Rhizosphere chemical dialogues plant–microbe interactions

更新时间:2023-08-29 02:15:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

根际 环境

Available online at http://www.77cn.com.cn

DayakarVBadri1,TiffanyLWeir1,DanielvanderLelie2andJorgeMVivanco1

Everyorganismonearthreliesonassociationswithits

neighborstosustainlife.Forexample,plantsformassociationswithneighboringplants,micro ora,andmicrofauna,whilehumansmaintainsymbioticassociationswithintestinal

microbial ora,whichisindispensablefornutrientassimilationanddevelopmentoftheinnateimmunesystem.Mostoftheseassociationsarefacilitatedbychemicalcuesexchanged

betweenthehostandthesymbionts.Intherhizosphere,whichincludesplantrootsandthesurroundingareaofsoilin uencedbytheroots,plantsexudechemicalstoeffectively

communicatewiththeirneighboringsoilorganisms.Herewereviewthecurrentliteraturepertainingtothechemicalcommunicationthatexistsbetweenplantsand

microorganismsandthebiologicalprocessestheysustain.

Addresses1

CenterforRhizosphereBiologyandDepartmentofHorticulture&LA,ColoradoStateUniversity,FortCollins,CO80523,USA2

BrookhavenNationalLaboratory,Upton,NY11973,USACorrespondingauthor:Vivanco,JorgeM(j.vivanco@colostate.edu)

Rhizospherechemicaldialogues:plant–microbeinteractions

andparasiticinteractionswithotherplants,pathogenicmicrobesandinvertebrateherbivores.Plantsreleaseenor-mousamountsofchemicalsthroughtheirroots,atasig-ni cantcarboncost,tocombatpathogenicmicroorganismsandattractbene cialones.Rhizosphereinteractionsareaffectedbymanydifferentregulatorysignals,ofwhichonlyafewhavebeenidenti ed,recallingaquotebyLeonardodaVincithat‘Weknowbetterthemechanicsofcelestialbodiesthanthefunctioningofthesoilbelowourfeet’[2].Rhizosphereinteractionsarenotsolelydrivenbyrootsbutarehighlyintegratedwithandin uencedbyresidingorganismsandlocaledaphicfactors.Soil-inhabitingmutualistsandparasites,bothprokaryoticandeukaryotic,areactivelyinvolvedinsignalingwithahost(Figure1).Therefore,rhizosphereinteractionsareverydynamicandcanbealteredbyadditionorlossofanyoftheplayers.Alargebodyofliteratureexistsaboutrhizosphereinter-actions[3–5].Inthisreview,wesummarizethecurrentknowledgeofrhizospherechemicalcommunicationbe-tweenplantrootsandtheirassociatedmicroorganisms.Centraltothisdiscussionistherecentprogressmadeinunderstandingrhizospherechemicaldialoguesbetweenplantsanddifferentcomponentsofthemicrobialcom-munity.Weendwithadiscussionofhowthesechemicaldialoguesmayimproveplant tnessatthecommunitylevelanddiscussthenewchallengesfacedbyresearchers.

CurrentOpinioninBiotechnology2009,20:642–650ThisreviewcomesfromathemedissueonChemicalbiotechnology

EditedbyKazuyaWatanabeandGeorgeBennettAvailableonline28thOctober20090958-1669/$–seefrontmatter

#2009ElsevierLtd.Allrightsreserved.DOI10.1016/j.copbio.2009.09.014

Chemicalsignalingbetweenplantsandmutualists

Plantrootsreleaseawiderangeofcompoundsthatareinvolvedinattractingbene cialorganismsandformingmutualisticassociationsintherhizosphere.Thesecom-poundsincludesugars,polysaccharides,aminoacids,aromaticacids,aliphaticacids,fattyacids,sterols,phe-nolics,enzymes,proteins,plantgrowthregulatorsandsecondarymetabolites.Themostimportantrhizospheremutualismsdescribedarebetweenplantsandmycorrhi-zaeorrhizobacteria.

Mycorrhizalassociationsarepresentinalmostalllandplantsandareessentialbiologicalconstituentsoftherhizo-sphere.Mycorrhizaearegroupedintotwocategories:endomycorrhizae(arbuscular,AM)andectomycorrhizae.TheAMsymbiosisrepresentsthemostwidespreadandancientplantsymbioses,originatingabout450millionyearsago[6].About6000speciesintheGlomeromycotina,AscomycotinaandBasidiomycotinafamilieshavebeenrecordedasmycorrhizalandwithmoresensitivemoleculartechniquesthisnumberisincreasing[7].Similarly,more

http://www.77cn.com.cn

Introduction

Prokaryotesandeukaryoteshavecoexistedformillionsofyearsonearth.Itisestimatedthathumanshave1013humancellsand1014bacterialcellsincludingtheendogen-ousbacterial ora[1].Asaresultofthislongassociation,prokaryoteshavedevelopedbothbene cialanddetrimen-talrelationshipswitheukaryotes.Asautotrophicorgan-isms,plantsplayacentralroleinsustainingallotherlifeforms.Unlikemammals,plantsaresessile,thusreleasinganarrayofchemicalsignalstointeractwithotherorgan-isms.Therootsystem,whichwastraditionallythoughttoprovideanchorageanduptakeofnutrientsandwater,isachemicalfactorythatmediatesnumerousundergroundinteractions.Theseincludemutualisticassociationswithbene cialmicrobes,suchasrhizobia,mycorrhizae,endo-phytesandplant-growthpromotingrhizobactertia(PGPR)

CurrentOpinioninBiotechnology2009,20:642–650

根际 环境

Rhizospherechemicaldialogues:plant–microbeinteractionsBadrietal.643

than200000plantspecieshostmycorrhizalfungi,butarelativelysmallnumberofmycorrhizaltypesareknown[8].Thebiotrophicinterfacesthatareformedbetweenplantrootsandthefungusresultfromrecognitionofexchangedcues.ThereisanextensivelistofplantgenesthatarepredictedtoplayaroleinfacilitatingAMinteractions[9 ,10 ],butcomparativelyfewidenti edinthefungus[11 ,12].Thuslittleknowledgeexistsaboutsignalingprocessesbetweensymbionts,thepathwaysrelatedtosymbiosis-speci cdevelopmentofAMfungiinroottis-sues,ormechanismsofnutrientexchangebetweenthem[12,13,14,15 ].

