数学-行程问题

更新时间:2023-10-20 19:11:02 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第七讲 行程问题(一)

教学目标:

1、比例的基本性质

2、熟练掌握比例式的恒等变形及连比问题

3、能够进行各种条件下比例的转化,有目的的转化; 4、单位“1”变化的比例问题 5、方程解比例应用题

知识点拨: 发车问题

(1)、一般间隔发车问题。用3个公式迅速作答; 汽车间距=(汽车速度+行人速度)×相遇事件时间间隔 汽车间距=(汽车速度-行人速度)×追及事件时间间隔 汽车间距=汽车速度×汽车发车时间间隔

(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。 (3) 当出现多次相遇和追及问题——柳卡

火车过桥

火车过桥问题常用方法

⑴ 火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.

⑵ 火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.

⑶ 火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.

对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行. 接送问题

根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型: (1)车速不变-班速不变-班数2个(最常见) (2)车速不变-班速不变-班数多个 (3)车速不变-班速变-班数2个 (4)车速变-班速不变-班数2个 标准解法:画图+列3个式子

1、总时间=一个队伍坐车的时间+这个队伍步行的时间; 2、班车走的总路程;

3、一个队伍步行的时间=班车同时出发后回来接它的时间。

1

时钟问题:

时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。 时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

流水行船问题中的相遇与追及

①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出: 甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速 ②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关. 甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速 也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.

说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.

例题精讲:

模块一 发车问题

【例 1】 某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车

开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?

【解析】 这个题可以简单的找规律求解

时间 车辆 4分钟 9辆 6分钟 10辆 8分钟 9辆 12分钟 9辆 16分钟 8辆 18分钟 9辆 20分钟 8辆 24分钟 8辆

由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。

【例 2】 某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆

电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?

【解析】 设电车的速度为每分钟x米.人的速度为每小时4.5千米,相当于每分钟75米.根据题意可列方程如下:

?x?75??7.2??x?75??12,解得x?300,即电车的速度为每分钟300米,相当于每小时18千米.相同方向

的两辆电车之间的距离为:?300?75??12?2700(米),所以电车之间的时间间隔为:2700?300?9(分钟).

【巩固】 某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆

公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?

【解析】 这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。是人与电车的相遇与追及问题,他们的路

程和(差)即为相邻两车间距离,设两车之间相距S,

x50?x2根据公式得S?(V人?V车)?10min,??7,那么6x?(6?t)y?3x?(3?t)y,解得x?(3?t)y,所

12.553

2

以发车间隔T =2.5x?2.5y?3x?(3?t)y

【巩固】 某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来.假设两个起点站

的发车间隔是相同的,求这个发车间隔.

【解析】 设电车的速度为a,行人的速度为b,因为每辆电车之间的距离为定值,设为l.由电车能在12分钟追上行

1x?(2t?1)y;人l的距离知, 由电车能在4分钟能与行人共同走过l的距离知, ,所以有l=12(a-b)=4(a+b),

1216有a=2b,即电车的速度是行人步行速度的2倍。那么l=4(a+b)=6a,则发车间隔上:50?(1?)?54.即

1211发车间隔为6分钟.

【例 3】 一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超

过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?

【解析】 要求汽车的发车时间间隔,只要求出汽车的速度和相邻两汽车之间的距离就可以了,但题目没有直接告诉我

们这两个条件,如何求出这两个量呢?

由题可知:相邻两汽车之间的距离(以下简称间隔距离)是不变的,当一辆公共汽车超过步行人时,紧接着下一辆公共汽车与步行人之间的距离就是间隔距离,每隔6分钟就有一辆汽车超过步行人,

这就是说:当一辆汽车超过步行人时,下一辆汽车要用6分钟才能追上步行人,汽车与行人的路程差就是相邻两汽车的间隔距离。对于骑车人可作同样的分析.

因此,如果我们把汽车的速度记作V汽,骑车人的速度为V自,步行人的速度为V人(单位都是米/分钟),则:间隔距离=(V汽-V人)×6(米),间隔距离=(V汽-V自)×10(米),V自=3V人。综合上面的三个式子,可得:V汽=6V人,即V人=1/6V汽,

则:间隔距离=(V汽-1/6V汽)×6=5V汽(米)

所以,汽车的发车时间间隔就等于:间隔距离÷V汽=5V汽(米)÷V汽(米/分钟)=5(分钟)。

【巩固】 从电车总站每隔一定时间开出一辆电车。甲与乙两人在一条街上沿着同一方向步行。甲每分钟步行82米,

每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。那么电车总站每隔多少分钟开出一辆电车?

【解析】 这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。甲与电车属于相遇问题,他们的路程和即

16655为相邻两车间距离,根据公式得54,类似可得(12?10)?60?54?65,那么65,即,解得54米

1211111111/分,因此发车间隔为9020÷820=11分钟。

【例 4】 甲城的车站总是以20分钟的时间间隔向乙城发车,甲乙两城之间既有平路又有上坡和下坡,车辆(包括自

行车)上坡和下坡的速度分别是平路上的80%和120%,有一名学生从乙城骑车去甲城,已知该学生平路上的骑车速度是汽车在平路上速度的四分之一,那么这位学生骑车的学生在平路、上坡、下坡时每隔多少分钟遇到一辆汽车?

