300mm。

3.1.3 桩顶高程

桩顶高程为+2.67。

3.2 码头上工艺设备的型式及布置

3.2.1 门机轨道的布置

门机轨道布置在码头的前方桩台的纵梁上,从码头前沿线到门机后轨外的距离为2m。

3.2.2 工艺管沟的位置和尺寸

此码头为舾装码头,在码头前沿应设置两条管沟,一条供铺设电缆和提供压缩乙炔用,另一条供为船舶供水和提供压缩空气和氧气的管线。

对于高桩码头,管沟的位置一般设置在码头前沿靠船构件和前纵梁之间,在

天津大学高桩码头课程设计!

系船柱下方,两条管沟之间用墙开。采用小尺寸管沟,管沟的宽度为0.7m,深度为0.9m。上面盖设厚度为0.2m,宽度为1.80m的盖板,下部铺设0.1m的底板。

管沟底板接于靠船构件上,厚度为10mm。为排除管沟内积水,在管沟底部设置排水孔。管沟的尺寸如图3-1:

图3-1 工艺管沟结构图

3.2.3 系船柱的型式和布置

本码头应满足载重量为1000t的船舶,故船舶系缆力的下限值为150KN,选择

15t级,在距码头前沿0.8m处设置,系船

柱之间的间距取为21m,沿码头长度方向布置5个。选用单挡檐型,底盘形状选为方形,柱壳材料选为铸铁。系船柱的形式如图3-2:

图3-2 系船柱的型式及尺寸

3.2.4 橡胶防冲设备的型式和布置

由于海水腐蚀性强,同时船舶的尺度较大,故采用橡胶护舷。由于D形橡胶护舷具有吸收能量大,反力适中,安装与维修方便,护舷底宽较小等优点,故在本码头中选用D形橡胶护舷。

船舶靠岸时的有效撞击能量:

天津大学高桩码头课程设计!

E0

2

MVn2

式中: ——有效动能系数,取为0.7。 M——船舶的质量,M 1830t

Vn——船舶靠岸时的法向速度,Vn 1.6m/s

求得:E0 16.40KJ,船舶一般是斜靠码头,因此船舶的撞击能量通常是考虑由一个护舷吸收,故选用D形橡胶护舷H300 L1500 3Z。护舷尺寸如图3-3:

图3-3 H500 L1500 3z D形橡胶护舷

橡胶护舷的布置应满足船舶在各种水位和不同吃水条件下的安全靠泊,沿码头前沿立面竖向间端布置,船舶满载吃水时的干舷高度为1.3m,而设计高水位与设计低水位之差为2.5m,故在靠船构件上设置3排橡胶护舷,高程分别为:

1.7m、 2.8m、 4.0m。

3.2.5 护轮槛

天津大学高桩码头课程设计!

护轮槛断面尺寸为100mm 100mm。

3.3码头上部结构系统的布置和型式

3.3.1 横向排架

3.3.1.1 前方桩台

前方桩台的横向排架间距取为7m,两侧悬臂的长度为1.5m,每分段设置7组横向排架。 3.3.1.2 后方桩台

后方桩台的横向排架间距取为3.5m,两侧悬臂长度为1.5m,每分段设置1.3组横向排架。 3.3.1.3 横梁的构造

前方桩台横梁的横断面形式采用到T形,下部预制的预应力结构,上部采用现浇形式,构成现场叠合式结构。为使桩帽伸出的钢筋穿入预制的下横梁,在横梁的端部预留椭圆形安装孔,其长轴(沿梁长方向)和短轴的长度分别为80mm和

40mm。横梁宽度取为800mm。断面结构尺寸见图3-4:

图3-4 横梁的结构尺寸图

天津大学高桩码头课程设计!