TheestablishmentofAMsymbiosesbeginswiththecolonizationofacompatiblerootbyhyphaeproducedbyAMfungalsoilpropagules,asexualsporesormycorrhizalroots.Thisisfollowedbyappressoriumformationandentranceintothecortextoformspecializedstructurescalledarbuscles.Beforecolonization,itisassumedthatacontinuousdialogueofsignalsisexchangedbetweenthesymbiontstoestablishcolonization.Sincethissymbiosislackshostspeci cityithasbeensuggestedthateithertheplant-derivedsignalsareconservedthroughouttheplantkingdomorthatabroadrangeofrelatedcompoundsareinvolved.Plant-releasedcompoundslikesugarsandaminoacidsarepotentialfungalstimulibutphenoliccompounds,particularly avonoids,areknownaskeysignalingcom-ponentsinmanyplant–microbeinteractions[16 ].Therearevastquantitiesofdataontheeffectof avonoidsonAMhyphalgrowth,differentiation,androotcolonization[16 ],andspeci ceffectsdependonthechemicalstructureofthecompound[17].Itwasrecentlyfoundthat avonoidsexhibitagenus-speci candspecies-speci ceffectonAMfungi[18].Inaddition,strigolactones,agroupofsesquiterpenelactonesexudedbyLotusjaponicusroots,wereshowntoinducehyphalbranchinginAMfungi,apre-requisiteforsuccessfulrootcolonizationfungi[19 ].Strigalactonespresentintherootexudatesofawiderangeofplantsactdisplayspeci cityassignalsforAMfungibutdidnotaffectotherfungalspeciessuchasTrichoderma,Piriformospora,BotrytiscinereaandCladosporiumsp.[19 ].AfurtherhypothesisisthatstrigolactonesarenotonlyinvolvedininducingAMhyphalbranchingfactorbutalsoacttoattractAMfungitoroots[20].However,morestudiesareneededtoclarifyboththespeci cityandrolesofstrigolactonesinestablishingmycorrhizalassociations.Theproductionandexudationofstrigolactonesarede-pendentonnutrientavailability.Recently,Yoneyamaetal.[21]reportedthatnitrogenandphosphorusde ciencyenhancedthesecretionofastrigolactone,5-deoxysatrigolinsorghumplants.Besidesstrigolactones,somestudiesdemonstratethatcalciumionsareanintracellularmessen-gerduringmycorrhizalsignaling,atleastinapre-contactstage[22 ].

Evenlessunderstoodthanthesignalingbetweenplantsandmycorrhizaeistheinteractionofmycorrhizaewith

http://www.77cn.com.cn

othersoilmicrobes.IthasbeendemonstratedthatAMfungalexudatesdirectlyimpactsoilbacterialcommunitycomposition[23],andsomebacteriaassociatedwithAMcanimprovecolonization,rootbranchingandantifungalproperties[7,24].Futuregoalsshouldincludeidentifyingallplayersofthesesignalingnetworks,particularlythesignalsandreceptorsthatopenthedoortosymbiosisformation.Othermajorchallengesincludeunravelingthesignalingeventsintri-partiteinteractions(plant–AM–bacteria)tobetterunderstandhowsoilbacteriaandAMfungiassociate.Although,somestructuralpropertiesthatregulateinterspeciesinteractionsareknown[25 ]thebacterial–mycorrhizalnetworkstillremainstobeeluci-dated.

Asmentioned, avonoidsplayakeyroleintheearlysignalingeventsoflegume–rhizobiainteractions[26].Thelegumerhizospherechemicallyattractsrhizobiabysecreting avonoidsandrelatedcompounds[27].Sub-sequently,theNodDproteinofrhizobiaperceivesspeci c avonoidsthroughoneortwo-componentregu-latorysystems,initiatingtranscriptionofnodgenesthatencodethebiosyntheticmachineryforabacterialsignal,theNodfactor.Nodfactorsarelipochitooligosaccharidesconsistingofb-1,4-linkedN-acetyl-glucosamineback-boneswithfouror veresidueswithanacylchainatC2inthenon-reducingendanddecoratedwithacetyl,sulfonyl,carbamoyl,fucosylorarabinosylmoietiesatde nedpos-itionsdependingontherhizobialstrain[28].PerceptionoftheNodfactorsbytheplantinducesmultiplesignalingpathwaysthatinitiateroothairinfectionandnoduleformation.Thereareothernon avonoidrelatedcom-poundslikexanthones,vanillinandisovanillinthatinduceNodDgeneexpression,buttheyarerequiredatmuchhigherconcentrationsthan avonoids[29 ],andthustheirimportanceinnaturalenvironmentsisques-tionable.Recently,Caietal.[30 ]reportedthatcanava-nine,acompoundpresentintheseedcoatandrootexudatesofvariouslegumeplants,istoxictomanysoilbacteriabutnottorhizobialstrainsthatpossessspeci ctransportertotransport(detoxify)thiscompound.Theyalsosuggestedthathostlegumessecretecanavanineintotherhizospheretoselectbene cialrhizobia.Furtherstudiesarewarrantedtoidentifyfactorsdetermininghost–rhizobiumspeci city.

Molecularcommunicationbetweenhostandpathogens

Therearefourmaingroupsofplantpathogens[31]butonlytwoofthemaremajorplayersinthesoil;http://www.77cn.com.cnparativelyfewerbacteriaareconsideredtobesoilborneplantpathogens;however,somewell-studiedexceptionsincludeRalstoniasolanacearum(bac-terialwiltoftomato)andAgrobacteriumtumefaciens,thecasualagentofcrowngalldisease[32,33].Fungiandoomycetes,physiologicallyandmorphologicallysimilarbutphylogeneticallydistinctgroupsoforganisms,arethe

CurrentOpinioninBiotechnology2009,20:642–650

根际 环境

644Chemicalbiotechnology

Figure

1

Pictorialillustrationofthechemicalcommunicationthatexistsbetweenplantrootsandotherorganismsinthecomplexrhizosphere.Plantrootssecreteawiderangeofcompounds,amongthosesugarsandaminoacidsareengagedinattracting(chemotaxis)microbes(1),flavonoidsactassignalingmoleculestoinitiateinteractionswithmycorrhiza(AMfungi)(2),rhizobium(3)andpathogenicfungi(oomycetes)(4),aliphaticacids(e.g.malicacid)areinvolvedinrecruitingspecificplantgrowthpromotingrhizobacteria(Bacillussubtilis)(5),nematodessecretegrowthregulators(cytokinins)thatareinvolvedinestablishingfeedingsitesinplantroots(6)andnematodessecreteothercompounds(organicacids,aminoacidsandsugars)involvedinattractingbacteriaandinbacterialquorumsensing(7).Knowledgeoftherolesofothertypesofcompounds,suchasfattyacids(8)andproteins(9),secretedbyrootsintherhizosphereandothermulti-partiteinteractions(10)remainsunknown.

mostpredominantsoilbornepathogens.Likeplant–mutualistassociations,pathogensalsoutilizechemicalsignalsinearlystepsofhostrecognitionandinfection.Beforetheestablishmentofinfection,Phytophthorasojaezoosporesarechemicallyattractedbydaidzeinandgen-isteinsecretedbysoybean[34];however,thenatureoftheiso avonereceptoronthezoosporesremainsunknown.Mostplantsproduceantimicrobialsecondarymetabolites,eitheraspartoftheirnormalprogramofgrowthanddevelopmentorinresponsetopathogen

