Rhizosphere chemical dialogues plant–microbe interactions
更新时间:2023-08-29 02:15:01 阅读量: 教育文库 文档下载
- rhizosphere推荐度:
- 相关推荐
根际 环境
Available online at http://www.77cn.com.cn
DayakarVBadri1,TiffanyLWeir1,DanielvanderLelie2andJorgeMVivanco1
Everyorganismonearthreliesonassociationswithits
neighborstosustainlife.Forexample,plantsformassociationswithneighboringplants,micro ora,andmicrofauna,whilehumansmaintainsymbioticassociationswithintestinal
microbial ora,whichisindispensablefornutrientassimilationanddevelopmentoftheinnateimmunesystem.Mostoftheseassociationsarefacilitatedbychemicalcuesexchanged
betweenthehostandthesymbionts.Intherhizosphere,whichincludesplantrootsandthesurroundingareaofsoilin uencedbytheroots,plantsexudechemicalstoeffectively
communicatewiththeirneighboringsoilorganisms.Herewereviewthecurrentliteraturepertainingtothechemicalcommunicationthatexistsbetweenplantsand
microorganismsandthebiologicalprocessestheysustain.
Addresses1
CenterforRhizosphereBiologyandDepartmentofHorticulture&LA,ColoradoStateUniversity,FortCollins,CO80523,USA2
BrookhavenNationalLaboratory,Upton,NY11973,USACorrespondingauthor:Vivanco,JorgeM(j.vivanco@colostate.edu)
Rhizospherechemicaldialogues:plant–microbeinteractions
andparasiticinteractionswithotherplants,pathogenicmicrobesandinvertebrateherbivores.Plantsreleaseenor-mousamountsofchemicalsthroughtheirroots,atasig-ni cantcarboncost,tocombatpathogenicmicroorganismsandattractbene cialones.Rhizosphereinteractionsareaffectedbymanydifferentregulatorysignals,ofwhichonlyafewhavebeenidenti ed,recallingaquotebyLeonardodaVincithat‘Weknowbetterthemechanicsofcelestialbodiesthanthefunctioningofthesoilbelowourfeet’[2].Rhizosphereinteractionsarenotsolelydrivenbyrootsbutarehighlyintegratedwithandin uencedbyresidingorganismsandlocaledaphicfactors.Soil-inhabitingmutualistsandparasites,bothprokaryoticandeukaryotic,areactivelyinvolvedinsignalingwithahost(Figure1).Therefore,rhizosphereinteractionsareverydynamicandcanbealteredbyadditionorlossofanyoftheplayers.Alargebodyofliteratureexistsaboutrhizosphereinter-actions[3–5].Inthisreview,wesummarizethecurrentknowledgeofrhizospherechemicalcommunicationbe-tweenplantrootsandtheirassociatedmicroorganisms.Centraltothisdiscussionistherecentprogressmadeinunderstandingrhizospherechemicaldialoguesbetweenplantsanddifferentcomponentsofthemicrobialcom-munity.Weendwithadiscussionofhowthesechemicaldialoguesmayimproveplant tnessatthecommunitylevelanddiscussthenewchallengesfacedbyresearchers.
CurrentOpinioninBiotechnology2009,20:642–650ThisreviewcomesfromathemedissueonChemicalbiotechnology
EditedbyKazuyaWatanabeandGeorgeBennettAvailableonline28thOctober20090958-1669/$–seefrontmatter
#2009ElsevierLtd.Allrightsreserved.DOI10.1016/j.copbio.2009.09.014
Chemicalsignalingbetweenplantsandmutualists
Plantrootsreleaseawiderangeofcompoundsthatareinvolvedinattractingbene cialorganismsandformingmutualisticassociationsintherhizosphere.Thesecom-poundsincludesugars,polysaccharides,aminoacids,aromaticacids,aliphaticacids,fattyacids,sterols,phe-nolics,enzymes,proteins,plantgrowthregulatorsandsecondarymetabolites.Themostimportantrhizospheremutualismsdescribedarebetweenplantsandmycorrhi-zaeorrhizobacteria.
Mycorrhizalassociationsarepresentinalmostalllandplantsandareessentialbiologicalconstituentsoftherhizo-sphere.Mycorrhizaearegroupedintotwocategories:endomycorrhizae(arbuscular,AM)andectomycorrhizae.TheAMsymbiosisrepresentsthemostwidespreadandancientplantsymbioses,originatingabout450millionyearsago[6].About6000speciesintheGlomeromycotina,AscomycotinaandBasidiomycotinafamilieshavebeenrecordedasmycorrhizalandwithmoresensitivemoleculartechniquesthisnumberisincreasing[7].Similarly,more
http://www.77cn.com.cn
Introduction
Prokaryotesandeukaryoteshavecoexistedformillionsofyearsonearth.Itisestimatedthathumanshave1013humancellsand1014bacterialcellsincludingtheendogen-ousbacterial ora[1].Asaresultofthislongassociation,prokaryoteshavedevelopedbothbene cialanddetrimen-talrelationshipswitheukaryotes.Asautotrophicorgan-isms,plantsplayacentralroleinsustainingallotherlifeforms.Unlikemammals,plantsaresessile,thusreleasinganarrayofchemicalsignalstointeractwithotherorgan-isms.Therootsystem,whichwastraditionallythoughttoprovideanchorageanduptakeofnutrientsandwater,isachemicalfactorythatmediatesnumerousundergroundinteractions.Theseincludemutualisticassociationswithbene cialmicrobes,suchasrhizobia,mycorrhizae,endo-phytesandplant-growthpromotingrhizobactertia(PGPR)
CurrentOpinioninBiotechnology2009,20:642–650
根际 环境
Rhizospherechemicaldialogues:plant–microbeinteractionsBadrietal.643
than200000plantspecieshostmycorrhizalfungi,butarelativelysmallnumberofmycorrhizaltypesareknown[8].Thebiotrophicinterfacesthatareformedbetweenplantrootsandthefungusresultfromrecognitionofexchangedcues.ThereisanextensivelistofplantgenesthatarepredictedtoplayaroleinfacilitatingAMinteractions[9 ,10 ],butcomparativelyfewidenti edinthefungus[11 ,12].Thuslittleknowledgeexistsaboutsignalingprocessesbetweensymbionts,thepathwaysrelatedtosymbiosis-speci cdevelopmentofAMfungiinroottis-sues,ormechanismsofnutrientexchangebetweenthem[12,13,14,15 ].
TheestablishmentofAMsymbiosesbeginswiththecolonizationofacompatiblerootbyhyphaeproducedbyAMfungalsoilpropagules,asexualsporesormycorrhizalroots.Thisisfollowedbyappressoriumformationandentranceintothecortextoformspecializedstructurescalledarbuscles.Beforecolonization,itisassumedthatacontinuousdialogueofsignalsisexchangedbetweenthesymbiontstoestablishcolonization.Sincethissymbiosislackshostspeci cityithasbeensuggestedthateithertheplant-derivedsignalsareconservedthroughouttheplantkingdomorthatabroadrangeofrelatedcompoundsareinvolved.Plant-releasedcompoundslikesugarsandaminoacidsarepotentialfungalstimulibutphenoliccompounds,particularly avonoids,areknownaskeysignalingcom-ponentsinmanyplant–microbeinteractions[16 ].Therearevastquantitiesofdataontheeffectof avonoidsonAMhyphalgrowth,differentiation,androotcolonization[16 ],andspeci ceffectsdependonthechemicalstructureofthecompound[17].Itwasrecentlyfoundthat avonoidsexhibitagenus-speci candspecies-speci ceffectonAMfungi[18].Inaddition,strigolactones,agroupofsesquiterpenelactonesexudedbyLotusjaponicusroots,wereshowntoinducehyphalbranchinginAMfungi,apre-requisiteforsuccessfulrootcolonizationfungi[19 ].Strigalactonespresentintherootexudatesofawiderangeofplantsactdisplayspeci cityassignalsforAMfungibutdidnotaffectotherfungalspeciessuchasTrichoderma,Piriformospora,BotrytiscinereaandCladosporiumsp.[19 ].AfurtherhypothesisisthatstrigolactonesarenotonlyinvolvedininducingAMhyphalbranchingfactorbutalsoacttoattractAMfungitoroots[20].However,morestudiesareneededtoclarifyboththespeci cityandrolesofstrigolactonesinestablishingmycorrhizalassociations.Theproductionandexudationofstrigolactonesarede-pendentonnutrientavailability.Recently,Yoneyamaetal.[21]reportedthatnitrogenandphosphorusde ciencyenhancedthesecretionofastrigolactone,5-deoxysatrigolinsorghumplants.Besidesstrigolactones,somestudiesdemonstratethatcalciumionsareanintracellularmessen-gerduringmycorrhizalsignaling,atleastinapre-contactstage[22 ].