后方桩台为了减小梁的宽度又满足板的搁置长度,采用倒梯形断面。横梁宽度取为600mm。

横梁高度取为1600mm。

3.3.2 纵梁

3.3.2.1 纵梁的布置

本码头为只设门机不设铁路的梁板式码头,所以在前方桩台的门机轨道下设置两个纵梁。后方桩台不设纵梁。 3.3.2.2 纵梁的构造

纵梁的横断面采用空心矩形断面,选用下部预应力结构预制,上部结构现浇的叠合梁型式。纵梁高度取为1200mm,宽度取为400mm。纵梁构件如图3-5:

图3-5 纵梁的构造图

3.3.3 面板和面层

面板采用叠合式的实心板,下部分为预应力的预制结构,上半部分现浇。在预制部分的表面做成齿坎型。板的厚度为200mm,其中预制部分的厚度为

120mm,现浇部分厚度为80mm。前方桩台板长取为7m,板宽为3m。后方桩台

板长为3.5m,板宽为3m。为防止面板钢筋锈蚀和下面保护层脱落,在面板内设置排气孔,直径为50mm,间距为3m。面板的断面如图3-6:

天津大学高桩码头课程设计!

图3-6 实心板的断面形式

本码头采用叠合板,故面层与面板一起浇筑,面层的厚度为30mm。为防止面层混凝土在气温变化时引起膨胀或收缩而产生裂缝,故在面层上设置竖向不贯通的伸缩缝。缝宽10mm,缝深15mm,用聚乙烯填充。缝的间距取为3m。面层做排水坡,坡度为0.8%。

3.3.4 靠船构件

本码头为舾装码头,为使沿码头长度方向有全面的防护,小船不致误入码头下面,防护桩免受冰凌或其他漂浮物的撞击,码头的靠船构件采用悬臂板式。

悬臂板式靠船构件由悬臂版、胸墙板和水平纵梁组成,每两个横向排架之间设置一块靠船构件。悬臂板在预制场整体预制,运到现场安装,并与横梁整体连接。两个靠船构件在施工水位上的连接在现场浇筑,使其在码头方向连成整体。 靠船构件断面图如图3-7:

图3-7 靠船构件断面图

天津大学高桩码头课程设计!

3.4 基桩的布置及构造

3.4.1 横向排架中桩的布置

前方桩台本码头上含有门座起重机,在靠海一侧门机轨道梁下直接布置双直桩,在后门机梁下布置一组叉桩,叉桩的坡度取用为3:1。在前后轨道梁的中间布置一根直桩,桩距为5.25m。

后方桩台在横向排架下设置五组直桩,直桩间距为4m,后方桩台不设叉桩。

3.4.2桩的纵向布置

在码头中间的结构分段,一侧在有约束设置一根直桩,在无约束一侧设置一组纵向半叉桩。在试车系船柱的下面设置纵向叉桩。

3.4.3 桩的构造

本设计中采用预应力钢筋混凝土空心方桩,方桩的断面尺寸取为

550mm 550mm,空心直径为200mm,混凝土标号采用C40。

mm~825mm桩尖段的长度为 1.0~1.5 b 550,取为700mm,桩尖宽度为mm 0.2~0.25 b 110

~137.5mm,取为120m;桩头段的长度为

4b=4 450=2200mm。

桩长:打桩深度为28m

对于直桩:桩长 1.74 28 29.74m 对于叉桩:桩长

= 29.743

31.35m

图3-8 桩的结构图

3.4.4 桩帽的构造

天津大学高桩码头课程设计!

桩帽采用现浇混凝土,在本设计中采用方形桩帽,桩帽高度为800mm。

对于尺寸为550mm 550mm的单桩,桩帽底面尺寸为850mm 850mm,桩帽顶面尺寸为1400mm 1400mm。桩帽的形式及断面尺寸如图3-9:

图3-9 单桩桩帽的形式与尺寸

对于双直桩和叉桩上桩帽,桩帽底面尺寸为1700mm 850mm,桩帽顶面尺寸为2250mm 1200mm。桩帽的形式及断面尺寸如图3-10:

图3-10 双桩桩帽的形式和尺寸

天津大学高桩码头课程设计!