CurrentOpinioninBiotechnology2009,20:642–650

attackandthoseantimicrobialcompoundsprotectplantsfromawiderangeofpathogens[35].Preformedanti-fungalcompounds,calledphytoanticipins,occurconsti-tutivelyinhealthyplantsandactaschemicalbarriersforfungalpathogens.Bycontrast,phytoalexinsareantimi-crobialcompoundsinducedinresponsetopathogenattackbutnotnormallypresentinhealthyplants.Thesetwogroupsofcompoundshaveprovenveryeffectiveforawiderangeoffungalpathogens.However,moststudiespertainingtothesecompoundswereconductedinleaves,

http://www.77cn.com.cn

根际 环境

Rhizospherechemicaldialogues:plant–microbeinteractionsBadrietal.645

notintherootsorintherhizosphere.Recently,Bednareketal.[36]reportedthatArabidopsisrootsandleavesdiffergreatlyintheaccumulationofindolicandphenylpropa-noidcompoundsuponinfectionwithPythiumsylvaticum.Onthebasisofthisreport,onecanhypothesizethattheliteraturepertainingtothephytoalexinandphytoantici-pinresponsesafterleafinfectionswilldifferfromrootinfectionstudies.Followingthisobservation,Badrietal.[37]reportedthatdifferentialgenome-wideexpressionpro lesinrootsupontheindependentadditionofthreeimportantplantsignalingmolecules(SA,MeJAandNO)totherootsandthatthesepro lesweredifferentthanthosefromleavestreatedwiththesamesignalingmol-eculesdescribedintheliterature.Thereisaneedtobetterunderstandhowphytoalexins,phytoanticipinsandothersecondarymetabolitesacttoinhibitrootfungalpathogens.Thedevelopmentofarice–Magnaporthegrisea(causalagentofblastdisease)pathosystemwouldbeparticularlyusefulasthisfungalpathogeniscapableofinfectingbothleavesandrootsofriceplants[38 ].Inaddition,thissystemwouldallowustoidentifyiftheroleofphytoalexinsorphytoanticipinsinvolvedinplantdefenseagainstthisfungalpathogenontheleavesisthesameasinroots.Furtherresearchiswarrantedonsoilbornefungalpathogensbecausetheycauseacon-siderableyieldlosstocropscomparedwithfoliarpatho-gens[39 ].

Nematodesarecomplex,worm-likeeukaryoticinvert-ebratesthatrankamongthemostnumerousanimalsontheplanet[40].Mostnematodesinsoilarefreeliving,andconsumebacteria,fungiandothernematodes,butsomecanparasitizeplants.Themajorityofcropdamageiscausedbybothroot-knotnematodes(RKN)andcystnematodes[41].Itisgenerallythoughtthatnematodesperceivetheirenvironmentthroughchemosensoryper-ception.Typically,RKNmustlocateandpenetratearoot,migrateintothevascularcylinderandestablishaperma-nentfeedingsite.Theseeventsareaccompaniedbyextensivesignalingbetweenthenematodeandthehost,andarewelldescribedatthelevelofidentifyingproteinsthataresecretedbynematodesduringthemigratoryphase[41,42].However,theidenti cationofinitialsig-nalingmolecules(non-proteinsignalingcompounds)releasedfromthehosttoattractnematodesisstillataprimitivestage.Nematodeswithawidehostrangerespondtoroot-releasedcompounds/diffusatesfromawiderangeofhosts,whereasspecieswitharestrictedhostrangehatchonlywhenpresentedwithsignalsfromthathost[43].Recently,Horiuchietal.[44 ]reportedthatMedicagorootsreleasedavolatile(dimethylsul de)thatattractednematodes(C.elegans),whichactedasvectorsforrhizobiaandeffectivelyenhancednodulation.How-ever,detailedinformationaboutthereciprocalinitialsignalexchangebetweennematodesandhostislackingwiththeexceptionoftheroleofcytokininsinhost–nematoderelationships[45 ].Thenematodessecrete

http://www.77cn.com.cn

cytokininsthatplayaroleincellcycleactivationandinestablishingthefeedingsiteasanutrientsinkinthehostroots.Anotherrecentstudydemonstratedthathownematodesecretions(non-proteinaceouscompounds)interactwithsoil-inhabitingbacteria[46 ]byusingthemodelnematodeCaenorhabditiselegans.Thisstudywillopenanewavenueofresearchtostudythechemicalinteractionsofotherparasiticnematodeswiththeirhosts.

Quorumsensing(QS)andrhizospherecommunication

TheexquisitelycoordinatedgeneexpressionthatresultedinproductionofbioluminescentproteinsbythemarinebacteriaVibrio scheriiwasonceconsideredaninterestingnovelty,anditwasseveralyearsbeforethescienti cimportanceofthisdiscoverywasrealized.Ithasnowbeendeterminedthatcoordinatedactivityamongmicrobialcellsusingdiffusiblechemicalsignalsisawide-spreadphenomenon,called‘quorumsensing’or‘cell-tocellcommunication’.AlthoughthechemicalsignalsandmechanismsofQSsystemsvary,themostprevalentformofQSsignalsusedbyplant-associatedbacteriaareacylhomoserinelactones(AHLs),whichvaryinthelength,oxidationstate,anddegreeofsaturationoftheiracylsidechainstoprovideadegreeofspeciesspeci city.Atthresholdconcentrations,theseAHLsformcomplexeswiththeircognatereceptors,whichbindtoDNAandacttoregulateexpressionofspeci cgenes,effectivelyallow-ingpopulationsofindividualcellstoactasacollectiveunit.Thisisasimpli edexplanationasincreasingevi-dencesuggeststhatsignalconcentrationalonedoesnotdictatetheactivationorrepressionofQS-controlledgenes,butthatlocalenvironmentandspatialdistributionofcellsarealsoimportantcontributingfactors[47,48 ].Thebehaviorsthatarein uencedbyQSareextremelyvariedbutfromabroaderecologicalperspectivetheyfacilitatenutrientornicheacquisition,modulatecollec-tivedefenseagainstcompetitors,andpermitcommunityescapeinthefaceofpopulationdestruction[49].Inplant-associatedbacteria,QSisofteninvolvedinestablishingsuccessfulassociations,whethertheyaresymbioticorpathogenic.TheroleofQSinthepathogenesisofErwiniacarotovoraandAgrobacteriumtumefaciensontheirrespect-iveplanthostsarewellcharacterized.TheentericphytopathogenE.carotovraproducesanumberofQS-regulatedvirulencefactors,suchaspectinases,cellu-lasesandproteasesandsomestrainsproduceab-lactamantibioticthatisthoughttoprovidenicheprotectiontoE.carotovoraonceithasestablishedaninfection[50].However,whetherplantfactorsareinvolvedinestablish-ingorinhibitingQStodeterminehostspeci cityofE.carotovoraisunknown.

Conversely,ithasbeenestablishedthatchemicalsfromtheplanthostcontributetoinfectionbythetumor-inducingbacteriaA.tumefaciens.Thesignal-receptorpair

CurrentOpinioninBiotechnology2009,20:642–650

根际 环境

646Chemicalbiotechnology

(TraI/TraR)responsibleforregulationofQSinA.tume-faciensoccursontheTi(ortumor-inducing)plasmid,whichisrequiredforgallformationinhostplants.Aninfectionoccurswhenasegmentofthisplasmidisinte-gratedintothenucleusofhostplantcells,resultingintheproductionofopinesthatcanthenbeutilizedasanovelsourceofnitrogenandcarbon[51].Thepresenceofopines,whichareonlyfoundintheplanttumor,thenupregulateexpressionofthebacterialTraRgene.Thus,theQSsystem,whichallowsforconjugationandreplica-tionoftheTiplasmid,isonlyeffectivelyactivatedafterinfection,resultinginaquestionableroleforQSinA.tumefacienspathogenicity[52].Tocomplicatematters,A.tumefaciensalsoproducesaproteinBlcC(formerlyAttM)thathaslactonaseactivity,whichitwassuggestedmaynegativelyregulateQSthroughsignaldegradation[53,54],aphenomenoncalled‘quorumquenching’.Anotherstudyshowedthatthepresenceoftheplantdefensemetabolitesalicylicacidresultedinincreasedexpressionofthislactonaseandinhibitionofvirulence(vir)genescarriedontheTiplasmid[55].However,thebiologicalsigni canceofthisplant-inducedlactonasetoactasaquorumquencherwasnotsubstantiatedbyinplantadataandappearstohaveonlyatransienteffect[56 ].