【解析】 先看平路上的情况,汽车每分钟行驶汽车平路上汽车间隔的1/20,那么每分钟自行车在平路上行驶汽车平路

上间隔的1/80,所以在平路上自行车与汽车每分钟合走汽车平路上间隔的1/20+1/80=1/16,所以该学生每隔16分钟遇到一辆汽车,对于上坡、下坡的情况同样用这种方法考虑,三种情况中该学生都是每隔16分钟遇到一辆汽车.

【例 5】 甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,

相向而行.每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车.已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了 分钟.

【解析】 由题意可知,两辆电车之间的距离

10电车行8分钟的路程(每辆电车都隔4分钟遇到迎面开来的一辆电车) 10电车行5分钟的路程1小张行5分钟的路程 24电车行6分钟的路程72小王行6分钟的路程

由此可得,小张速度是电车速度的10,小王速度是电车速度的12,小张与小王的速度和是电车速度的10,所以他们合走完全程所用的时间为电车行驶全程所用时间的12,即53分钟,所以小张与小王在途中相遇时他们已行走了60分钟.

3

【例 6】 小峰骑自行车去小宝家聚会,一路上小峰注意到,每隔9分钟就有一辆公交车从后方超越小峰,小峰骑车到

半路,车坏了,小峰只好打的去小宝家,这时小峰又发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度是小峰骑车速度的5倍,那么如果公交车的发车时间间隔和行驶速度固定的话,公交车的发车时间间隔为多少分钟?

【解析】 间隔距离=(公交速度-骑车速度)×9分钟;间隔距离=(出租车速度-公交速度)×9分钟所以,公交速度-骑车速度=出租车速度-公交速度;公交速度=(骑车速度+出租车速度)/2=3×骑车速度.由此可知,间隔距

离=(公交速度-骑车速度)×9分钟=2×骑车速度×9分钟=3×骑车速度×6分钟=公交速度×6分钟. 所以公交车站每隔6分钟发一辆公交车.

【例 7】 某人乘坐观光游船沿顺流方向从A港到B港。发现每隔40分钟就有一艘货船从后面追上游船,每隔20分

钟就会有一艘货船迎面开过,已知A、B两港间货船的发船间隔时间相同,且船在净水中的速度相同,均是水速的7倍,那么货船发出的时间间隔是__________分钟。

【解析】 由于间隔时间相同,设顺水两货船之间的距离为“1”,逆水两货船之间的距离为(7-1)÷(7+1)=3/4。

所以,货船顺水速度-游船顺水速度=1/40,即货船静水速度-游船静水速度=1/4,货船逆水速度+游船顺水速度=3/4×1/20=3/80,即货船静水速度+游船静水速度=3/80,可以求得货船静水速度是(1/40+3/80)÷2=1/32,货船顺水速度是1/32×(1+1/7)=1/28),所以货船的发出间隔时间是1÷1/28=28分钟。

模块二 火车过桥

【例 8】 小李在铁路旁边沿铁路方向的公路上散步,他散步的速度是1.5 米/秒,这时迎面开来一列火车,从

车头到车尾经过他身旁共用了 20秒.已知火车全长 390米,求火车的速度.

【答案】18米/秒

【例 9】 小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前

通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?

【解析】 火车的时速是:100÷(20-15)×60×60=72000(米/小时),车身长是:20×15=300(米)

【例 10】 列车通过 250 米的隧道用 25秒,通过 210 米长的隧道用 23秒.又知列车的前方有一辆与它同向

行驶的货车,货车车身长 320米,速度为每秒17米.列车与货车从相遇到相离需要多少秒?

【解析】 列车的速度是 (250 -210) ÷(25 -23) =20 (米/秒),列车的车身长: 20 ×25- 250 =250 (米).列

车与货车从相遇到相离的路程差为两车车长,根据路程差 ? 速度差?追击时间,可得列车与货车从相遇到相离所用时间为: (250 +320)÷ (20 -17)= 190 (秒).

【例 11】 某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时

速为72千米的列车相遇,错车而过需要几秒钟?

【解析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),

某列车的速度为:(25O-210)÷(25-23)=40÷2=20(米/秒) 某列车的车长为:20×25-250=500-250=250(米), 两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)。

4

【例 12】 李云靠窗坐在一列时速 60千米的火车里,看到一辆有 30节车厢的货车迎面驶来,当货车车头经过

窗口时,他开始计时,直到最后一节车厢驶过窗口时,所计的时间是18秒.已知货车车厢长15.8米,车厢间距1.2 米,货车车头长10米.问货车行驶的速度是多少?

【解析】 本题中从货车车头经过窗口开始计算到货车最后一节车厢驶过窗口,相当于一个相遇问题,总路程为货车的

车长.货车总长为: (15.8× 30+ 1.2× 30 +10) ÷1000 =0.52 (千米), 火车行进的距离为:60×18/3600=0.3 (千米), 货车行进的距离为: 0.52- 0.3 =0.22(千米), 货车的速度为:0.22÷18/3600=44 (千米/时).

【例 13】 铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速

度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?

