商业银行数据治理与应用 —以光大银行为例

更新时间:2023-12-24 00:29:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【商业银行数据治理与应用 —以光大银行为例】

发布时间:1月13日 14:17

近来,国内外经济形势异常复杂,为促进银行业健康发展,有效防范风险,中国银监会积极推进国内银行逐步实施巴塞尔新资本协议(Basel II 和Basel

III),并进一步提出了“CARPALS(腕骨)”监管原则,旨在推动国内各商业银行充分利用风险管理技术,提升风险管理内控水平,全面具备风险信息化管理能力,及时进行风险预警,调整经营策略,主动适应市场变化。 数据治理体系概述

具备高度信息化管理能力,是国内银行向“以客户为中心”转型的要求,是银行业务决策、客户营销、内控管理向精细化发展的要求,是发挥风险管理技术应用价值、共享全行风险管理经验、全面提升风险管理能力的要求。随着信息科技的日益发展,银行多年来为实现业务自动化处理建设了庞杂的IT应用系统,存储在这些应用系统中的海量数据为银行实现信息化管理提供了坚实的基础。比如非零售信贷风险中的违约率计算、财务分析等,零售信用风险中的催收打分卡、申请打分卡等,市场风险计量、操作风险事件识别等,高级风险技术中的经济资本计量、风险调整后资本收益率(RAROC)计算等相关指标考量,都需要银行对客户、客户集团、交易、合同、市场信息、产品、财务甚至IT系统操作信息等3~7年的数据积累以及整合与应用。如何为精细化管理提供高效、高质的数据支持,数据治理由此成为商业银行面临的重要课题。

商业银行数据治理的内容,主要包括建立数据治理机制、数据管理制度及流程,以及数据标准制定等。数据治理的最终目的是提升数据质量,通过有效的数据整合、数据应用与数据服务使企业真正具备业务信息化管理能力。其中数据应用与数据服务包括面向财务管理、风险管理、绩效考核、客户营销四个方面的支持。

构建全面的数据治理体系,需从组织架构、管理流程和操作规范、IT应用技术、绩效考核支持四个纬度,对企业数据模型、数据架构(包括数据仓库、数据应用)、数据管理(包括数据质量、数据标准、元数据管理、数据安全等)、数据生命周期等各方面进行全面的梳理、建设并且持续改进。可以简单概括为:明确数据治理主体、建立数据质量标准、加强数据生命周期的全过程管理。

银行数据治理实践探索 数据治理历程与规划

自2005年始,光大银行用六年完成了企业级基础数据平台(即数据仓库EDW)的建设,并整合了核心系统、对公信贷系统(CECM)、个贷系统、网银系统、国际结算系统等41个源业务系统数据,在有效整合全行数据的同时完成了银监会非现场稽核报表(1104)、人行大集中、信用卡BI、电子银行BI、信用风险集市、风险加权资产(RWA)、资产负债等19个数据集市和应用的建设。

伴随数据仓库和数据应用的建设,光大银行制定了数据标准的五年规划并展开实施,秉承定义、执行、监督检查三者并重的原则,先后完成了客户、产品、渠道、交易、关键统计指标、内部机构以及风险主题数据标准的定义。2009年基于客户数标准,推进全行对私统一客户管理系统(ECIF)的建设。2010年基于风险新资本协议相关数据标准推进了RWA数据集市建设。2011年完成了全行渠道类型数据标准在各交易系统中的落地改造。鉴于数据标准实施的难度,未来光大将持续落实数据标准实施规划,做好数据标准系统落地以及监督评价工作,并结合数据质量管理、数据应用与数据服务的要求准备下一个实施周期的规划。 数据治理组织与规范

为保障全行数据治理相关工作推进,光大银行从下到上由几个层面的组织构成:第一层

面由数据使用相关各业务部门组成,它们负责本条线的数据标准制定和数据质量管理,例如风险管理部设立了数据管理岗,专门负责数据管理相关工作;第二层面是由计财部、科技部组成,它们是银行IT战略委员会下设数据标准小组的牵头管理部门,负责数据标准实施的管理和组织推动,以及数据质量的综合管理;第三层面是审计部,负责数据管理、数据应用、数据服务过程的审计、监督、评价;更高层面是董事会和行领导的关注,审计委员会和风险管理委员会的明确了相关职责。