Evenlessunderstoodthanthesignalingbetweenplantsandmycorrhizaeistheinteractionofmycorrhizaewith
http://www.77cn.com.cn
othersoilmicrobes.IthasbeendemonstratedthatAMfungalexudatesdirectlyimpactsoilbacterialcommunitycomposition[23],andsomebacteriaassociatedwithAMcanimprovecolonization,rootbranchingandantifungalproperties[7,24].Futuregoalsshouldincludeidentifyingallplayersofthesesignalingnetworks,particularlythesignalsandreceptorsthatopenthedoortosymbiosisformation.Othermajorchallengesincludeunravelingthesignalingeventsintri-partiteinteractions(plant–AM–bacteria)tobetterunderstandhowsoilbacteriaandAMfungiassociate.Although,somestructuralpropertiesthatregulateinterspeciesinteractionsareknown[25 ]thebacterial–mycorrhizalnetworkstillremainstobeeluci-dated.
Asmentioned, avonoidsplayakeyroleintheearlysignalingeventsoflegume–rhizobiainteractions[26].Thelegumerhizospherechemicallyattractsrhizobiabysecreting avonoidsandrelatedcompounds[27].Sub-sequently,theNodDproteinofrhizobiaperceivesspeci c avonoidsthroughoneortwo-componentregu-latorysystems,initiatingtranscriptionofnodgenesthatencodethebiosyntheticmachineryforabacterialsignal,theNodfactor.Nodfactorsarelipochitooligosaccharidesconsistingofb-1,4-linkedN-acetyl-glucosamineback-boneswithfouror veresidueswithanacylchainatC2inthenon-reducingendanddecoratedwithacetyl,sulfonyl,carbamoyl,fucosylorarabinosylmoietiesatde nedpos-itionsdependingontherhizobialstrain[28].PerceptionoftheNodfactorsbytheplantinducesmultiplesignalingpathwaysthatinitiateroothairinfectionandnoduleformation.Thereareothernon avonoidrelatedcom-poundslikexanthones,vanillinandisovanillinthatinduceNodDgeneexpression,buttheyarerequiredatmuchhigherconcentrationsthan avonoids[29 ],andthustheirimportanceinnaturalenvironmentsisques-tionable.Recently,Caietal.[30 ]reportedthatcanava-nine,acompoundpresentintheseedcoatandrootexudatesofvariouslegumeplants,istoxictomanysoilbacteriabutnottorhizobialstrainsthatpossessspeci ctransportertotransport(detoxify)thiscompound.Theyalsosuggestedthathostlegumessecretecanavanineintotherhizospheretoselectbene cialrhizobia.Furtherstudiesarewarrantedtoidentifyfactorsdetermininghost–rhizobiumspeci city.
Molecularcommunicationbetweenhostandpathogens
Therearefourmaingroupsofplantpathogens[31]butonlytwoofthemaremajorplayersinthesoil;http://www.77cn.com.cnparativelyfewerbacteriaareconsideredtobesoilborneplantpathogens;however,somewell-studiedexceptionsincludeRalstoniasolanacearum(bac-terialwiltoftomato)andAgrobacteriumtumefaciens,thecasualagentofcrowngalldisease[32,33].Fungiandoomycetes,physiologicallyandmorphologicallysimilarbutphylogeneticallydistinctgroupsoforganisms,arethe
CurrentOpinioninBiotechnology2009,20:642–650
根际 环境
644Chemicalbiotechnology
Figure
1
Pictorialillustrationofthechemicalcommunicationthatexistsbetweenplantrootsandotherorganismsinthecomplexrhizosphere.Plantrootssecreteawiderangeofcompounds,amongthosesugarsandaminoacidsareengagedinattracting(chemotaxis)microbes(1),flavonoidsactassignalingmoleculestoinitiateinteractionswithmycorrhiza(AMfungi)(2),rhizobium(3)andpathogenicfungi(oomycetes)(4),aliphaticacids(e.g.malicacid)areinvolvedinrecruitingspecificplantgrowthpromotingrhizobacteria(Bacillussubtilis)(5),nematodessecretegrowthregulators(cytokinins)thatareinvolvedinestablishingfeedingsitesinplantroots(6)andnematodessecreteothercompounds(organicacids,aminoacidsandsugars)involvedinattractingbacteriaandinbacterialquorumsensing(7).Knowledgeoftherolesofothertypesofcompounds,suchasfattyacids(8)andproteins(9),secretedbyrootsintherhizosphereandothermulti-partiteinteractions(10)remainsunknown.
mostpredominantsoilbornepathogens.Likeplant–mutualistassociations,pathogensalsoutilizechemicalsignalsinearlystepsofhostrecognitionandinfection.Beforetheestablishmentofinfection,Phytophthorasojaezoosporesarechemicallyattractedbydaidzeinandgen-isteinsecretedbysoybean[34];however,thenatureoftheiso avonereceptoronthezoosporesremainsunknown.Mostplantsproduceantimicrobialsecondarymetabolites,eitheraspartoftheirnormalprogramofgrowthanddevelopmentorinresponsetopathogen
CurrentOpinioninBiotechnology2009,20:642–650
attackandthoseantimicrobialcompoundsprotectplantsfromawiderangeofpathogens[35].Preformedanti-fungalcompounds,calledphytoanticipins,occurconsti-tutivelyinhealthyplantsandactaschemicalbarriersforfungalpathogens.Bycontrast,phytoalexinsareantimi-crobialcompoundsinducedinresponsetopathogenattackbutnotnormallypresentinhealthyplants.Thesetwogroupsofcompoundshaveprovenveryeffectiveforawiderangeoffungalpathogens.However,moststudiespertainingtothesecompoundswereconductedinleaves,
http://www.77cn.com.cn
根际 环境
Rhizospherechemicaldialogues:plant–microbeinteractionsBadrietal.645
notintherootsorintherhizosphere.Recently,Bednareketal.[36]reportedthatArabidopsisrootsandleavesdiffergreatlyintheaccumulationofindolicandphenylpropa-noidcompoundsuponinfectionwithPythiumsylvaticum.Onthebasisofthisreport,onecanhypothesizethattheliteraturepertainingtothephytoalexinandphytoantici-pinresponsesafterleafinfectionswilldifferfromrootinfectionstudies.Followingthisobservation,Badrietal.[37]reportedthatdifferentialgenome-wideexpressionpro lesinrootsupontheindependentadditionofthreeimportantplantsignalingmolecules(SA,MeJAandNO)totherootsandthatthesepro lesweredifferentthanthosefromleavestreatedwiththesamesignalingmol-eculesdescribedintheliterature.Thereisaneedtobetterunderstandhowphytoalexins,phytoanticipinsandothersecondarymetabolitesacttoinhibitrootfungalpathogens.Thedevelopmentofarice–Magnaporthegrisea(causalagentofblastdisease)pathosystemwouldbeparticularlyusefulasthisfungalpathogeniscapableofinfectingbothleavesandrootsofriceplants[38 ].Inaddition,thissystemwouldallowustoidentifyiftheroleofphytoalexinsorphytoanticipinsinvolvedinplantdefenseagainstthisfungalpathogenontheleavesisthesameasinroots.Furtherresearchiswarrantedonsoilbornefungalpathogensbecausetheycauseacon-siderableyieldlosstocropscomparedwithfoliarpatho-gens[39 ].