【解析】 行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒。火车的车身长度既等于火车车

尾与行人的路程差,也等于火车车尾与骑车人的路程差。如果设火车的速度为x米/秒,那么火车的车身长度可表示为(x-1)×22或(x-3)×26,由此不难列出方程。

法一:设这列火车的速度是x米/秒,依题意列方程,得(x-1)×22=(x-3)×26。 解得x=14。所以火车的车身长为:(14-1)×22=286(米)。

法二:直接设火车的车长是x, 那么等量关系就在于火车的速度上。可得:x/26+3=x/22+1 这样直接也可以x=286米

法三:既然是路程相同我们同样可以利用速度和时间成反比来解决。

两次的追及时间比是:22:26=11:13,所以可得:(V车-1):(V车-3)=13:11, 可得V车=14米/秒,所以火车的车长是(14-1)×22=286(米)

【例 14】 一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向

北步行。14时10分时火车追上这位工人,15秒后离开。14时16分迎面遇到一个向南走的学生,12秒后离开这个学生。问:工人与学生将在何时相遇?

【解析】 工人速度是每小时30-0.11/(15/3600)=3.6千米

学生速度是每小时(0.11/12/3600)-30=3千米

14时16分到两人相遇需要时间(30-3.6)*6/60/(3.6+3)=0.4(小时)=24分钟 14时16分+24分=14时40分

【例 15】 同方向行驶的火车,快车每秒行30米,慢车每秒行22米。如果从辆车头对齐开始算,则行24秒后快

车超过慢车,如果从辆车尾对齐开始算,则行28秒后快车超过慢车。快车长多少米,满车长多少米?

【解析】 快车每秒行30米,慢车每秒行22米。如果从辆车头对齐开始算,则行24秒后快车超过慢车,每秒快8米,

24秒快出来的就是快车的车长192m,如果从辆车尾对齐开始算,则行28秒后快车超过慢车那么看来这个慢车比快车车长,长多少呢?长得就是快车这4秒内比慢车多跑的路程啊 4×8=32,所以慢车224.

【例 16】 两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:

从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长.

5

【解析】 首先应统一单位:甲车的速度是每秒钟36000÷3600=10(米),乙车的速度是每秒钟54000÷3600=15(米).

此题中甲车上的乘客实际上是以甲车的速度在和乙车相遇。更具体的说是和乙车的车尾相遇。路程和就是乙车的车长。这样理解后其实就是一个简单的相遇问题。(10+15)×14=350(米),所以乙车的车长为350米.

【例 17】 在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度

为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?

【解析】 先统一单位:54千米/小时?15米/秒,72千米/小时?20米/秒,

1分24秒?84秒,48分56秒?12分?36分56秒?2216秒.

货车的过桥路程等于货车与铁桥的长度之和,为:15?84?1260(米); 列车的过桥路程等于列车与铁桥的长度之和,为:20?53?1060(米).

考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为

?20?15??2216?15?720?280(米),那么铁桥的长度为1060?280?780(米),货车的长度为

1260?780?480(米).

【例 18】 一条单线铁路上有A,B,C,D,E 5个车站,它们之间的路程如图所示(单位:千米).两列火车同时从A,E

两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟? 【解析】

A

225千米

25千米 15千米 B

C

D

230千米

E

两列火车同时从A,E两站相对开出,假设途中都不停.可求出两车相遇的地点,从而知道应在哪一个车站停车等待时间最短.

从图中可知,AE的距离是:225+25+15+230=495(千米) 两车相遇所用的时间是:495÷(60+50)=4.5(小时) 相遇处距A站的距离是:60×4.5=270(千米) 而A,D两站的距离为:225+25+15=265(千米)

由于270千米>265千米,从A站开出的火车应安排在D站相遇,才能使停车等待的时间最短.

因为相遇处离D站距离为270-265=5(千米),那么,先到达D站的火车至少需要等待:2:1(小时) ,x小时=11分钟

模块三 流水行船

【例 19】 乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船

返回原地比去时多用了几小时?

【解析】 乙船顺水速度:120÷2=60(千米/小时).乙船逆水速度:120÷4=30(千米/小时)。水流速度:(60-30)÷

2=15(千米/小时).甲船顺水速度:12O÷3=4O(千米/小时)。甲船逆水速度:40-2×15=10(千米/小时).甲船逆水航行时间:120÷10=12(小时)。甲船返回原地比去时多用时间:12-3=9(小时).

【例 20】 船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。由于暴雨后水速增加,

6

该船顺水而行只需9小时,那么逆水而行需要几小时?

【解析】 本题中船在顺水、逆水、静水中的速度以及水流的速度都可以求出.但是由于暴雨的影响,水速发生变化,

要求船逆水而行要几小时,必须要先求出水速增加后的逆水速度. 船在静水中的速度是:(180÷10+180÷15)÷2=15(千米/小时). 暴雨前水流的速度是:(180÷10-180÷15)÷2=3(千米/小时). 暴雨后水流的速度是:180÷9-15=5(千米/小时).

暴雨后船逆水而上需用的时间为:180÷(15-5)=18(小时).

1【例 21】 (2009年“学而思杯”六年级)甲、乙两艘游艇,静水中甲艇每小时行千米,乙艇每小时行54千米.现

12在甲、乙两游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.水流速度是每小时 千米.