Quorumsensinghasalsobeenimplicatedasanimportantfactorinthesymbioticassociationbetweenlegumesandrhizobia,althoughmanydetailsofitsinvolvementarestillemerging.ManyrhizobiadisplayingmutationsoftheirQSsystemshavereducedabilitytoinfectroothairsand/orformnodules[57–59].Additionally,severallegumeshavebeenshowntosecretecompoundsthatcaninterferewithbacterialQS[60,61,62 ],andMedicagotruncatularespondeddifferentiallywithregardstorootexudationandproteinexpressiontoAHLsproducedbyitssymbiontSinorhizobiummelilotiandanopportunisticpathogenPseu-domonasaeruginosa[63].However,amongtheplant-pro-ducedQSagonistsandantagoniststhatmayplayaroleinlegume/rhizobiainteractions,theonlyonethathaschemicallyidenti edisL-Canavanine,anarginineanalog[62 ];thus,ithasbeenpredictedthattheobservedQSinhibitionmaybeanindirecteffectpotentiallycausedbyproteinmisfoldingoftranscriptionregulators[59].

seemtobequitepromiscuouswhenitcomestohostplantcolonizationandplantbene cialeffects,suchastheBurkholderiacepaciaBu72,whichwasisolatedfromyellowlupine[68]butalsosigni cantlyimprovedbiomasspro-ductionofpoplarDN-34[67,69].Therefore,beforeapplyingplantgrowthpromotingendophyticbacteriapreliminarystudiestocon rmtheplantgrowthpromot-ingsynergyoftheselectedendophytesandtheplantspeciesarerequired.

Acloserelationshipexistsbetweenendophyticandrhizo-spherebacteriaandmanyfacultativeendophyticbacteriacanalsosurviveintherhizosphere,wheretheycanentertheirhostplantviatheroots.Rootcolonizationbyrhizo-spherebacteriainvolvesseveralstages[70]andendophy-ticbacteriaarehypothesizedtofollowasimilarprocess.Intheinitialstage,bacteriamovetotheplantrootseitherpassivelyviasoilwater uxesoractivelyviaspeci cinductionof agellaractivitybyplant-releasedcom-pounds.Inasecondstep,non-speci cadsorptionofbacteriatotherootstakesplace,followedbyanchoring(thirdstep),andresultinginthe rmattachmentofbacteriatotherootsurface.Speci corcomplexinter-actionsbetweenthebacteriumandthehostplant,in-cludingthesecretionofrootexudates,mayarisethatcanresultintheinductionofbacterialgeneexpression(fourthstep).Endophyticbacteriacansubsequently( fthstep)entertheirhostplantatsitesoftissuedamage,whichnaturallyariseastheresultofplantgrowth(lateralrootformation),orthroughroothairsandatepidermalcon-junctions[71].Inaddition,plantexudatesleakingthroughthesewoundsprovideanutrientsourceforthecolonizingbacteria.

Endophyticbacteriacanimproveplantgrowthandde-velopmentinadirectorindirectway.Directplantgrowthpromotingmechanismsofendophyticbacteriamayinvolvenitrogen xation[65,72],theproductionofplantgrowthregulatorssuchasauxins,cytokininsandgibber-ellins[73–75],suppressionoftheproductionofstressethyleneby1-aminocyclopropane-1-carboxylate(ACC)deaminaseactivity[76,77],andalterationofsugarsensingmechanismsinplants[78].Forinstance,alterationofbiosynthesisand/ormetabolismoftrehaloseinplantahavebeenshowntoincreasetolerancetodrought,saltandcold[79].Itisthereforenoteworthythatseveralendophyticbacteriafrom,forexample,poplarwereabletoef cientlymetabolizetrehalose[67].Endophyticbac-teriacanalsoindirectlybene tplantgrowthbyprevent-ingthegrowthoractivityofplantpathogensthroughcompetitionforspaceandnutrients[80],antibiosis[81],productionofhydrolyticenzymes[82],inhibitionofpathogen-producedenzymesortoxins[83]andthroughinductionofplantdefensemechanisms[84].

Asystemsbiologyapproachtobetterunderstandthesynergisticinteractionsbetweenplantsandtheirbene cial

http://www.77cn.com.cn

Endophytesaschemicalfactories

Inadditiontointeractingwithmicroorganismsintherhizosphere,plantsareinternallycolonizedbyendophyticbacteriaandfungi.Endophyticbacteriacanbede nedasbacteriathatresidewithinlivingplanttissuewithoutcausingsubstantiveharmtotheirhost.Diversearraysofbacterialgenerahavebeenreportedtobeendophytic[64,65].Thecommunitystructureofendophyticbacteriawasshowntobestronglyaffectedbytheplantspecies,uptothelevelofthecultivar[66],pointingtospecies-speci cassociationsbetweenendophytesandtheirplanthost[67].Onthecontrary,someendophyticbacteria

CurrentOpinioninBiotechnology2009,20:642–650

根际 环境

Rhizospherechemicaldialogues:plant–microbeinteractionsBadrietal.647

endophyticbacteriarepresentsanimportant eldofresearch,whichisfacilitatedbytherecentsequencingofthegenomesofseveralplantspeciesandseveralendo-phyticbacteria.Forinstance,thegenomecomparisonbetweenthepoplarendophyteS.maltophiliaR551-3andtheopportunisticpathogenK279apointedtotheexistenceofinsertionhotspotsinthecoregenomeofthisspecies[85].ThemechanismsresponsibleforcolonizingplantsandforantagonisticactivityofS.maltophiliastrainsagainstplantpathogensseemsimilartothoseresponsibleforcoloniza-tionofhumantissuesandforpathogenicity.Furthermore,antibioticresistanceandsynthesiswasfoundtobepartofthecoregenome.Therefore,theapplicationofrhizo-sphericandendophyticbacteria,suchasS.maltophiliaorB.cepacia,tocontrolplantpathogensorpromoteplanthealthshouldbeverycarefullyconsidered,astheymayhavepotentialasopportunisticpathogens.FB17butnototherBacillussp.Thissuggeststhateachbene cialrhizobacterianeedsaspeci csignaltocolonizethehost.AllPGPRshaveindirectpositiveeffectsonplanthealthbyinhibitingsoilbornepathogensbymeansofcompetitionandantibiosis[39].PGPRsalsohavedirectpositiveeffectsonplanthealthbyinducingsystemicresistance(ISR)inordertopreparetheplantsfrompathogenattackorbyexposingtheplantstoPGPR-releasedcompoundssuchas2,3-butanediol,pyoverdine,andlipopeptidesurfactants[39 ].However,mostexper-imentsexaminingthemechanismsofPGPRsdealwithonlyasinglehost–singlePGPRinteraction.Innature,therhizospherecontainsmillionsofmicrobesincludingPGPR,pathogensandmicrofauna.Furtherstudiesareneededtounravelthesemultiplexinteractionsatamol-ecularleveltoenhancetheirutilizationforagriculturalbene ts.