Nematodesarecomplex,worm-likeeukaryoticinvert-ebratesthatrankamongthemostnumerousanimalsontheplanet[40].Mostnematodesinsoilarefreeliving,andconsumebacteria,fungiandothernematodes,butsomecanparasitizeplants.Themajorityofcropdamageiscausedbybothroot-knotnematodes(RKN)andcystnematodes[41].Itisgenerallythoughtthatnematodesperceivetheirenvironmentthroughchemosensoryper-ception.Typically,RKNmustlocateandpenetratearoot,migrateintothevascularcylinderandestablishaperma-nentfeedingsite.Theseeventsareaccompaniedbyextensivesignalingbetweenthenematodeandthehost,andarewelldescribedatthelevelofidentifyingproteinsthataresecretedbynematodesduringthemigratoryphase[41,42].However,theidenti cationofinitialsig-nalingmolecules(non-proteinsignalingcompounds)releasedfromthehosttoattractnematodesisstillataprimitivestage.Nematodeswithawidehostrangerespondtoroot-releasedcompounds/diffusatesfromawiderangeofhosts,whereasspecieswitharestrictedhostrangehatchonlywhenpresentedwithsignalsfromthathost[43].Recently,Horiuchietal.[44 ]reportedthatMedicagorootsreleasedavolatile(dimethylsul de)thatattractednematodes(C.elegans),whichactedasvectorsforrhizobiaandeffectivelyenhancednodulation.How-ever,detailedinformationaboutthereciprocalinitialsignalexchangebetweennematodesandhostislackingwiththeexceptionoftheroleofcytokininsinhost–nematoderelationships[45 ].Thenematodessecrete
http://www.77cn.com.cn
cytokininsthatplayaroleincellcycleactivationandinestablishingthefeedingsiteasanutrientsinkinthehostroots.Anotherrecentstudydemonstratedthathownematodesecretions(non-proteinaceouscompounds)interactwithsoil-inhabitingbacteria[46 ]byusingthemodelnematodeCaenorhabditiselegans.Thisstudywillopenanewavenueofresearchtostudythechemicalinteractionsofotherparasiticnematodeswiththeirhosts.
Quorumsensing(QS)andrhizospherecommunication
TheexquisitelycoordinatedgeneexpressionthatresultedinproductionofbioluminescentproteinsbythemarinebacteriaVibrio scheriiwasonceconsideredaninterestingnovelty,anditwasseveralyearsbeforethescienti cimportanceofthisdiscoverywasrealized.Ithasnowbeendeterminedthatcoordinatedactivityamongmicrobialcellsusingdiffusiblechemicalsignalsisawide-spreadphenomenon,called‘quorumsensing’or‘cell-tocellcommunication’.AlthoughthechemicalsignalsandmechanismsofQSsystemsvary,themostprevalentformofQSsignalsusedbyplant-associatedbacteriaareacylhomoserinelactones(AHLs),whichvaryinthelength,oxidationstate,anddegreeofsaturationoftheiracylsidechainstoprovideadegreeofspeciesspeci city.Atthresholdconcentrations,theseAHLsformcomplexeswiththeircognatereceptors,whichbindtoDNAandacttoregulateexpressionofspeci cgenes,effectivelyallow-ingpopulationsofindividualcellstoactasacollectiveunit.Thisisasimpli edexplanationasincreasingevi-dencesuggeststhatsignalconcentrationalonedoesnotdictatetheactivationorrepressionofQS-controlledgenes,butthatlocalenvironmentandspatialdistributionofcellsarealsoimportantcontributingfactors[47,48 ].Thebehaviorsthatarein uencedbyQSareextremelyvariedbutfromabroaderecologicalperspectivetheyfacilitatenutrientornicheacquisition,modulatecollec-tivedefenseagainstcompetitors,andpermitcommunityescapeinthefaceofpopulationdestruction[49].Inplant-associatedbacteria,QSisofteninvolvedinestablishingsuccessfulassociations,whethertheyaresymbioticorpathogenic.TheroleofQSinthepathogenesisofErwiniacarotovoraandAgrobacteriumtumefaciensontheirrespect-iveplanthostsarewellcharacterized.TheentericphytopathogenE.carotovraproducesanumberofQS-regulatedvirulencefactors,suchaspectinases,cellu-lasesandproteasesandsomestrainsproduceab-lactamantibioticthatisthoughttoprovidenicheprotectiontoE.carotovoraonceithasestablishedaninfection[50].However,whetherplantfactorsareinvolvedinestablish-ingorinhibitingQStodeterminehostspeci cityofE.carotovoraisunknown.
Conversely,ithasbeenestablishedthatchemicalsfromtheplanthostcontributetoinfectionbythetumor-inducingbacteriaA.tumefaciens.Thesignal-receptorpair
CurrentOpinioninBiotechnology2009,20:642–650
根际 环境
646Chemicalbiotechnology
(TraI/TraR)responsibleforregulationofQSinA.tume-faciensoccursontheTi(ortumor-inducing)plasmid,whichisrequiredforgallformationinhostplants.Aninfectionoccurswhenasegmentofthisplasmidisinte-gratedintothenucleusofhostplantcells,resultingintheproductionofopinesthatcanthenbeutilizedasanovelsourceofnitrogenandcarbon[51].Thepresenceofopines,whichareonlyfoundintheplanttumor,thenupregulateexpressionofthebacterialTraRgene.Thus,theQSsystem,whichallowsforconjugationandreplica-tionoftheTiplasmid,isonlyeffectivelyactivatedafterinfection,resultinginaquestionableroleforQSinA.tumefacienspathogenicity[52].Tocomplicatematters,A.tumefaciensalsoproducesaproteinBlcC(formerlyAttM)thathaslactonaseactivity,whichitwassuggestedmaynegativelyregulateQSthroughsignaldegradation[53,54],aphenomenoncalled‘quorumquenching’.Anotherstudyshowedthatthepresenceoftheplantdefensemetabolitesalicylicacidresultedinincreasedexpressionofthislactonaseandinhibitionofvirulence(vir)genescarriedontheTiplasmid[55].However,thebiologicalsigni canceofthisplant-inducedlactonasetoactasaquorumquencherwasnotsubstantiatedbyinplantadataandappearstohaveonlyatransienteffect[56 ].