【解析】 两游艇相向而行时,速度和等于它们在静水中的速度和,所以它们从出发到相遇所用的时间为10小时.

相遇后又经过4小时,甲艇到达乙艇的出发地,说明甲艇逆水行驶27千米需要10小时,那么甲艇的逆水速度为1(千米/小时),则水流速度为24(千米/小时).

【例 22】 一艘轮船顺流航行 120 千米,逆流航行 80 千米共用 16 时;顺流航行 60 千米,逆流航行 120 千米也

用 16 时。求水流的速度。

【解析】 两次航行都用 16 时,而第一次比第二次顺流多行 60 千米,逆流少行 40 千米,这表明顺流行60 千米与

逆流行 40 千米所用的时间相等,即顺流速度是逆流速度的 1.5 倍。将第一次航行看成是 16 时顺流航行了 120+80×1.5=240(千米),由此得到顺流速度为 240÷16=15(千米/时),逆流速度为15÷1.5=10(千米/时),最后求出水流速度为(15-10)÷2=2.5(千米/时)。

【例 23】 一条河上有甲、乙两个码头,甲在乙的上游 50 千米处。客船和货船分别从甲、乙两码头出发向上游行驶,

两船的静水速度相同且始终保持不变。客船出发时有一物品从船上落入水中,10 分钟后此物距客船 5 千米。客船在行驶 20 千米后折向下游追赶此物,追上时恰好和货船相遇。求水流的速度。

【解析】 5÷1/6=30(千米/小时),所以两处的静水速度均为每小时 30 千米。 50÷30=5/3(小时),所以货船与物品

相遇需要5/3小时,即两船经过5/3小时候相遇。 由于两船静水速度相同,所以客船行驶 20 千米后两船仍相距 50 千米。 50÷(30+30)=5/6(小时),所以客船调头后经过5/6小时两船相遇。 30-20÷(5/3-5/6)=6(千米/小时),所以水流的速度是每小时 6 千米。

【例 24】 江上有甲、乙两码头,相距 15 千米,甲码头在乙码头的上游,一艘货船和一艘游船同时从甲码头和乙码

头出发向下游行驶,5 小时后货船追上游船。又行驶了 1 小时,货船上有一物品落入江中(该物品可以浮在水面上),6 分钟后货船上的人发现了,便掉转船头去找,找到时恰好又和游船相遇。则游船在静水中的速度为每小时多少千米?

【解析】 此题可以分为几个阶段来考虑。第一个阶段是一个追及问题。在货舱追上游船的过程中,两者的追及距离是

15 千米,共用了 5 小时,故两者的速度差是 15÷5=3 千米。由于两者都是顺水航行,故在静水中两者的速度差也是 3 千米。在紧接着的 1 个小时中,货船开始领先游船,两者最后相距 3×1=3千米。这时货船上的东西落入水中,6 分钟后货船上的人才发现。此时货船离落在水中的东西的距离已经是货船的静水速度×1/10 千米,从此时算起,到货船和落入水中的物体相遇,又是一个相遇问题,两者的速度之和刚好等于货船的静水速度,所以这段时间是货船的静水速度*1/10÷货船的静水速度=1/10小时。按题意,此时也刚好遇上追上来的游船。货船开始回追物体时,货船和游船刚好相距3+3*1/10=33/10 千米,两者到相遇共用了 1/10 小时,帮两者的速度和是每小时 33/10÷1/10=33 千米,这与它们两在静水中的速度和相等。(解释一下)又已知在静水中货船比游船每小时快 3 千米,故游船的速度为每小时(33-3)÷2=15 千米。

【例 25】 (2008年三帆中学考题)一艘船往返于甲、乙两港之间,已知船在静水中的速度为每小时9千米,平时逆行

与顺行所用的时间比是2:1.一天因下暴雨,水流速度为原来的2倍,这艘船往返共用10小时,问:甲、乙两港相距 千米.

【解析】 设平时水流速度为x千米/时,则平时顺水速度为?9?x?千米/时,平时逆水速度为?9?x?千米/时,由于平时

顺行所用时间是逆行所用时间的一半,所以平时顺水速度是平时逆水速度的2倍,所以9?x?2?9?x?,解得x?3,即平时水流速度为3千米/时.

暴雨天水流速度为6千米/时,暴雨天顺水速度为15千米/时,暴雨天逆水速度为3千米/时,暴雨天顺水速

1115度为逆水速度的5倍,那么顺行时间为逆行时间的,故顺行时间为往返总时间的,为10??小时,甲、

6635

7

5乙两港的距离为15??25(千米).

3

【例 26】 一条小河流过A,B, C三镇.A,B两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C两镇之

间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C两镇水路相距50千米,水流速度为每小时1.5千米.某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时.那么A,B两镇间的距离是多少千米?

【解析】 如下画出示意图

有A?B段顺水的速度为11+1.5=12.5千米/小时,有B?C段顺水的速度为3.5+1.5=5千米/小时.而从A?C全程的行驶时间为8-1=7小时.设AB长x千米,有千米.