Rhizoremediation

Plant-assistedbioremediationorphytoremediationholdspromiseforinsitutreatmentofpollutedsoils.Thegeneralsubjectofphytoremediationhasbeenreviewedbynumerousjournalarticlesandbookchapters,andaspectsspeci ctotherhizosphereareincluded.ArecentreviewarticlebyWenzel[86]comprehensivelycoverstherhi-zopshereprocessesandmanagementinplant-assistedbioremediationofsoils;therefore,anextensivediscussionisnotwarrantedhere.However,itisveryclearthattheunderstandingoftheplant–microbialconsortiaintherhizospherewillenhanceourabilitytoengineerplantsforphytoremediationpurposesveryeffectivelyasdescribedbyDzantor[87]andRyanetal.[88].Furtheremphasisshouldbeputonevaluatingresultsobtainedfromsimpli edlabexperimentstoheterogenousnaturalconditionsundersuchascomplexrhizosphereenviron-ments(multipleplants–multiplemicrobes).

Noveltritrophicinteractions

Rootsecretedcompoundsarealsobeingstudiedfortheirinvolvementintritropicinteractions(plant–microbe–nematode)intherhizosphere.Onlyafewexamplesarewelldocumentedinthislineofresearch[3],suchasplant–AMF–parasiticweedinteractions[92],legume–nematode–rhizobiumassociations[44],andtheattractionofentomopathogenicnematodestoinsectdamagedroots[93].Alltheseinteractionsarestudiedatlaboratorylevelsbyusingsimpli edmodelsystemsbuttheknowledgeabouthowtheseinteractionsmightoccureffectivelyinthecomplexrhizosphereundernaturalconditionsstillremainsscarce.

Canproteinsintheexudatesbechemicalsignals?

Whilethereisabundantinformationontheroleofrootsecretedsecondarymetabolitesinrhizosphereplant–microbeinteractions,theroleofexudedproteinsispoorlystudied.Recentevidencedemonstratesthatmicrobescanmodulaterootexudationofproteinsandthatplantscandothesameinsoilbacteria[94].Thesereportscon rmthatthecompositionofproteinsexudedbyplantrootsisdynamicallyeffectedbytheorganismsintheirsurround-ings.ArecentreviewbyMathesius[95 ]discussedtheuseofproteomicstostudyroot–microbeinteractions.Mostoftheconclusionsreachedtodatearebasedonresultsobtainedfromsimplelaboratoryexperimentalmodels.Someofthesecretedproteinsarestartingtobeidenti edbutnothing(almost)isknownabouthowthesesecretedproteinsfromdifferentorganismsinteractatinterspecies/inter-genericlevelsorwhateffecttheyhaveonotherorganismsintherhizosphere.Mostimportantly,researchneedstobeconductedtodetermineiftheproteinsretaintheirenzymaticactivitiesintherhizosphere.

PGPRsinteractionwithplantroots

Therhizosphereistheplaygroundandinfectioncourtforsoilbornepathogensandalsoabattle eld,wherebothmicro oraandmicrofaunainteractwithsoilbornepatho-gensandin uencetheoutcomeofpathogeninfection[39].However,severalbene cialmicroorganismsthatresideintherhizospherecaninhibitthegrowthandactivityofsoilbornepathogens.Theactivityandeffectsofbene cialrhizospheremicroorganismsonplantgrowthandhealtharewelldocumentedforbacterialikePseudo-monas,BurkholderiaandfungilikeTrichodermaandGliocladium.Similartotheinvolvementof avonoidsinlegume–rhizobiasignaling,root-secretedcompounds(both avonoidsandothersecretedcompounds)modu-latetheinteractionbetweenplantsandPGPRsandtheseinteractionsarereviewedbyseveralarticles[3,5,89,90].But,thespeci croot-releasedsignalinrecruitingspeci cbacteriaspeciesispoorlyunderstood.Recentevidence[91]demonstratedthatL-malicacidsecretedfromplantrootsisinvolvedinspeci callyrecruitingBacillussubitilis

http://www.77cn.com.cn

Futurechallenges

Rhizospherechemicaldialoguesarethelanguageofcommunicationbetweenplantrootsandmicrobesin

CurrentOpinioninBiotechnology2009,20:642–650

根际 环境

648Chemicalbiotechnology

theareawherethesoilandrootsareincloseproximity.Severallinesofevidenceimplicateroot-secretedexu-datesassignalingagentsthatplayakeyroleintheseinteractions.Researchershavealreadyidenti edsomeofthefactorsinitiatingthedialoguesintherhizospherethatdrivetheseinteractions.However,therearestillnumer-ousotherfactors/determinantsyettobeidenti edtobetterunderstandtheseinteractionsatanecologicallevel.Therhizosphereisconsideredtobecommongroundforecologists,molecularbiologistsandplantbiologiststofurtherexplorethesenovelinteractionsoccurringinthiscomplexzone.Recenttechnologyde-velopmentintheareasof‘omics’suchasproteomics,metabolomics,transcriptomicsandsecretomicsallowustofurtherunderpintheseinteractionsef cientlyforagriculturalbene t.Acombinationofdataanalysesobtainedfromthese‘omics’studieswillfurtherstrengthenourcapabilitytovisualizeacompletepictureofthesecomplexmulti-speciesinteractions.

DetailedgeneexpressionanalysisofAMinfectedrootsduringthedevelopmentoftheprepenetrationapparatus.

11.SeddasPMA,AriasCM,ArnouldC,vanTuinenD,GodfroyO, BenhassouHA,GouzyJ,MorandiD,DessaintF,Gianinazzi-PearsonV:Symbiosis-relatedplantgenesmodulatemolecular

responsesinanarbuscularmycorrhizalfungusduringearlyrootinteractions.MolPlant–MicrobeInteract2009,22:341-351.StudyexplainshowthesymbiosisrelatedplantgenesmodulateAMfungigeneexpressionpro lesinearlyrootinteractions.

12.BalestriniR,LanfrancoL:Fungalandplantgeneexpression

inarbuscularmycorrhzalsymbiosis.Mycorrhiza2006,16:509-524.13.Gianinazzi-PearsonV,Sejalon-DelmasN,GenreA,JeandrozS,

BonfanteP:Plantsandarbuscularmycorrhizalfungi:cuesandcommunicationintheearlystepsofsymbioticinteractions.AdvBotRes2007,46:181-219.14.KrajinskiF,FrenzelA:TowardstheelucidationofAM-speci c

transcriptioninMedicagotruncatula.Phytochemistry2007,68:75-81.15.RequenaN,SerranoE,OconA,BreuningerM:Plantsignalsand fungalperceptionduringarbuscularmycorrhiza

establishment.Phytochemistry2007,68:33-40.

Comprehensivereviewabouthowtheplantroot-secretedcompoundsareinvolvedinAMfungalinitiationandestablishment.

16.SteinkellnerS,LendzemoV,LangerI,SchweigerP,KhaosaadT, ToussaintJ-P,VierheiligH:Flavonoidsandstrigolactonesin

rootexudatesassignalsinsymbioticandpathogenicplant–fungusinteractions.Molecules2007,12:1290-1306.

Comprehensivereviewabouttheroleof avonoidsandstrigolactonesassignalmoleculesforsymbioticandpathogenicinteractions.