Quorumsensinghasalsobeenimplicatedasanimportantfactorinthesymbioticassociationbetweenlegumesandrhizobia,althoughmanydetailsofitsinvolvementarestillemerging.ManyrhizobiadisplayingmutationsoftheirQSsystemshavereducedabilitytoinfectroothairsand/orformnodules[57–59].Additionally,severallegumeshavebeenshowntosecretecompoundsthatcaninterferewithbacterialQS[60,61,62 ],andMedicagotruncatularespondeddifferentiallywithregardstorootexudationandproteinexpressiontoAHLsproducedbyitssymbiontSinorhizobiummelilotiandanopportunisticpathogenPseu-domonasaeruginosa[63].However,amongtheplant-pro-ducedQSagonistsandantagoniststhatmayplayaroleinlegume/rhizobiainteractions,theonlyonethathaschemicallyidenti edisL-Canavanine,anarginineanalog[62 ];thus,ithasbeenpredictedthattheobservedQSinhibitionmaybeanindirecteffectpotentiallycausedbyproteinmisfoldingoftranscriptionregulators[59].
seemtobequitepromiscuouswhenitcomestohostplantcolonizationandplantbene cialeffects,suchastheBurkholderiacepaciaBu72,whichwasisolatedfromyellowlupine[68]butalsosigni cantlyimprovedbiomasspro-ductionofpoplarDN-34[67,69].Therefore,beforeapplyingplantgrowthpromotingendophyticbacteriapreliminarystudiestocon rmtheplantgrowthpromot-ingsynergyoftheselectedendophytesandtheplantspeciesarerequired.
Acloserelationshipexistsbetweenendophyticandrhizo-spherebacteriaandmanyfacultativeendophyticbacteriacanalsosurviveintherhizosphere,wheretheycanentertheirhostplantviatheroots.Rootcolonizationbyrhizo-spherebacteriainvolvesseveralstages[70]andendophy-ticbacteriaarehypothesizedtofollowasimilarprocess.Intheinitialstage,bacteriamovetotheplantrootseitherpassivelyviasoilwater uxesoractivelyviaspeci cinductionof agellaractivitybyplant-releasedcom-pounds.Inasecondstep,non-speci cadsorptionofbacteriatotherootstakesplace,followedbyanchoring(thirdstep),andresultinginthe rmattachmentofbacteriatotherootsurface.Speci corcomplexinter-actionsbetweenthebacteriumandthehostplant,in-cludingthesecretionofrootexudates,mayarisethatcanresultintheinductionofbacterialgeneexpression(fourthstep).Endophyticbacteriacansubsequently( fthstep)entertheirhostplantatsitesoftissuedamage,whichnaturallyariseastheresultofplantgrowth(lateralrootformation),orthroughroothairsandatepidermalcon-junctions[71].Inaddition,plantexudatesleakingthroughthesewoundsprovideanutrientsourceforthecolonizingbacteria.
Endophyticbacteriacanimproveplantgrowthandde-velopmentinadirectorindirectway.Directplantgrowthpromotingmechanismsofendophyticbacteriamayinvolvenitrogen xation[65,72],theproductionofplantgrowthregulatorssuchasauxins,cytokininsandgibber-ellins[73–75],suppressionoftheproductionofstressethyleneby1-aminocyclopropane-1-carboxylate(ACC)deaminaseactivity[76,77],andalterationofsugarsensingmechanismsinplants[78].Forinstance,alterationofbiosynthesisand/ormetabolismoftrehaloseinplantahavebeenshowntoincreasetolerancetodrought,saltandcold[79].Itisthereforenoteworthythatseveralendophyticbacteriafrom,forexample,poplarwereabletoef cientlymetabolizetrehalose[67].Endophyticbac-teriacanalsoindirectlybene tplantgrowthbyprevent-ingthegrowthoractivityofplantpathogensthroughcompetitionforspaceandnutrients[80],antibiosis[81],productionofhydrolyticenzymes[82],inhibitionofpathogen-producedenzymesortoxins[83]andthroughinductionofplantdefensemechanisms[84].
Asystemsbiologyapproachtobetterunderstandthesynergisticinteractionsbetweenplantsandtheirbene cial
http://www.77cn.com.cn
Endophytesaschemicalfactories
Inadditiontointeractingwithmicroorganismsintherhizosphere,plantsareinternallycolonizedbyendophyticbacteriaandfungi.Endophyticbacteriacanbede nedasbacteriathatresidewithinlivingplanttissuewithoutcausingsubstantiveharmtotheirhost.Diversearraysofbacterialgenerahavebeenreportedtobeendophytic[64,65].Thecommunitystructureofendophyticbacteriawasshowntobestronglyaffectedbytheplantspecies,uptothelevelofthecultivar[66],pointingtospecies-speci cassociationsbetweenendophytesandtheirplanthost[67].Onthecontrary,someendophyticbacteria
CurrentOpinioninBiotechnology2009,20:642–650
根际 环境
Rhizospherechemicaldialogues:plant–microbeinteractionsBadrietal.647
endophyticbacteriarepresentsanimportant eldofresearch,whichisfacilitatedbytherecentsequencingofthegenomesofseveralplantspeciesandseveralendo-phyticbacteria.Forinstance,thegenomecomparisonbetweenthepoplarendophyteS.maltophiliaR551-3andtheopportunisticpathogenK279apointedtotheexistenceofinsertionhotspotsinthecoregenomeofthisspecies[85].ThemechanismsresponsibleforcolonizingplantsandforantagonisticactivityofS.maltophiliastrainsagainstplantpathogensseemsimilartothoseresponsibleforcoloniza-tionofhumantissuesandforpathogenicity.Furthermore,antibioticresistanceandsynthesiswasfoundtobepartofthecoregenome.Therefore,theapplicationofrhizo-sphericandendophyticbacteria,suchasS.maltophiliaorB.cepacia,tocontrolplantpathogensorpromoteplanthealthshouldbeverycarefullyconsidered,astheymayhavepotentialasopportunisticpathogens.FB17butnototherBacillussp.Thissuggeststhateachbene cialrhizobacterianeedsaspeci csignaltocolonizethehost.AllPGPRshaveindirectpositiveeffectsonplanthealthbyinhibitingsoilbornepathogensbymeansofcompetitionandantibiosis[39].PGPRsalsohavedirectpositiveeffectsonplanthealthbyinducingsystemicresistance(ISR)inordertopreparetheplantsfrompathogenattackorbyexposingtheplantstoPGPR-releasedcompoundssuchas2,3-butanediol,pyoverdine,andlipopeptidesurfactants[39 ].However,mostexper-imentsexaminingthemechanismsofPGPRsdealwithonlyasinglehost–singlePGPRinteraction.Innature,therhizospherecontainsmillionsofmicrobesincludingPGPR,pathogensandmicrofauna.Furtherstudiesareneededtounravelthesemultiplexinteractionsatamol-ecularleveltoenhancetheirutilizationforagriculturalbene ts.
Rhizoremediation
Plant-assistedbioremediationorphytoremediationholdspromiseforinsitutreatmentofpollutedsoils.Thegeneralsubjectofphytoremediationhasbeenreviewedbynumerousjournalarticlesandbookchapters,andaspectsspeci ctotherhizosphereareincluded.ArecentreviewarticlebyWenzel[86]comprehensivelycoverstherhi-zopshereprocessesandmanagementinplant-assistedbioremediationofsoils;therefore,anextensivediscussionisnotwarrantedhere.However,itisveryclearthattheunderstandingoftheplant–microbialconsortiaintherhizospherewillenhanceourabilitytoengineerplantsforphytoremediationpurposesveryeffectivelyasdescribedbyDzantor[87]andRyanetal.[88].Furtheremphasisshouldbeputonevaluatingresultsobtainedfromsimpli edlabexperimentstoheterogenousnaturalconditionsundersuchascomplexrhizosphereenviron-ments(multipleplants–multiplemicrobes).