【例 27】 河水是流动的,在 B 点处流入静止的湖中,一游泳者在河中顺流从 A点到 B 点,然后穿过湖到C点,

共用 3 小时;若他由 C 到 B 再到 A,共需 6 小时.如果湖水也是流动的,速度等于河水速度,从 B 流向 C ,那么,这名游泳者从 A到 B 再到 C 只需 2.5小时;问在这样的条件下,他由C 到 B再到 A,共需多少小时?

【解析】 设人在静水中的速度为 x,水速为 y ,人在静水中从 B 点游到 C 点需要 t 小时.

2根据题意,有 6x?(6?t)y?3x?(3?t)y ,即x?(3?t)y,同样,有 2.5x?2.5y?3x?(3?t)y ,即

3116665x?(2t?1)y;所以,,即 50?(1?)?54,所以 54;(12?10)?60?54?65 (小时),所以在

121211111111这样的条件下,他由 C 到 B 再到 A共需 7.5 小时.

x50?x??7,解得x=25.所以A,B两镇间的距离是2512.55

模块四 时钟问题

【例 28】 现在是10点,再过多长时间,时针与分针将第一次在一条直线上? 【解析】 时针的速度是 360÷12÷60=0.5(度/分),分针的速度是 360÷60=6(度/分)

即 分针与时针的速度差是 6-0.5=5.5(度/分),10点时,分针与时针的夹角是60度, 第一次在一条直线时,分针与时针的夹角是180度,

即 分针与时针从60度到180度经过的时间为所求。所以 答案为 12(分)

【例 29】 有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针

与时针第二次重合? 【解析】

8

在lO点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“所以,再过54

116”,于是需要时间:50?(1?)?54. 1212116分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过1165?65分钟,时针与分针第二次重合. 11115分钟,时针与分针重合一次. 我们来熟悉一下常见钟表(机械)的构成:一般时钟的11(12?10)?60?54标准的时钟,每隔65表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.

所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的度为单位“l”,那么时针的速度为“54”.

【例 30】 某科学家设计了只怪钟,这只怪钟每昼夜10时,每时100分(如右图所示)。当这只钟显示5点时,

实际上是中午12点;当这只钟显示6点75分时,实际上是什么时间?

1.如果设分针的速12

【解析】 标准钟一昼夜是24×60=1440(分),怪钟一昼夜是100×10=1000(分)

怪钟从5点到6点75分,经过175分,根据十字交叉法,1440×175÷1000=252(分)即4点12分。

【例 31】 手表比闹钟每时快60秒,闹钟比标准时间每时慢60秒。8点整将手表对准,12点整手表显示的时间是

几点几分几秒?

【解析】 按题意,闹钟走3600秒手表走3660秒,而在标准时间的一小时中,闹钟走了3540秒。所以在标准时间的

一小时中手表走3660÷3600×3599 = 3599(秒),即手表每小时慢1秒,所以12点时手表显示的时间是11点59分56秒。

【巩固】某人有一块手表和一个闹钟,手表比闹钟每时慢30秒,而闹钟比标准时间每时快30秒。问:这块

手表一昼夜比标准时间差多少秒?

【解析】 根据题意可知,标准时间经过60分,闹钟走了60.5分,

根据十字交叉法,可求闹钟走60分,标准时间走了60×60÷60.5分,而手表走了59.5分, 再根据十字交叉法,可求一昼夜手表走了59.5×24×60÷(60×60÷60.5)分, 所以答案为24×60-59.5×24×60÷(60×60÷60.5)=0.1(分),0.1分=6秒

【例 32】 一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢3分。将两个钟同时调到标准时间,结果

在24时内,快钟显示9点整时,慢钟恰好显示8点整。此时的标准时间是多少?

9

【解析】 根据题意可知,标准时间过60分钟,快钟走了61分钟,慢钟走了57分钟,即标准时间每60分钟,快

钟比慢钟多走4分钟,60÷4=15(小时)经过15小时快钟比标准时间快15分钟,所以现在的标准时间是8点45分。

课后练习:

练习1. 一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公

共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔多少分钟发一辆公共汽车?

【解析】 紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车

间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即: 10×4×步行速度÷(5×步行速度)=8(分)

练习2. 甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,

相向而行.每辆电车都隔6分钟遇到迎面开来的一辆电车;小张每隔8分钟遇到迎面开来的一辆电车;小王每隔9分钟遇到迎面开来的一辆电车.已知电车行驶全程是45分钟,那么小张与小王在途中相遇时他们已行走了 分钟.

【解析】 由题意可知,两辆电车之间的距离

10电车行12分钟的路程

48电车行8分钟的路程56小张行8分钟的路程 54电车行9分钟的路程?15小王行9分钟的路程

由此可得,小张速度是电车速度的72,小王速度是电车速度的?20,小张与小王的速度和是电车速度的1,所以他们合走完全程所用的时间为电车行驶全程所用时间的24,即?84分钟,所以小张与小王在途中相遇时他们已行走了54分钟.

练习3. 慢车的车身长是142米,车速是每秒17米,快车车身长是173米,车速是每秒22,慢车在前面行驶,

快车从后面追上到完全超过慢车需要多少时间?