第四章 码头荷载

4.1 永久荷载

4.1.1 永久荷载计算图示

永久荷载包括面层、面板、横纵梁等构件的自重。考虑到面板和面层的重力均由横梁承担。

图4-1 永久荷载的计算图示

4.1.2 永久荷载的计算

1、面层自重

g面层=24 0.05=1.2KN/m2

2、面板自重

2

0.2=N5km g面板=25 /

3、横梁自重

(0 .80 .6 0.41K.N0)=m g横梁=25 2

4、纵梁自重

g纵梁=25 0.4 1.2-3.14 0.052-0.1 0.4 =10.80kN/m

5、管沟盖板自重

g管沟盖板=24 1.8 0.2=8.64kN/m

6、靠船构件自重

g靠船构件=24 0.1 0.2 0.2 0.3 0.5 0.3 1.2 (0.1 0.3) 1.5 2 22.32kN/m

7、管沟隔板自重

天津大学高桩码头课程设计!

g管沟隔板=24 1.0 0.1=2.4kN/m

8、管沟底板

g管沟底板=24 0.1 1.4=3.36kN/m2

9、管沟下梁

g管沟下梁=25 0.6 0.8=12kN/m

系船柱跟橡胶护舷的自重不计。 作用在横向排架上的永久荷载集中力为:

P+P管沟隔板+P管沟底板1 P纵梁+P管沟盖板+P靠船构件

=10.80 7+8.64 7+22.32 7+2.4 7+3.36 7=332.64kNP2 P 0纵梁=10.8

7=75.N 6k

g1 g管沟下梁=15kN/m

g2=g横梁+g面板+g面层=22+1.2 7+5 7=65.4kN/m 横向排架上永久荷载集中力矩为:

M1 8.64 1 7 2.4 7 0.95 3.36 0.9 7 22.32 7 1.70 363.412kN m

4.2 可变荷载

4.2.1 船舶荷载

4.2.1.1 作用在船舶上的风荷载

作用在船舶上的风压力的横向分力Fxw和纵向分力Fyw可按下式计算:

风压力的横向分力(垂直于码头前沿线):

Fxw 73.6 10 5AxwVx2 1 2

风压力的纵向分力(平行于码头前沿线):

Fyw 49.0 10 5AywVy2 1 2

其中:Fxw——作用在船舶上的计算风压力的横向分力

Fyw——作用在船舶上的计算风压力的纵向分力

1——风压不均匀折减系数,设计船长为67.52m,故取 1 0.9。

天津大学高桩码头课程设计!

2——风压高度变化修正系数,由《港口工程荷载规范》查得: 2 1。

Axw、Ayw——船体水面以上横向受风面积和纵向受风面积

对于油轮受风面积采用如下公式计算:

lgAxw 0.618 0.620lgDW lgAyw 0.164 0.575lgDW

其中DW为船舶载重量,为1000t,代入上式解得:

Axw 300.61m2,Ayw 77.45m2

Vx、Vy——计算风速的横向分量和纵向分量

基本风压公式:W

1

V2 1600

由《港口工程荷载规范》,W0 0.55KN/m,计算得:V 29.66m/s。 考虑最不利情况,假设其完全为横风时:Vx 29.66m/s,Vy 0 计算得:Fxw 73.6 10 5 300.61 29.662 0.9 175.17kN

Fyw 0

4.2.1.2 船舶系缆力

船舶系缆力采用以下公式计算:

N

K

n

Fx Fy sin cos cos ccos

Nx Nsin cos Ny Ncos cos

Nz Nsin

式中: Fx——可能出现的风和水流对船舶作用产生的横向分力总和。

F

y

——可能出现的风和水流对船舶作用产生的纵向分力总和。

K——系船柱受力分布不均匀系数,其中系船柱数目n 2,故K 1.2。

n——计算船舶同时受力的系船柱的数目,船舶总长为67.52m,故

天津大学高桩码头课程设计!