Noveltritrophicinteractions
Rootsecretedcompoundsarealsobeingstudiedfortheirinvolvementintritropicinteractions(plant–microbe–nematode)intherhizosphere.Onlyafewexamplesarewelldocumentedinthislineofresearch[3],suchasplant–AMF–parasiticweedinteractions[92],legume–nematode–rhizobiumassociations[44],andtheattractionofentomopathogenicnematodestoinsectdamagedroots[93].Alltheseinteractionsarestudiedatlaboratorylevelsbyusingsimpli edmodelsystemsbuttheknowledgeabouthowtheseinteractionsmightoccureffectivelyinthecomplexrhizosphereundernaturalconditionsstillremainsscarce.
Canproteinsintheexudatesbechemicalsignals?
Whilethereisabundantinformationontheroleofrootsecretedsecondarymetabolitesinrhizosphereplant–microbeinteractions,theroleofexudedproteinsispoorlystudied.Recentevidencedemonstratesthatmicrobescanmodulaterootexudationofproteinsandthatplantscandothesameinsoilbacteria[94].Thesereportscon rmthatthecompositionofproteinsexudedbyplantrootsisdynamicallyeffectedbytheorganismsintheirsurround-ings.ArecentreviewbyMathesius[95 ]discussedtheuseofproteomicstostudyroot–microbeinteractions.Mostoftheconclusionsreachedtodatearebasedonresultsobtainedfromsimplelaboratoryexperimentalmodels.Someofthesecretedproteinsarestartingtobeidenti edbutnothing(almost)isknownabouthowthesesecretedproteinsfromdifferentorganismsinteractatinterspecies/inter-genericlevelsorwhateffecttheyhaveonotherorganismsintherhizosphere.Mostimportantly,researchneedstobeconductedtodetermineiftheproteinsretaintheirenzymaticactivitiesintherhizosphere.
PGPRsinteractionwithplantroots
Therhizosphereistheplaygroundandinfectioncourtforsoilbornepathogensandalsoabattle eld,wherebothmicro oraandmicrofaunainteractwithsoilbornepatho-gensandin uencetheoutcomeofpathogeninfection[39].However,severalbene cialmicroorganismsthatresideintherhizospherecaninhibitthegrowthandactivityofsoilbornepathogens.Theactivityandeffectsofbene cialrhizospheremicroorganismsonplantgrowthandhealtharewelldocumentedforbacterialikePseudo-monas,BurkholderiaandfungilikeTrichodermaandGliocladium.Similartotheinvolvementof avonoidsinlegume–rhizobiasignaling,root-secretedcompounds(both avonoidsandothersecretedcompounds)modu-latetheinteractionbetweenplantsandPGPRsandtheseinteractionsarereviewedbyseveralarticles[3,5,89,90].But,thespeci croot-releasedsignalinrecruitingspeci cbacteriaspeciesispoorlyunderstood.Recentevidence[91]demonstratedthatL-malicacidsecretedfromplantrootsisinvolvedinspeci callyrecruitingBacillussubitilis
http://www.77cn.com.cn
Futurechallenges
Rhizospherechemicaldialoguesarethelanguageofcommunicationbetweenplantrootsandmicrobesin
CurrentOpinioninBiotechnology2009,20:642–650
根际 环境
648Chemicalbiotechnology
theareawherethesoilandrootsareincloseproximity.Severallinesofevidenceimplicateroot-secretedexu-datesassignalingagentsthatplayakeyroleintheseinteractions.Researchershavealreadyidenti edsomeofthefactorsinitiatingthedialoguesintherhizospherethatdrivetheseinteractions.However,therearestillnumer-ousotherfactors/determinantsyettobeidenti edtobetterunderstandtheseinteractionsatanecologicallevel.Therhizosphereisconsideredtobecommongroundforecologists,molecularbiologistsandplantbiologiststofurtherexplorethesenovelinteractionsoccurringinthiscomplexzone.Recenttechnologyde-velopmentintheareasof‘omics’suchasproteomics,metabolomics,transcriptomicsandsecretomicsallowustofurtherunderpintheseinteractionsef cientlyforagriculturalbene t.Acombinationofdataanalysesobtainedfromthese‘omics’studieswillfurtherstrengthenourcapabilitytovisualizeacompletepictureofthesecomplexmulti-speciesinteractions.
DetailedgeneexpressionanalysisofAMinfectedrootsduringthedevelopmentoftheprepenetrationapparatus.
11.SeddasPMA,AriasCM,ArnouldC,vanTuinenD,GodfroyO, BenhassouHA,GouzyJ,MorandiD,DessaintF,Gianinazzi-PearsonV:Symbiosis-relatedplantgenesmodulatemolecular
responsesinanarbuscularmycorrhizalfungusduringearlyrootinteractions.MolPlant–MicrobeInteract2009,22:341-351.StudyexplainshowthesymbiosisrelatedplantgenesmodulateAMfungigeneexpressionpro lesinearlyrootinteractions.
12.BalestriniR,LanfrancoL:Fungalandplantgeneexpression
inarbuscularmycorrhzalsymbiosis.Mycorrhiza2006,16:509-524.13.Gianinazzi-PearsonV,Sejalon-DelmasN,GenreA,JeandrozS,
BonfanteP:Plantsandarbuscularmycorrhizalfungi:cuesandcommunicationintheearlystepsofsymbioticinteractions.AdvBotRes2007,46:181-219.14.KrajinskiF,FrenzelA:TowardstheelucidationofAM-speci c
transcriptioninMedicagotruncatula.Phytochemistry2007,68:75-81.15.RequenaN,SerranoE,OconA,BreuningerM:Plantsignalsand fungalperceptionduringarbuscularmycorrhiza
establishment.Phytochemistry2007,68:33-40.
Comprehensivereviewabouthowtheplantroot-secretedcompoundsareinvolvedinAMfungalinitiationandestablishment.
16.SteinkellnerS,LendzemoV,LangerI,SchweigerP,KhaosaadT, ToussaintJ-P,VierheiligH:Flavonoidsandstrigolactonesin
rootexudatesassignalsinsymbioticandpathogenicplant–fungusinteractions.Molecules2007,12:1290-1306.
Comprehensivereviewabouttheroleof avonoidsandstrigolactonesassignalmoleculesforsymbioticandpathogenicinteractions.
17.ScervinoJM,PonceMA,Erra-BasselsR,VierheiligH,OcampoJA,
GodeasA:GlycosidationofapigeninresultsinalossofactivityondifferentgrowthparametersofarbuscularmycorrhizalfungifromthegenusGlomusandGigaspora.SoilBiolBiochem2006,38:2919-2922.18.ScervinoJM,PonceMA,Erra-BasselsR,VierheiligH,OcampoJA,
GodeasA:Flavonoidsexhibitfungalspeciesandgenus
speci ceffectsonthepresymbioticgrowthofGigasporaandGlomus.MycolRes2005,109:789-794.19.AkiyamaK,MatsuzakiK,HayashiY:Plantsesquiterpenes inducehyphalbranchinginarbuscularmycorrhizalfungi.
Nature2005,435:824-827.
FirststudydemonstratedexperimentallythatstrigolactonesinducehyphalbranchinginAMfungi.
20.SbranaCM,GiovannettiM:Chemotropisminthearbuscular
mycorrhizalfungusGlomusmosseae.Mycorrhiza2005,15:539-545.21.YoneyamaK,XieX,KusumotoD,SekimotoH,SugimotoY,
TakeuchiY,YoneyamaK:Nitrogende ciencywewellasphophorusde ciencyinsorghumpromotestheproductionandexudationof5-deoxystrigol,thehostrecognitionsignalforarbuscularmycorrhizalfungiandrootparasites.Planta2007,227:125-132.22.NavazioL,MoscatielloR,GenreA,NoveroM,BaldanB, BonfanteP,MarianiP:Adiffusiblesignalfromarbuscular
mycorrhizalfungielicitsatransientcytosoliccalcium
elevationinhostplantcells.PlantPhysiol2007,144:673-681.Provides rstexperimentalproofthatcytosoliccalciumelevationinthehostcellsbydiffusibleAMfactors.