【解析】 根据题目的条件可知,本题属于两列火车的追及情况,(142+173)÷(22-17)=63(秒)

练习4. 高山气象站上白天和夜间的气温相差很大,挂钟受气温的影响走的不正常,每个白天快30秒,每个夜

晚慢20秒。如果在10月一日清晨将挂钟对准,那么挂钟最早在什么时间恰好快3分? 【解析】 根据题意可知,一昼夜快10秒,(3×60-30)÷10=15(天),所以挂钟最早在第15+1=16(天)傍晚恰

好快3分钟,即10月16日傍晚。

练习5. 某河有相距 45 千米的上下两港,每天定时有甲乙两船速相同的客轮分别从两港同时出发相向而行,这

天甲船从上港出发掉下一物,此物浮于水面顺水漂下,4 分钟后与甲船相距 1 千米,预计乙船出发后几小时可与此物相遇。

【解析】 物体漂流的速度与水流速度相同,所以甲船与物体的速度差即为甲船本身的船速(水速作用抵消),甲的船

速为 1÷1/15=15 千米/小时;乙船与物体是个相遇问题,速度和正好为乙本身的船速,所以相遇时间为:45÷15=3 小时

月测备选:

【备选1】小明骑自行车到朋友家聚会,一路上他注意到每隔12分钟就有一辆公交车从后边追上小乐,小明

骑着骑着突然车胎爆了,小明只好以原来骑车三分之一的速度推着车往回走,这时他发现公交车以每隔4分钟一辆的频率迎面开过来,公交车站发车的间隔时间到底为多少?

【解析】 设公交车之间的间距为一个单位距离,设自行车的速度为x,汽车的速度为y,根据汽车空间和时间间距与

车辆速度的关系得到关系式:12×(y-x)=4×(y+1x/3),化简为3y=5x.即y/x=5/3,而公交车与自行车的速度差为1/12,由此可得到公交车的速度为5/24,自行车的速度为1/8,因此公交车站发车的时间间隔为24/5=4.8分钟.

10

【备选2】2点钟以后,什么时刻分针与时针第一次成直角?

【解析】 根据题意可知,2点时,时针与分针成60度,第一次垂直需要90度,即分针追了90+60=150(度),

10(分)

【备选3】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看

见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?

【解析】 8s,可以把车上的人给抽象出来看成一点,那么就类同题1。得出快车和慢车的速度和是35,反之,由车长

和速度得到280/35=8

【备选4】甲、乙两艘小游艇,静水中甲艇每小时行72千米,乙艇每小时行10千米.现甲、乙两艘小游艇于

同一时刻相向出发,甲艇从下游上行,乙艇从相距18千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.问水流速度为每小时多少千米?

【解析】 两游艇相向而行时,速度和等于它们在静水中的速度和,所以它们从出发到相遇所用的时间为12小时.相遇

后又经过4小时,甲艇到达乙艇的出发地,说明甲艇逆水行驶18千米需要10小时,那么甲艇的逆水速度为12(千米/小时),那么水流速度为53(千米/小时)

第八讲 行程问题(二)

教学目标:

1、 能够利用以前学习的知识理清变速变道问题的关键点;

2、 能够利用线段图、算术、方程方法解决变速变道等综合行程题; 3、 变速变道问题的关键是如何处理“变”;

4、 掌握寻找等量关系的方法来构建方程,利用方程解行程题.

知识精讲:

比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用v甲,v乙;t甲,t乙;s甲,s乙来表示,大体可分为以下两种情况:

1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的

速度之比。

?s甲?v甲?t甲s甲s乙,这里因为时间相同,即,所以由 t?t?tt?,t??乙乙甲甲v甲v乙?s乙?v乙?t乙s甲s乙s甲v甲得到t?,,甲乙在同一段时间t内的路程之比等于速度比 ??v甲v乙s乙v乙2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们

速度的反比。

?s甲?v甲?t甲,这里因为路程相同,即s甲?s乙?s,由s甲?v甲?t甲,s乙?v乙?t乙 ??s乙?v乙?t乙得s?v甲?t甲?v乙?t乙,行程问题常用的解题方法有

v甲t乙?,甲乙在同一段路程s上的时间之比等于速度比的反比。 v乙t甲11

⑴公式法

即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件; ⑵图示法

在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法; ⑶比例法

行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题; ⑷分段法

在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来; ⑸方程法

在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.

例题精讲:

模块一、时间相同速度比等于路程比

【例 33】 甲、乙二人分别从 A、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,

甲到达 B 地和乙到达 A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点 30千米,则 A、 B 两地相距多少千米?

【解析】 两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为 4 :

3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了 3个全程,三个全程中甲走了?3?1个全程,与第一次相遇地点的距离为

47575422?(1?)?个全程.所以 A、 B两地相距30??105 (千米). 7777

【例 34】 B地在A,C两地之间.甲从B地到A地去送信,甲出发10分后,乙从B地出发到C地去送另一封信,

乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间。

【解析】 根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:

A10分钟10分钟B10分钟C

因为丙的速度是甲、乙的3倍,分步讨论如下:

(1) 若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间

为:10÷(3-1)=5(分钟)此时拿上乙拿错的信

A10分钟10分钟B10分钟5分钟5分钟C

12

当丙再回到B点用5分钟,此时甲已经距B地有10+10+5+5=30(分钟),同理丙追及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信 在给乙送信,此时乙已经距B地:10+5+5+15+15=50(分钟), 此时追及乙需要:50÷(3-1)=25(分钟),返回B地需要25分钟 所以共需要时间为5+5+15+15+25+25=90(分钟)

(2) 同理先追及甲需要时间为120分钟

【例 35】 (“圆明杯”数学邀请赛) 甲、乙两人同时从A、B两点出发,甲每分钟行80米,乙每分钟行60米,出发

一段时间后,两人在距中点的C处相遇;如果甲出发后在途中某地停留了7分钟,两人将在距中点的D处

相遇,且中点距C、D距离相等,问A、B两点相距多少米?