17.ScervinoJM,PonceMA,Erra-BasselsR,VierheiligH,OcampoJA,

GodeasA:GlycosidationofapigeninresultsinalossofactivityondifferentgrowthparametersofarbuscularmycorrhizalfungifromthegenusGlomusandGigaspora.SoilBiolBiochem2006,38:2919-2922.18.ScervinoJM,PonceMA,Erra-BasselsR,VierheiligH,OcampoJA,

GodeasA:Flavonoidsexhibitfungalspeciesandgenus

speci ceffectsonthepresymbioticgrowthofGigasporaandGlomus.MycolRes2005,109:789-794.19.AkiyamaK,MatsuzakiK,HayashiY:Plantsesquiterpenes inducehyphalbranchinginarbuscularmycorrhizalfungi.

Nature2005,435:824-827.

FirststudydemonstratedexperimentallythatstrigolactonesinducehyphalbranchinginAMfungi.

20.SbranaCM,GiovannettiM:Chemotropisminthearbuscular

mycorrhizalfungusGlomusmosseae.Mycorrhiza2005,15:539-545.21.YoneyamaK,XieX,KusumotoD,SekimotoH,SugimotoY,

TakeuchiY,YoneyamaK:Nitrogende ciencywewellasphophorusde ciencyinsorghumpromotestheproductionandexudationof5-deoxystrigol,thehostrecognitionsignalforarbuscularmycorrhizalfungiandrootparasites.Planta2007,227:125-132.22.NavazioL,MoscatielloR,GenreA,NoveroM,BaldanB, BonfanteP,MarianiP:Adiffusiblesignalfromarbuscular

mycorrhizalfungielicitsatransientcytosoliccalcium

elevationinhostplantcells.PlantPhysiol2007,144:673-681.Provides rstexperimentalproofthatcytosoliccalciumelevationinthehostcellsbydiffusibleAMfactors.

23.TolijanderJF,LindahlBD,PaulLR,ElfstrandM,FinlayRD:

In uenceofarbuscularmycorrhizalmycelialexudatesonsoilbacterialgrowthandcommunitystructure.FEMSMicrobiolEcol2007,61:295-304.24.HartmannA,SchmidM,vanTuinenD,BergG:Plant-driven

selectionofmicrobes.PlantSoil2009,321:235-257.25.LittleAE,RobinsonCJ,PetersonCB,RaffaKF,HandelsmannJ: Rulesofengagement:interspeciesinteractionsthatregulate

microbialcommunities.AnnuRevMicrobiol2008,62:375-401.Discussesworkingde nitionsofcentralecologicalthemesandalsoreviewsthestatusattheinterfacebetweenevolutionaryandecologicalstudy.

http://www.77cn.com.cn

Acknowledgements

TheworkinJMVlaboratorywassupportedbytheNationalSciencefoundation(MCB-0542642)andUSdepartmentofDefenseSERDP(SI1388)http://www.77cn.com.cnstly,weapologizetothoseauthorswhoseworkcouldnotbediscussedbecauseofspacelimitations.

Referencesandrecommendedreading

Papersofparticularinterest,publishedwithintheperiodofreview,havebeenhighlightedas: ofspecialinterest

ofoutstandinginterest1.

HughesDT,SperandioV:Inter-kingdomsignaling:

communicationbetweenbacteriaandtheirhosts.NatRevMicrobiol2008,6:111-120.

DessauxY,HinsingerP,LamanceauP:Forewardofthespecialissue‘ThirdRhizosphereConference’.Agronomie2003,23:373.

BadriDV,VivancoJM:Regulationandfunctionofrootexudates.PlantCellEnviron2009,32:666-681.

LambersH,MougelC,JaillarrdB,HinsingerP:Plant–microbe–soilinteractionsintherhizosphere:anevolutionaryperspective.PlantSoil2009,321:83-115.

PrithivirajB,PaschkeM,VivancoJM:Rootcommunication:theroleofrootexudates.EncyclPlantCropSci2007,1(1):1-4.RemyW,TaylorTN,HassH,KerpH:Fourhundred-million-year-oldvesiculararbuscularmycorrhizae.ProcNatlAcadSciUSA1994,91:11841-11843.

BonfanteP,AncaI-A:Plants,mycorrhizalfungiandbacteria:anetworkofinteractions.AnnuRevMicrobiol2009,63:363-383.WangB,QuiY-L:Phylogeneticdistributionandevolutionofmycorrhizasinlandplants.Mycorrhiza2006,16:299-363.

2.

3.4.

5.6.

7.8.9.

LiuJ,Maldonado-MendozaI,Lopez-MeyerM,CheungF,

TownCD,HarrisonMJ:Arbuscularmycorrhizalsymbiosisisaccompaniedbylocalandsystemicalterationsingene

expressionanincreaseindiseaseresistanceintheshoots.PlantJ2007,50:529-544.

StudydemonstratedthatAMfungiinducediseaseresistance.10.SicilianoV,GenreA,BalestriniR,CappellazzoG,deWitPJGM, BonfanteP:Transcriptomeanalysisofarbuscularmycorrhizal

rootsduringdevelopmentoftheprepenetrationapparatus.PlantPhysiol2007,144:1455-1466.

CurrentOpinioninBiotechnology2009,20:642–650

根际 环境

Rhizospherechemicaldialogues:plant–microbeinteractionsBadrietal.649

26.FaureD,VereeckeD,LeveauJHJ:Molecularcommunicationin

therhizosphere.PlantSoil2009,321:279-303.27.ReddyPM,Rendon-AnayaM,delosDoloresSotodelRioM:

Flavonoidsassignalingmoleculesandregulatorsofrootnoduledevelopment.DynamicSoilDynPlant2007,1:83-94.28.D’HaezeW,HolstersM:Surfacepolysaccharidesenable

bacteriatoevadeplantimmunity.TrendMicrobiol2005,12:555-561.29.CooperJE:Earlyinteractionsbetweenlegumesandrhizobia: disclosingcomplexityinamoleculardialogue.JApplMicrobiol

2007,103:1355-1365.

Offerscomprehensivereviewaboutthemoleculardialoguesbetweenlegumesandrhizobiainteraction.

30.CaiT,CaiW,ZhangJ,ZhengH,TsouAM,XiaoL,ZhongZ,ZhuJ: Hostlegume-exudedantimetabolitesoptimizethesymbiotic

rhizosphere.MolMicrobiol2009doi:10.1111/j.1365-2958.2009.06790.x.

Firststudydemonstratedthatplant-releasedantimetabolitesplayingaroleinselectingtherhizobiainthecomplexrhizosphereenvironment.31.AgriosGN:PlantPathology.5thed..NewYork:Elsevier;2005.32.GeninS,BoucherC:Lessonslearnedfromthegenomeanalysis

ofRalstoniasolanacearum.AnnuRevPhytopathol2004,42:107-134.33.NesterE,GordonMP,KerrA:Agrobacteriumtumefaciens:From

PlantPathologytoBiotechnologySt.Paul,MN:APSPress;2005.34.HirschA,BauerWD,BirdDM,CulimoreJ,TylerB,YoderJI:

Molecularsignalsandreceptors:controllingrhizosphereinteractionsbetweenplantsandotherorganisms.Ecology2003,84:858-868.35.MorrisseyJP,OsbournAE:Fungalresistancetoplant

antibioticsasamechanismofpathogenesis.MicrobiolMolBiolRev1999,63:708-724.36.BednarekP,SchneiderB,SvatosA,OldhamNJ,HahlbrockK:

Structuralcomplexity,differentialresponsetoinfectionandtissuespeci cityofindolicandphenylpropanoidsecondarymetabolisminArabidopsisroots.PlantPhysiol2005,138:1058-1070.37.BadriDV,Loyola-VargasVM,DuJ,StermitzFR,BroecklingCD,

Iglesias-AndreuL,VivancoJM:Transcriptomeanalysisof

Arabidopsisrootstreatedwithsignalingcompounds:afocusonsignaltransduction,metabolicregulationandsecretion.NewPhythol2008,179:209-223.38.SesmaA,OsbournAE:Thericeleafblastpathogenundergoes developmentalprocessestypicalofroot-infectingfungi.