23.TolijanderJF,LindahlBD,PaulLR,ElfstrandM,FinlayRD:
In uenceofarbuscularmycorrhizalmycelialexudatesonsoilbacterialgrowthandcommunitystructure.FEMSMicrobiolEcol2007,61:295-304.24.HartmannA,SchmidM,vanTuinenD,BergG:Plant-driven
selectionofmicrobes.PlantSoil2009,321:235-257.25.LittleAE,RobinsonCJ,PetersonCB,RaffaKF,HandelsmannJ: Rulesofengagement:interspeciesinteractionsthatregulate
microbialcommunities.AnnuRevMicrobiol2008,62:375-401.Discussesworkingde nitionsofcentralecologicalthemesandalsoreviewsthestatusattheinterfacebetweenevolutionaryandecologicalstudy.
http://www.77cn.com.cn
Acknowledgements
TheworkinJMVlaboratorywassupportedbytheNationalSciencefoundation(MCB-0542642)andUSdepartmentofDefenseSERDP(SI1388)http://www.77cn.com.cnstly,weapologizetothoseauthorswhoseworkcouldnotbediscussedbecauseofspacelimitations.
Referencesandrecommendedreading
Papersofparticularinterest,publishedwithintheperiodofreview,havebeenhighlightedas: ofspecialinterest
ofoutstandinginterest1.
HughesDT,SperandioV:Inter-kingdomsignaling:
communicationbetweenbacteriaandtheirhosts.NatRevMicrobiol2008,6:111-120.
DessauxY,HinsingerP,LamanceauP:Forewardofthespecialissue‘ThirdRhizosphereConference’.Agronomie2003,23:373.
BadriDV,VivancoJM:Regulationandfunctionofrootexudates.PlantCellEnviron2009,32:666-681.
LambersH,MougelC,JaillarrdB,HinsingerP:Plant–microbe–soilinteractionsintherhizosphere:anevolutionaryperspective.PlantSoil2009,321:83-115.
PrithivirajB,PaschkeM,VivancoJM:Rootcommunication:theroleofrootexudates.EncyclPlantCropSci2007,1(1):1-4.RemyW,TaylorTN,HassH,KerpH:Fourhundred-million-year-oldvesiculararbuscularmycorrhizae.ProcNatlAcadSciUSA1994,91:11841-11843.
BonfanteP,AncaI-A:Plants,mycorrhizalfungiandbacteria:anetworkofinteractions.AnnuRevMicrobiol2009,63:363-383.WangB,QuiY-L:Phylogeneticdistributionandevolutionofmycorrhizasinlandplants.Mycorrhiza2006,16:299-363.
2.
3.4.
5.6.
7.8.9.
LiuJ,Maldonado-MendozaI,Lopez-MeyerM,CheungF,
TownCD,HarrisonMJ:Arbuscularmycorrhizalsymbiosisisaccompaniedbylocalandsystemicalterationsingene
expressionanincreaseindiseaseresistanceintheshoots.PlantJ2007,50:529-544.
StudydemonstratedthatAMfungiinducediseaseresistance.10.SicilianoV,GenreA,BalestriniR,CappellazzoG,deWitPJGM, BonfanteP:Transcriptomeanalysisofarbuscularmycorrhizal
rootsduringdevelopmentoftheprepenetrationapparatus.PlantPhysiol2007,144:1455-1466.
CurrentOpinioninBiotechnology2009,20:642–650
根际 环境
Rhizospherechemicaldialogues:plant–microbeinteractionsBadrietal.649
26.FaureD,VereeckeD,LeveauJHJ:Molecularcommunicationin
therhizosphere.PlantSoil2009,321:279-303.27.ReddyPM,Rendon-AnayaM,delosDoloresSotodelRioM:
Flavonoidsassignalingmoleculesandregulatorsofrootnoduledevelopment.DynamicSoilDynPlant2007,1:83-94.28.D’HaezeW,HolstersM:Surfacepolysaccharidesenable
bacteriatoevadeplantimmunity.TrendMicrobiol2005,12:555-561.29.CooperJE:Earlyinteractionsbetweenlegumesandrhizobia: disclosingcomplexityinamoleculardialogue.JApplMicrobiol
2007,103:1355-1365.
Offerscomprehensivereviewaboutthemoleculardialoguesbetweenlegumesandrhizobiainteraction.
30.CaiT,CaiW,ZhangJ,ZhengH,TsouAM,XiaoL,ZhongZ,ZhuJ: Hostlegume-exudedantimetabolitesoptimizethesymbiotic
rhizosphere.MolMicrobiol2009doi:10.1111/j.1365-2958.2009.06790.x.
Firststudydemonstratedthatplant-releasedantimetabolitesplayingaroleinselectingtherhizobiainthecomplexrhizosphereenvironment.31.AgriosGN:PlantPathology.5thed..NewYork:Elsevier;2005.32.GeninS,BoucherC:Lessonslearnedfromthegenomeanalysis
ofRalstoniasolanacearum.AnnuRevPhytopathol2004,42:107-134.33.NesterE,GordonMP,KerrA:Agrobacteriumtumefaciens:From
PlantPathologytoBiotechnologySt.Paul,MN:APSPress;2005.34.HirschA,BauerWD,BirdDM,CulimoreJ,TylerB,YoderJI:
Molecularsignalsandreceptors:controllingrhizosphereinteractionsbetweenplantsandotherorganisms.Ecology2003,84:858-868.35.MorrisseyJP,OsbournAE:Fungalresistancetoplant
antibioticsasamechanismofpathogenesis.MicrobiolMolBiolRev1999,63:708-724.36.BednarekP,SchneiderB,SvatosA,OldhamNJ,HahlbrockK:
Structuralcomplexity,differentialresponsetoinfectionandtissuespeci cityofindolicandphenylpropanoidsecondarymetabolisminArabidopsisroots.PlantPhysiol2005,138:1058-1070.37.BadriDV,Loyola-VargasVM,DuJ,StermitzFR,BroecklingCD,
Iglesias-AndreuL,VivancoJM:Transcriptomeanalysisof
Arabidopsisrootstreatedwithsignalingcompounds:afocusonsignaltransduction,metabolicregulationandsecretion.NewPhythol2008,179:209-223.38.SesmaA,OsbournAE:Thericeleafblastpathogenundergoes developmentalprocessestypicalofroot-infectingfungi.
Nature2004,43:582-586.
Firststudydemonstratedthatriceblastpathogencouldalsoinfectroots.39.RaaijmakersJM,PaulitzTC,SteinbergC,AlabouvetteC,Moenne- LoccozY:Therhizosphere:aplaygroundandbattle eldfor
soilbornepathogensandbene cialmicroorganisms.PlantSoil2009,321:341-361.
Acomprehensivereviewabouttheinteractionsbetweensoilbornepatho-gensandbene cialmicrobesintherhizosphere
40.PerryJN,MOensM:PlantNematology.Cambridge,MA:CABI;
2006.41.BirdDM:Signalingbetweennematodesandplants.CurrOpin
PlantBiol2004,7:372-376.42.WilliamsonVM,GleasonCA:Plant–nematodeinteractions.Curr
OpinPlantBiol2003,6:327-333.43.JonesPW,TylkaGL,PerryRN:Hatching.InThePhysiologyand
BiochemistryofFree-LivingandPlant–ParasiticNematodes.EditedbyPerryRN,WrightDJ.Wallingford,UK:CABI;1998:181-212.44.HoriuchiJ,PrithivirajB,BaisHP,KimballBA,VivancoJM:Soil nematodesmediatepositiveinteractionsbetweenlegume
plantsandrhizobiumbacteria.Planta2005,222:848-857.