【分析】 甲、乙两人速度比为80:60?4:3,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了全程的

乙走了全程的

4,73.第二次甲停留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程743的,甲行了全程的.由于甲、乙速度比为4:3,根据时间一定,路程比等于速度之比,所以甲行走期间773343311乙走了?,所以甲停留期间乙行了???,所以A、B两点的距离为60?7?=1680(米).

7477444

【例 36】 甲、乙两车分别从 A、 B 两地同时出发,相向而行.出发时,甲、乙的速度之比是 5 : 4,相遇后甲的速

度减少 20%,乙的速度增加 20%.这样当甲到达 B 地时,乙离 A地还有 10 千米.那么 A、B 两地相距多少千米? 【解析】 两车相遇时甲走了全程的

54,乙走了全程的,之后甲的速度减少 20%,乙的速度增加 20%,此时甲、乙99468的速度比为5?(1?20%):4?(1?20%)?5:6 ,所以甲到达 B 地时,乙又走了??,距离 A地

95155811???450 (千米). ,所以 A、 B 两地的距离为10?9154545

【例 37】 早晨,小张骑车从甲地出发去乙地.下午 1 点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之

间的距离是 15 千米.下午 3 点时,两人之间的距离还是 l5 千米.下午 4 点时小王到达乙地,晚上 7 点小张到达乙地.小张是早晨几点出发?

【解析】 从题中可以看出小王的速度比小张块.下午 2 点时两人之间的距离是 l5 千米.下午 3 点时,两人之间的

距离还是 l5 千米,所以下午 2 点时小王距小张 15 千米,下午 3 点时小王超过小张 15千米,可知两人的速度差是每小时 30 千米.由下午 3 点开始计算,小王再有 1 小时就可走完全程,在这 1 小时当中,小王比小张多走 30 千米,那小张 3 小时走了15 30 45? ? 千米,故小张的速度是 45 ÷3 =15千米/时,小王的速度是15 +30 =45千米/时.全程是 45 ×3 =135千米,小张走完全程用了135 +15= 9小时,所以他是上午 10 点出发的。

【例 38】 从甲地到乙地,需先走一段下坡路,再走一段平路,最后再走一段上坡路。其中下坡路与上坡路的距离相

等。陈明开车从甲地到乙地共用了 3 小时,其中第一小时比第二小时多走 15 千米,第二小时比第三小时多走 25 千米。如果汽车走上坡路比走平路每小时慢 30 千米,走下坡路比走平路每小时快 15 千米。那么甲乙两地相距多少千米?

【解析】 ⑴由于3个小时中每个小时各走的什么路不明确,所以需要先予以确定.

从甲地到乙地共用3小时,如果最后一小时先走了一段平路再走上坡路,也就是说走上坡路的路程不需要1小时,那么由于下坡路与上坡路距离相等,而下坡速度更快,所以下坡更用不了1小时,这说明第一小时既走完了下坡路,又走了一段平路,而第二小时则是全在走平路.这样的话,由于下坡速度大于平路速度,所以第一小时走的路程小于以下坡的速度走1小时的路程,而这个路程恰好比以平路的速度走1小时的路程(即

13

第二小时走的路程)多走15千米,所以这样的话第一小时走的路程比第二小时走的路程多走的少于15千米,不合题意,所以假设不成立,即第三小时全部在走上坡路.

如果第一小时全部在走下坡路,那么第二小时走了一段下坡路后又走了一段平路,这样第二小时走的路程将大于以平路的速度走1小时的路程,而第一小时走的路程比第二小时走的路程多走的少于15千米,也不合题意,所以假设也不成立,故第一小时已走完下坡路,还走了一段平路.

所以整个行程为:第一小时已走完下坡路,还走了一段平路;第二小时走完平路,还走了一段上坡路;第三小时全部在走上坡路.

⑵由于第二小时比第三小时多走25千米,而走平路比走上坡路的速度快每小时30千米.所以第二小时内用51在走平路上的时间为25?30?小时,其余的小时在走上坡路;

66因为第一小时比第二小时多走了15千米,而

11小时的下坡路比上坡路要多走?30?15???7.5千米,那么第

661121一小时余下的下坡路所用的时间为?15?7.5??15?小时,所以在第一小时中,有??小时是在下坡路

26321小时是在平路上走的. 3215717因此,陈明走下坡路用了小时,走平路用了??小时,走上坡路用了1??小时.

366663上走的,剩余的

⑶因为下坡路与上坡路的距离相等,所以上坡路与下坡路的速度比是

27:?4:7.那么下坡路的速度为36?30?15??米.