随着数据仓库以及数据标准的实施,光大银行逐步制定了数据治理相关管理规范,最终落实在数据标准和数据质量的绩效考核指标上。只有合理制定数据治理相关考核指标并切实推进到业务基层,才有可能从数据产生开始实现对数据的真正治理。例如光大银行已经制定的风险数据补录质量考核指标、对公客户信息准确性考核指标等。 数据治理应用与管理

一般包括数据仓库、数据应用、数据服务、数据管理(包括企业元数据管理、数据标准、数据质量管理等)等技术平台的建设和应用。光大银行在建设数据治理相关应用过程中,充分结合数据标准的落地,使数据在整合、应用以及管理过程中实现统一标准管理(见图)。 数据治理助力风险管理

数据治理机制使风险管理有数据可依,也使高级风险技术发挥真正价值。首先,风险数据集市支持RWA的整合计算。风险数据集市是建立在数据仓库基础上面向全行风险管理主题的数据集合,是全行风险管理数据分析、业务决策的重要数据基础。同时,整合数据支持风险偏好评估管理。银行风险偏好计算评估是内部资本充足评估流程(ICAAP)的重要组成部分,风险管理通过风险限额、准入管理等方式对业务发展进行控制和调节,资本管理通过经济资本分配以及绩效考核等手段在各业务线、产品对资源进行最优配置。数据仓库以及风险数据集市为风险偏好计算评估提供了高效、准确、整合的信用风险、市场风险、操作风险以及计划财务的数据支持。 关于数据治理的思考

如何评估银行的数据治理能力,目前可以通过信息导向架构进行初步衡量。该架构包括数据文化、数据管理能力、数据应用建设能力三个方面,其中数据文化是衡量银行从组织层面是否具备信息化管理能力,也是数据治理体系实施是否成熟、是否成功的重要衡量标准。 培养业务管理信息化

银行高层管理人员应适应业务精细化管理的要求,培养依靠数据信息进行业务管理决策的意识和习惯;中层业务经理要养成用数据信息分析业务、分析客户,依靠数据信息进行业务创新思考的习惯,并具备基本数据分析的能力;基层业务人员要培养信息收集的习惯,应具备在日常业务操作中保证收集信息的数据质量和数据安全的意识;同时,人力资源和绩效考核部门需通过制定信息管理培训计划以及涉及信息管理绩效考核指标与相关奖励机制(如信息收集、数据质量提高等都需要通过绩效和奖励来激励一线员工执行),帮助和促进信息化管理文化在银行各级机构层面的落实。 建立数据治理长效机制

管理层应对数据治理予以高度重视,在梳理并完善企业数据体系架构的基础上制订长效机制,确定适合银行文化、高效的数据治理管理组织架构。采用虚拟组织与实体部门相结合的管理模式,有利于数据治理过程中的横向协调和纵向有效落实;定期重检数据治理相关制度、流程、规范;规划与评价并重,合理规划是复杂的数据治理过程有序进行的必要保证,定期评价回顾规划落实,根据评价结果及时调整规划策略是数据治理真正发挥价值效能的必要手段。

坚持信息科技建设创新

将先进的科学技术快速应用于数据管理与数据服务中。例如,研究并建设集数据服务、

数据管理、数据分析共享社区为一体的开放式数据服务平台,为实现全行业务信息化管理提供应用支持。

基于商业银行安全稳定运营、风险管理、业务及管理创新、合规的多重需要,数据治理已经成为国内银行的必修课,同时,“数据治理”之路也必将是一条长期艰苦的道路。由于历史原因,目前国内银行的数据治理多在技术层面,将分散在各个业务及管理环节的已有数据进行清洗、整合、应用,而对更深层次的数据治理,如建立数据模型、设计银行数据体系还少有涉足。只有当银行的数据体系能够明确解决需要什么数据、为什么需要、如何获取、怎么应用等一系列问题时,才能真正实现基于数据基础的经营决策分析和风险管控,这也是新资本协议对数据治理的内在要求。银监会出台的《中国银行业实施新监管标准的指导意见》,着重强调了数据基础和IT系统建设的重要性,今后几年,相信国内银行会不断总结多年数据整合、数据服务、数据管理的实施经验,探索建立数据治理机制的有效方式,为银行提升信息化管理能力夯实基础。(来源:银行家)

本文来源:https://www.bwwdw.com/article/e565.html

Top