Firststudydemonstratedthatnematodesactasvectorstocarryrhizo-biumtohostlegumeforef cientnitrogen http://www.77cn.com.cn
45.deMeutterJ,TytgatT,WittersE,GheysenG,vanOnckelenH, GheysenG:Identi cationofcytokininsproducedby
theplantparasiticnematodesHeteroderaschachtiandMeloidogyneincognita.MolPlantPathol2003,4:271-277.
Modernanalyticalmethodscon rmtheestablishmentofspeci cche-micalidentityofRKN-associatedcytokinin.
46.KaplanF,BadriDV,ZachariahC,SrinivasanJ,AdjerdiniR, SandovalFJ,RojeS,LevineLH,ZhangF,RobinetteSLetal.:
BacterialattractionandquorumsensinginhibitioninCaenorhabditiselegansexudates.JChemEcol2009doi:10.1007/s10886-009-9670-0.
Studyofferscomprehensiveanalysisofnematodesecretionsandtheirinteractionswithsoil-inhabitingbacteria.
47.HenseBA,KuttlerC,MullerJ,RothballerM,HartmannAH,KreftJ-U:Doesef ciencysensingunifydiffusionandquorum-sensing?NatRevMicrobiol2007,5:230-239.48.DuanK,SuretteMG:Environmentalregulationof PseudomonasaeruginosaPAO1LasandRhlquorum-sensing
systems.JBacteriol2007,189:4827-4836.
Studyshowedthatenvironmentalfactorsover-ridedensitydependenceinPseudomonasaeruginosaquorumsensing.
49.WilliamsP:Quorum-sensing,communicationandcross-kingdomsignalinginthebacterialworld.Microbiology2007,153:3923-3938.50.vonBodmanSB,BauerWD,CoplinDL:Quorumsensingin
plant–pathogenicbacteria.AnnuRevPhytopathol2003,41:455-482.51.PiperKR,FarrandSK:Quorumsensingbutnotautoinductionof
TiplasmidconjugaltransferrequirescontrolbytheopineregulonandtheantiactivatorTraM.JBacteriol2000,182:1080-1088.52.WhiteCE,FinanTM:QuorumquenchinginAgrobacteria
tumefaciens:chanceornecessity?JBacteriol2009,191:1123-1125.53.ZhangHB,WangC,ZhangLH:Thequormonedegradation
systemofAgrobacteriumtumefaciensisregulatedby
starvationsignalandstressalarmone(p)ppGpp.MolMicrobiol2004,52:1389-1401.54.ZhangHB,WangC,ZhangLH:Geneticcontrolofquorum-sensingsignalturnoverinAgrobacteriumtumefaciens.ProcNatlAcadSciUSA2002,99:4638-4643.55.YuanZ-C,EdlindMP,LiuP,SaenkhamP,BantaLM,WiseAA,
RonzoneE,BinnsAN,KerrK,NesterEW:ProcNatlAcadSciUSA2007,104:11790-11795.56.KhanSR,FarrandSK:TheBlcC(AttM)lactonaseof Agrobacteriumtumefaciensdoesnotquenchthequorum
sensingsystemthatregulatesTiplasmidconjugativetransfer.JBacteriol2008,191:1320-1329.
StudydemonstratedthatlactonaseexpressionfromAgrobacteriumtumefaciensdoesnotquenchQSinplanta.
57.GurichN,GonzalezJE:RoleofQuorum-sensingin
Sinorhizobiummeliloti-alfalfasymbiosis.JBacteriol2009,191:4372-4382.58.ZhengH,ZhongZ,LaiX,ChenW-X,LiS,ZhuJ:ALuxR/LuxI-type
quorum-sensingsysteminplantbacterium,Mesorhizobiumtianshanense,controlssymbioticnodulations.JBacteriol2006,188:1943-1949.59.Sanchez-ContrerasM,BauerWD,GaoM,RobinsonJB,
DownieJA:Quorum-sensingregulationinRhizobiumanditsroleinsymbioticinteractionswithlegumes.PhilTransRSocB2007,362:1149-1163.60.TeplitskiM,RobinsonJB,BauerWD:Plantssecretesubstances
thatmimicbacterialN-acylhomoserinelactonesignal
activitiesandaffectpopulationdensity-dependantbehaviorsinassociatedbacteria.MolPlant–MicrobeInteract2000,13:637-648.61.GaoM,TeplitskiM,RobinsonJB,BauerWD:Productionof
substancesbyMedicagotruncatulathataffectbacterial
quorum-sensing.MolPlant–MicrobeInteract2003,16:827-834.
CurrentOpinioninBiotechnology2009,20:642–650
根际 环境
650Chemicalbiotechnology
62.KeshevanND,ChowhdharyPK,HainesDC,GonzalezJE: L-CanavaninemadebyMedicagosativainterfereswith
quorumsensinginSinorhizobiummeliloti.JBacteriol2005,187:8427-8436.
FirststudyidentifyingaQSinhibitorycompoundproducedbyplant.63.MathesiusU,MuldersS,GaoM,TeplitskiM,Caetano-AnollesG,
RolfeBG,BauerWD:Extensiveandspeci cresponsesofaeukaryotetobacterialquorum-sensingsignals.ProcNatlAcadSciUSA2003,100:1444-1449.64.MastrettaC:Endophyticbacteriaandtheirpotential
applicationtoimprovethephytoremediationof
contaminatedenvironments.BiotechnolGeneticEngRev2006,23:175-207.65.DotySL:Enhancingphytoremediationthroughthe
useoftransgenicsandendophytes.NewPhytol2008,179:318-333.66.UlrichK,UlrichA,EwaldD:Diversityofendophyticbacterial
communitiesinpoplargrownunder eldconditions.FEMSMicrobiolEcol2008,63:169-180.67.TaghaviS,GarafolaC,MonchyS,NewmanL,HoffmanA,
WeyensN,BaracT,VangronsveldJ,vanderLelieD:Genomesurveyandcharacterizationofendophyticbacteriaexhibitingabene cialeffectongrowthanddevelopmentofpoplar.ApplEnvironMicrobiol2009,75:748-757.68.BaracT,TaghaviS,BorremansB,ProvoostA,OeyenL,
ColpaertJV,VangronsveldJ,vanderLelieD:Engineeredendophyticbacteriaimprovephytoremediationofwater-soluble,volatile,organicpollutants.NatBiotechnol2004,22:583-588.69.TaghaviS,BaracT,GreenbergB,BorremansB,VangronsveldJ,
vanderLelieD:Horizontalgenetransfertoendogenous
endophyticbacteriafrompoplarimprovesphytoremediationoftoluene.ApplEnvironMicrobiol2005,71:8500-8505.70.BrimecombeMJ,DeLeijFAAM,LynchJM:Rhizodepositionand
microbialpopulations.InTheRhizosphere,BiochemistryandOrganicSubstancesattheSoil–PlantInterface.EditedbyPintonZVR,NannipiereN.BocaRaton,USA:CRCPress;2007:73-109.71.SprentJI,DefariaSM:Mechanismsofinfectionof
plantsbynitrogen- xingorganisms.PlantSoil1988,110:157-165.72.JamesEK:Nitrogen xationinendophyticandassociative
symbiosis.FieldCropsRes2000,65:197-209.73.AsgharHN,ZahirZA,ArshadM:Screeningrhizobacteriafor
improvingthegrowth,yield,andoilcontentofcanola(BrassicanapusL.).AustrJAgriRes2004,55:187-194.74.BentE,TuzunS,ChanwayCP,EnebakS:Alterationsinplant
growthandroothormonelevelsoflodgepolepinesinoculatedwithrhizobacteria.CanJMicrobiol2001,47:793-800.75.deSalamoneIEG,HynesRK,NelsonLM:Cytokininproduction
byplantgrowthpromotingrhizobacteriaandselectedmutants.CanJMicrobiol2001,47:404-411.76.BelimovAA,HontzeasN,SafronovaVI,DemchinskayaSV,
PiluzzaG,BullittaS,GlickBR:Cadmium-tolerantplantgrowth-promotingbacteriaassociatedwiththerootsofIndian
mustard(BrassicajunceaL.Czern.).SoilBiolBiochem2005,37:241-250.77.Dell’AmicoE,CavalcaL,AndreoniV:Analysisofrhizobacterial
communitiesinperennialGraminaceaefrompollutedwatermeadowsoil,andscreeningofmetal-resistant,potentiallyplantgrowth-promotingbacteria.FEMSMicrobiolEcol2005,52:153-162.78.GoddijnO,SmeekensS:Sensingtrehalosebiosynthesisin
plants.PlantJ1998,14:143-146.