Nature2004,43:582-586.

Firststudydemonstratedthatriceblastpathogencouldalsoinfectroots.39.RaaijmakersJM,PaulitzTC,SteinbergC,AlabouvetteC,Moenne- LoccozY:Therhizosphere:aplaygroundandbattle eldfor

soilbornepathogensandbene cialmicroorganisms.PlantSoil2009,321:341-361.

Acomprehensivereviewabouttheinteractionsbetweensoilbornepatho-gensandbene cialmicrobesintherhizosphere

40.PerryJN,MOensM:PlantNematology.Cambridge,MA:CABI;

2006.41.BirdDM:Signalingbetweennematodesandplants.CurrOpin

PlantBiol2004,7:372-376.42.WilliamsonVM,GleasonCA:Plant–nematodeinteractions.Curr

OpinPlantBiol2003,6:327-333.43.JonesPW,TylkaGL,PerryRN:Hatching.InThePhysiologyand

BiochemistryofFree-LivingandPlant–ParasiticNematodes.EditedbyPerryRN,WrightDJ.Wallingford,UK:CABI;1998:181-212.44.HoriuchiJ,PrithivirajB,BaisHP,KimballBA,VivancoJM:Soil nematodesmediatepositiveinteractionsbetweenlegume

plantsandrhizobiumbacteria.Planta2005,222:848-857.

Firststudydemonstratedthatnematodesactasvectorstocarryrhizo-biumtohostlegumeforef cientnitrogen http://www.77cn.com.cn

45.deMeutterJ,TytgatT,WittersE,GheysenG,vanOnckelenH, GheysenG:Identi cationofcytokininsproducedby

theplantparasiticnematodesHeteroderaschachtiandMeloidogyneincognita.MolPlantPathol2003,4:271-277.

Modernanalyticalmethodscon rmtheestablishmentofspeci cche-micalidentityofRKN-associatedcytokinin.

46.KaplanF,BadriDV,ZachariahC,SrinivasanJ,AdjerdiniR, SandovalFJ,RojeS,LevineLH,ZhangF,RobinetteSLetal.:

BacterialattractionandquorumsensinginhibitioninCaenorhabditiselegansexudates.JChemEcol2009doi:10.1007/s10886-009-9670-0.

Studyofferscomprehensiveanalysisofnematodesecretionsandtheirinteractionswithsoil-inhabitingbacteria.

47.HenseBA,KuttlerC,MullerJ,RothballerM,HartmannAH,KreftJ-U:Doesef ciencysensingunifydiffusionandquorum-sensing?NatRevMicrobiol2007,5:230-239.48.DuanK,SuretteMG:Environmentalregulationof PseudomonasaeruginosaPAO1LasandRhlquorum-sensing

systems.JBacteriol2007,189:4827-4836.

Studyshowedthatenvironmentalfactorsover-ridedensitydependenceinPseudomonasaeruginosaquorumsensing.

49.WilliamsP:Quorum-sensing,communicationandcross-kingdomsignalinginthebacterialworld.Microbiology2007,153:3923-3938.50.vonBodmanSB,BauerWD,CoplinDL:Quorumsensingin

plant–pathogenicbacteria.AnnuRevPhytopathol2003,41:455-482.51.PiperKR,FarrandSK:Quorumsensingbutnotautoinductionof

TiplasmidconjugaltransferrequirescontrolbytheopineregulonandtheantiactivatorTraM.JBacteriol2000,182:1080-1088.52.WhiteCE,FinanTM:QuorumquenchinginAgrobacteria

tumefaciens:chanceornecessity?JBacteriol2009,191:1123-1125.53.ZhangHB,WangC,ZhangLH:Thequormonedegradation

systemofAgrobacteriumtumefaciensisregulatedby

starvationsignalandstressalarmone(p)ppGpp.MolMicrobiol2004,52:1389-1401.54.ZhangHB,WangC,ZhangLH:Geneticcontrolofquorum-sensingsignalturnoverinAgrobacteriumtumefaciens.ProcNatlAcadSciUSA2002,99:4638-4643.55.YuanZ-C,EdlindMP,LiuP,SaenkhamP,BantaLM,WiseAA,

RonzoneE,BinnsAN,KerrK,NesterEW:ProcNatlAcadSciUSA2007,104:11790-11795.56.KhanSR,FarrandSK:TheBlcC(AttM)lactonaseof Agrobacteriumtumefaciensdoesnotquenchthequorum

sensingsystemthatregulatesTiplasmidconjugativetransfer.JBacteriol2008,191:1320-1329.

StudydemonstratedthatlactonaseexpressionfromAgrobacteriumtumefaciensdoesnotquenchQSinplanta.

57.GurichN,GonzalezJE:RoleofQuorum-sensingin

Sinorhizobiummeliloti-alfalfasymbiosis.JBacteriol2009,191:4372-4382.58.ZhengH,ZhongZ,LaiX,ChenW-X,LiS,ZhuJ:ALuxR/LuxI-type

quorum-sensingsysteminplantbacterium,Mesorhizobiumtianshanense,controlssymbioticnodulations.JBacteriol2006,188:1943-1949.59.Sanchez-ContrerasM,BauerWD,GaoM,RobinsonJB,

DownieJA:Quorum-sensingregulationinRhizobiumanditsroleinsymbioticinteractionswithlegumes.PhilTransRSocB2007,362:1149-1163.60.TeplitskiM,RobinsonJB,BauerWD:Plantssecretesubstances

thatmimicbacterialN-acylhomoserinelactonesignal

activitiesandaffectpopulationdensity-dependantbehaviorsinassociatedbacteria.MolPlant–MicrobeInteract2000,13:637-648.61.GaoM,TeplitskiM,RobinsonJB,BauerWD:Productionof

substancesbyMedicagotruncatulathataffectbacterial

quorum-sensing.MolPlant–MicrobeInteract2003,16:827-834.

CurrentOpinioninBiotechnology2009,20:642–650

根际 环境

650Chemicalbiotechnology

62.KeshevanND,ChowhdharyPK,HainesDC,GonzalezJE: L-CanavaninemadebyMedicagosativainterfereswith

quorumsensinginSinorhizobiummeliloti.JBacteriol2005,187:8427-8436.