n 2,系船柱间距为20m。

——系船缆的水平投影与码头前沿线的夹角,在本码头的计算中,采

用 30 。

——系船缆与水平面的夹角,本码头计算中,采用 15 。

计算得:N

1.2175.17 217.62kN 2sin30 cos15

30c os15kN1 Nx 217.6 2sin 0Ny 217.62 cos30 cos15 182.04

Nz 217.62 sin15 56.32kN

横梁的中性轴为yc

0.4 1 1.1 0.8 0.6 0.3

0.668m

0.4 1 0.8 0.6

Nx的作用点距横梁中性轴为:0.03 0.2 1.6 0.668 1.162m

故:M系缆力 105.11 1.162 122.14kN m 4.2.1.3 船舶撞击力

船舶靠岸时,船舶的撞击动能用下式计算:

E0

2

2MVn

式中:Vn ——法向速度,根据规范查得其值约在0.15~0.20ms/之间,取为

0.16m/s。

M——船舶质量,M 1830t。

——有效动能系数,约在0.7~0.8之间,取为0.70。 则:E0

0.7

1830 0.162 16.40kN m 2

根据规范,查表得:H=船舶撞击力的作用点距中和轴为:0.558m,175kN,故:作用在横梁的弯矩为:M撞击力 175 0.558 97.65kN m

4.2.2 堆货荷载

设计码头堆货荷载q 15kN/m2,传递给横梁的分布荷载为:

q1 15 7 105kN/m

天津大学高桩码头课程设计!

4.2.3 门机荷载

门机荷载为主导可变荷载,堆货荷载和船舶撞击力为非主导可变荷载。 取门机起重臂与码头前沿线平行时计算,由结构力学求解器求得

P2 880 1 320 0.02691 559.97kN,P4 559.97kN

结点,1,0,0 结点,2,7,0 结点,3,14,0 结点,4,21,0 结点,5,28,0 结点,6,35,0

单元,1,2,1,1,1,1,1,1

天津大学高桩码头课程设计!

单元,2,3,1,1,1,1,1,1 单元,3,4,1,1,1,1,1,1 单元,4,5,1,1,1,1,1,1 单元,5,6,1,1,1,1,1,1 结点支承,1,3,0,0,0 结点支承,2,1,0,0 结点支承,3,1,0,0 结点支承,4,1,0,0 结点支承,4,1,0,0 结点支承,5,1,0,0 结点支承,6,1,0,0

单元材料性质,1,5,10000,100,0,0,-1 影响线参数,-2,2,1,3

4.3 作用效应组合设计值的确定

永久荷载包括面层、面板、横纵梁的那个构件的自重,门机荷载为主导可变荷载,堆货荷载和船舶荷载为非主导荷载。

作用效应组合设计值按下式确定:

Sd 0 GCGGK Q1CQ1Q1K QiCQiQiK

式中: 0——结构重要性系数,设码头安等级为二级,故取为1.0; G——永久作用分项系数,其值为1.2; ——可变作用组合系数,其值为0.7;

Q1——主导可变作用分项系数,取门机荷载作为主导可变作用,系

数取为1.5;

Qi——可变作用分项系数,船舶撞击力取为1.5。 由作用与作用效应得线性关系,对荷载进行组合简化得:

P1 1.0 (1.2 332.64 1.5 559.97 0.7 1.5 56.32) 1298.26KN

天津大学高桩码头课程设计!

P2 1.0 (1.2 75.6 1.5 559.97 0.7 1.4 105) 1033.58KN q1 1.0 1.2 12 14.5kN/m

q2 1.0 (1.2 65.4 0.7 1.5 105) 188.73kN/m

M1 1.0 1.2 363.412 0.7 1.5 (122.14 97.65) 666.87KN m

H 1.0 0.7 1.5 (175 1.5 105.11 1.4) 121.11KN

本文来源:https://www.bwwdw.com/article/ed61.html

Top