79.GargAK,KimJu-Kon,OwensTG,RanwalaAP,ChoiYD,
KochianLV,WuRJ:Trehaloseaccumulationinriceplantsconfershightolerancelevelstodifferentabioticstresses.ProcNatlAcadSciUSA2002,99:15898-15903.80.O’SullivanDJ,O’GaraF:Traitsof uorescentPseudomonas
spp.involvedinsuppressionofplant–rootpathogens.MicrobiolRev1992,56:662-676.81.Ramos-GonzalezMI,CamposMJ,RamosJL:Analysisof
PseudomonasputidaKT2440geneexpressioninthemaizerhizosphere:invitroexpressiontechnologycaptureandidenti cationofroot-activatedpromoters.JBacteriol2005,187:4033-4041.82.KrechelA,FaupelA,HallmannJ,UlrichA,BergG:Potato-associatedbacteriaandtheirantagonisticpotentialtowardsplant–pathogenicfungiandtheplant–parasiticnematodeMeloidogyneincognita(Kofoid&White)Chitwood.CanJMicrobiol2002,48:772-786.83.BertagnolliBL,DalSoglioFK,SinclairJB:Extracellularenzyme
pro lesofthefungalpathogenRhizoctoniasolaniisolate2B-12andoftwoantagonists,BacillusmegateriumstrainB153-2-2andTrichodermaharzianumisolateTh008.1.
Possiblecorrelationswithinhibitionofgrowthandbiocontrol.PhysiolMolPlantPathol1996,48:145-160.84.KloepperJW,RyuCM,ZhangSA:Inducedsystemicresistance
andpromotionofplantgrowthbyBacillusspp.Phytopathology2004,94:1259-1266.85.RyanRP,MonchyS,CardinaleM,TaghaviS,CrossmanL,
AvisonMB,BergG,vanderLelieD,DowJM:TheversatilityandadaptationofbacteriafromthegenusStenotrophomonas.NatRevMicrobiol2009,7:514-525.86.WenzelWW:Rhizosphereprocessesandmanagementin
plant-assistedbioremediation(phytoremediation)ofsoils.PlantSoil2009,321:385-408.87.DzantorEK:Phytoremediation:thestateofrhizosphere
‘engineering’foracceleratedrhizodegradationofxenobioticcontaminants.JChemTechnolBiotechnol2009,82:228-232.88.RyanPR,DessauxY,ThomashowLS,WellerDM:Rhizosphere
engineeringandmanagementforsustainableagriculture.PlantSoil2009,321:363-383.89.BaisHP,WeirTL,PerryLG,GilroyS,VivancoJM:Theroleofroot
exudatesinrhizosphereinteractionswithplantsandotherorganisms.AnnuRevPlantBiol2006,57:233-266.90.BaisHP,BroecklingCD,VivancoJM:Rootexudatesmodulate
plant–microbeinteractionsintherhizosphere.InSecondarymetabolitesinSoilEcology,SoilBiology,vol.14.EditedbyKarlovskyP.Berlin,Heidelberg,Germany:Springer-Verlag;2008:241-252.91.RudrappaT,CzymmekKJ,ParePW,BaisHP:Root-secretedmalicacidrecruitsbene cialsoilbacteria.PlantPhysiol2008,148:1547-1556.92.BoumeesterHJ,RouxC,Lopez-RaezJA,BecardG:Rhizosphere
communicationofplants,parasiticplantsandAMfungi.TrendsPlantSci2007,12:224-230.93.RasmannS,KollnerTG,DegenhardtJ,HiltpoldI,ToepferS,
KuhlmannU,GershenzonJ,TurlingsTCJ:Recruitmentofentomopathogenicnematodesbyinsect-damagedmaizeroots.Nature2005,434:732-737.94.De-la-PenaC,LeiZ,WatsonBS,SumnerLW,VivancoJM:
Root-microbecommunicationthroughproteinsecretion.JBiolChem2008,283:25247-25255.95.MathesiusU:Comparativeproteomicstudiesofroot-microbe interactions.JProteomics2009,72:353-366.
Comprehensivereviewabouttheproteomicstudiesinroot-microbeinteractions.
CurrentOpinioninBiotechnology2009,20:642–http://www.77cn.com.cn
正在阅读:
Rhizosphere chemical dialogues plant–microbe interactions08-29
关于十九大的相关知识02-22
标准化物探考试题库02-29
五一祝福语02-24
小学国旗下演讲:成长需要自信02-22
农村基层党建工作经验做法“二十条”范文02-22
2018年小学党支部学习参考资料02-22
规章制度05-01
- 1Unit Operations of Chemical Engineering(化工单元操作)
- 2A Direct Load Control Model for Virtual Power Plant Manageme
- 3Plant Simulation 物流综合实验报告
- 4Plant Simulation 物流综合实验报告
- 5AutoCAD Plant 3D界面说明
- 6Plant Cell-2014-Song-263-79
- 7Chemical Imaging of Spatial Heterogeneities in Catalytic Solids at Different Length and Time Scales
- 8Modeling premixed combustion-acoustic wave interactions---A
- 9The Bosonic Sector of the Electroweak Interactions, Status and Tests at Present and Future
- 10Can lepton flavor violating interactions explain the atmospheric neutrino problem
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- interactions
- Rhizosphere
- dialogues
- chemical
- microbe
- plant
- 2018年南京师范大学法学院824中外法制史之外国法制史考研仿真模拟五套题
- 专题五 资本主义的形成发展及其历史进程
- 2009年英语高考(重庆卷)含答案
- 案例二:国有企业改制上市
- 第五章 城市道路横断面设计
- 新标准大学英语综合教程二 unit1 课后习题答案
- 高中信息技术学业水平测试操作题及主要步骤
- 四川省直事业单位招聘考试综合知识
- 预制T梁外观质量问题及控制措施分析
- 《组织行为学》第二次作业答案
- 基础体温测定
- 2014年学而思入学测试题
- 重点区域大气污染联防联控“十二五规划(征求意见稿)
- 电机设计禁忌手册
- 高中家庭经济困难学生情况登记表
- 玩使命召唤学雅思口语:COD4 COD6中英双语名人名言!
- 全新版大学英语综合教程3_第二版_课后练习答案
- 高等数学复旦大学出版社习题答案十三
- 飞行器设计专业英文介绍_Flight vehicle design
- 中国古代寓言故事精选