FirststudyidentifyingaQSinhibitorycompoundproducedbyplant.63.MathesiusU,MuldersS,GaoM,TeplitskiM,Caetano-AnollesG,

RolfeBG,BauerWD:Extensiveandspeci cresponsesofaeukaryotetobacterialquorum-sensingsignals.ProcNatlAcadSciUSA2003,100:1444-1449.64.MastrettaC:Endophyticbacteriaandtheirpotential

applicationtoimprovethephytoremediationof

contaminatedenvironments.BiotechnolGeneticEngRev2006,23:175-207.65.DotySL:Enhancingphytoremediationthroughthe

useoftransgenicsandendophytes.NewPhytol2008,179:318-333.66.UlrichK,UlrichA,EwaldD:Diversityofendophyticbacterial

communitiesinpoplargrownunder eldconditions.FEMSMicrobiolEcol2008,63:169-180.67.TaghaviS,GarafolaC,MonchyS,NewmanL,HoffmanA,

WeyensN,BaracT,VangronsveldJ,vanderLelieD:Genomesurveyandcharacterizationofendophyticbacteriaexhibitingabene cialeffectongrowthanddevelopmentofpoplar.ApplEnvironMicrobiol2009,75:748-757.68.BaracT,TaghaviS,BorremansB,ProvoostA,OeyenL,

ColpaertJV,VangronsveldJ,vanderLelieD:Engineeredendophyticbacteriaimprovephytoremediationofwater-soluble,volatile,organicpollutants.NatBiotechnol2004,22:583-588.69.TaghaviS,BaracT,GreenbergB,BorremansB,VangronsveldJ,

vanderLelieD:Horizontalgenetransfertoendogenous

endophyticbacteriafrompoplarimprovesphytoremediationoftoluene.ApplEnvironMicrobiol2005,71:8500-8505.70.BrimecombeMJ,DeLeijFAAM,LynchJM:Rhizodepositionand

microbialpopulations.InTheRhizosphere,BiochemistryandOrganicSubstancesattheSoil–PlantInterface.EditedbyPintonZVR,NannipiereN.BocaRaton,USA:CRCPress;2007:73-109.71.SprentJI,DefariaSM:Mechanismsofinfectionof

plantsbynitrogen- xingorganisms.PlantSoil1988,110:157-165.72.JamesEK:Nitrogen xationinendophyticandassociative

symbiosis.FieldCropsRes2000,65:197-209.73.AsgharHN,ZahirZA,ArshadM:Screeningrhizobacteriafor

improvingthegrowth,yield,andoilcontentofcanola(BrassicanapusL.).AustrJAgriRes2004,55:187-194.74.BentE,TuzunS,ChanwayCP,EnebakS:Alterationsinplant

growthandroothormonelevelsoflodgepolepinesinoculatedwithrhizobacteria.CanJMicrobiol2001,47:793-800.75.deSalamoneIEG,HynesRK,NelsonLM:Cytokininproduction

byplantgrowthpromotingrhizobacteriaandselectedmutants.CanJMicrobiol2001,47:404-411.76.BelimovAA,HontzeasN,SafronovaVI,DemchinskayaSV,

PiluzzaG,BullittaS,GlickBR:Cadmium-tolerantplantgrowth-promotingbacteriaassociatedwiththerootsofIndian

mustard(BrassicajunceaL.Czern.).SoilBiolBiochem2005,37:241-250.77.Dell’AmicoE,CavalcaL,AndreoniV:Analysisofrhizobacterial

communitiesinperennialGraminaceaefrompollutedwatermeadowsoil,andscreeningofmetal-resistant,potentiallyplantgrowth-promotingbacteria.FEMSMicrobiolEcol2005,52:153-162.78.GoddijnO,SmeekensS:Sensingtrehalosebiosynthesisin

plants.PlantJ1998,14:143-146.

79.GargAK,KimJu-Kon,OwensTG,RanwalaAP,ChoiYD,

KochianLV,WuRJ:Trehaloseaccumulationinriceplantsconfershightolerancelevelstodifferentabioticstresses.ProcNatlAcadSciUSA2002,99:15898-15903.80.O’SullivanDJ,O’GaraF:Traitsof uorescentPseudomonas

spp.involvedinsuppressionofplant–rootpathogens.MicrobiolRev1992,56:662-676.81.Ramos-GonzalezMI,CamposMJ,RamosJL:Analysisof

PseudomonasputidaKT2440geneexpressioninthemaizerhizosphere:invitroexpressiontechnologycaptureandidenti cationofroot-activatedpromoters.JBacteriol2005,187:4033-4041.82.KrechelA,FaupelA,HallmannJ,UlrichA,BergG:Potato-associatedbacteriaandtheirantagonisticpotentialtowardsplant–pathogenicfungiandtheplant–parasiticnematodeMeloidogyneincognita(Kofoid&White)Chitwood.CanJMicrobiol2002,48:772-786.83.BertagnolliBL,DalSoglioFK,SinclairJB:Extracellularenzyme

pro lesofthefungalpathogenRhizoctoniasolaniisolate2B-12andoftwoantagonists,BacillusmegateriumstrainB153-2-2andTrichodermaharzianumisolateTh008.1.

Possiblecorrelationswithinhibitionofgrowthandbiocontrol.PhysiolMolPlantPathol1996,48:145-160.84.KloepperJW,RyuCM,ZhangSA:Inducedsystemicresistance

andpromotionofplantgrowthbyBacillusspp.Phytopathology2004,94:1259-1266.85.RyanRP,MonchyS,CardinaleM,TaghaviS,CrossmanL,

AvisonMB,BergG,vanderLelieD,DowJM:TheversatilityandadaptationofbacteriafromthegenusStenotrophomonas.NatRevMicrobiol2009,7:514-525.86.WenzelWW:Rhizosphereprocessesandmanagementin

plant-assistedbioremediation(phytoremediation)ofsoils.PlantSoil2009,321:385-408.87.DzantorEK:Phytoremediation:thestateofrhizosphere

‘engineering’foracceleratedrhizodegradationofxenobioticcontaminants.JChemTechnolBiotechnol2009,82:228-232.88.RyanPR,DessauxY,ThomashowLS,WellerDM:Rhizosphere

engineeringandmanagementforsustainableagriculture.PlantSoil2009,321:363-383.89.BaisHP,WeirTL,PerryLG,GilroyS,VivancoJM:Theroleofroot

exudatesinrhizosphereinteractionswithplantsandotherorganisms.AnnuRevPlantBiol2006,57:233-266.90.BaisHP,BroecklingCD,VivancoJM:Rootexudatesmodulate

plant–microbeinteractionsintherhizosphere.InSecondarymetabolitesinSoilEcology,SoilBiology,vol.14.EditedbyKarlovskyP.Berlin,Heidelberg,Germany:Springer-Verlag;2008:241-252.91.RudrappaT,CzymmekKJ,ParePW,BaisHP:Root-secretedmalicacidrecruitsbene cialsoilbacteria.PlantPhysiol2008,148:1547-1556.92.BoumeesterHJ,RouxC,Lopez-RaezJA,BecardG:Rhizosphere

communicationofplants,parasiticplantsandAMfungi.TrendsPlantSci2007,12:224-230.93.RasmannS,KollnerTG,DegenhardtJ,HiltpoldI,ToepferS,

KuhlmannU,GershenzonJ,TurlingsTCJ:Recruitmentofentomopathogenicnematodesbyinsect-damagedmaizeroots.Nature2005,434:732-737.94.De-la-PenaC,LeiZ,WatsonBS,SumnerLW,VivancoJM:

Root-microbecommunicationthroughproteinsecretion.JBiolChem2008,283:25247-25255.95.MathesiusU:Comparativeproteomicstudiesofroot-microbe interactions.JProteomics2009,72:353-366.

Comprehensivereviewabouttheproteomicstudiesinroot-microbeinteractions.

CurrentOpinioninBiotechnology2009,20:642–http://www.77cn.com.cn

本文来源:https://www.bwwdw.com/article/e8di.html

Top