7?105千米/时,平路的速度是每小时105?15?90千米,上坡路的速度是每小时90?30?60千7?4277那么甲、乙两地相距105??90??60??245(千米).

366

模块二、路程相同速度比等于时间的反比

【例 39】 甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共

行了35千米.求A,B两地间的距离.

【分析】 甲用3小时行完全程,而乙需要4小时,说明两人的速度之比为4:3,那么在3小时内的路程之比也是4:3;

4又两人路程之和为35千米,所以甲所走的路程为35??20千米,即A,B两地间的距离为20千米.

3?4

【例 40】 在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行,6 分后两人相遇,再过4 分甲到达 B 点,

又过 8 分两人再次相遇.甲、乙环行一周各需要多少分?

【解析】 由题意知,甲行 4 分相当于乙行 6 分.(抓住走同一段路程时间或速度的比例关系)

从第一次相遇到再次相遇,两人共走一周,各行 12 分,而乙行 12 分相当于甲行 8 分,所以甲环行一周需 12+8=20(分),乙需 20÷4×6=30(分).

【例 41】 上午 8 点整,甲从 A地出发匀速去 B 地,8 点 20 分甲与从 B 地出发匀速去 A地的乙相遇;相遇后

甲将速度提高到原来的 3 倍,乙速度不变;8 点 30 分,甲、乙两人同时到达各自的目的地.那么,乙从

14

B 地出发时是 8 点几分.

【解析】 甲、乙相遇时甲走了 20 分钟,之后甲的速度提高到原来的 3 倍,又走了 10 分钟到达目的地,根据路程

一定,时间比等于速度的反比,如果甲没提速,那么后面的路甲需要走10× 3= 30分钟,所以前后两段路程的比为 20 : 30 =2 : 3,由于甲走 20 分钟的路程乙要走 10 分钟,所以甲走 30 分钟的路程乙要走 15 分钟,也就是说与甲相遇时乙已出发了 15 分钟,所以乙从 B 地出发时是 8 点5 分.

【例 42】 小芳从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路,一半下坡路.小芳上学走这两条

路所用的时间一样多.已知下坡的速度是平路的1.6 倍,那么上坡的速度是平路速度的多少倍?

【解析】 设小芳上学路上所用时间为 2,那么走一半平路所需时间是1.由于下坡路与一半平路的长度相同,根据路5511?2??程一定,时间比等于速度的反比,走下坡路所需时间是1?1.6,因此,走上坡路需要的时间是,118888?8:11,所以,上坡速度是平路速度的那么,上坡速度与平路速度的比等于所用时间的反比,为1:倍. 811

3【例 43】 一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到路程的时,出了故障,用

55分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?

333【分析】 当以原速行驶到全程的时,总时间也用了,所以还剩下50?(1?)?20分钟的路程;修理完毕时还剩下

55520?5?15分钟,在剩下的这段路程上,预计时间与实际时间之比为20:15?4:3,根据路程一定,速度比等

4于时间的反比,实际的速度与预定的速度之比也为4:3,因此每分钟应比原来快750??750?250米.

3小结:本题也可先求出相应的路程和时间,再采用公式求出相应的速度,最后计算比原来快多少,但不如采用比例法简便.

【例 44】 (2008“我爱数学夏令营”数学竞赛)一列火车出发1小时后因故停车0.5小时,然后以原速的

终到达目的地晚1.5小时.若出发1小时后又前进90公里因故停车0.5小时,然后同样以原速的

3前进,最43前进,则4到达目的地仅晚1小时,那么整个路程为________公里.

3【解析】 如果火车出发1小时后不停车,然后以原速的前进,最终到达目的地晚1.5?0.5?1小时,在一小时以后的

4那段路程,原计划所花的时间与实际所花的时间之比为3:4,所以原计划要花1??4?3??3?3小时,现在要

3前进,则到达目的地仅4晚1?0.5?0.5小时,在一小时以后的那段路程,原计划所花的时间与实际所花的时间之比为3:4,所以原计划要花0.5??4?3??3?1.5小时,现在要花0.5??4?3??4?2小时.所以按照原计划90公里的路程火车要用花1??4?3??4?4小时,若出发1小时后又前进90公里不停车,然后同样以原速的

3?1.5?1.5小时,所以火车的原速度为90?1.5?60千米/小时,整个路程为60??3?1??240千米.

【例 45】 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了1/9,结果提前一个半小时到达;返

回时,按原计划的速度行驶 280 千米后,将车速提高1/6,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米?

【解析】 从开始出发,车速即比原计划的速度提高了1/9,即车速为原计划的10/9,则所用时间为原计划的1÷10/9=9/10,

即比原计划少用1/10的时间,所以一个半小时等于原计划时间的1/10,原计划时间为:1.5÷1/10=15(小时);按原计划的速度行驶 280 千米后,将车速提高1/6,即此后车速为原来的7/6,则此后所用时间为原计划的1÷7/6=6/7,即此后比原计划少用1/7的时间,所以1 小时 40 分等于按原计划的速度行驶 280 千米后余下时间的1/7,则按原计划的速度行驶 280 千米后余下的时间为: 5/3÷1/7=35/3(小时),所以,原计划的速度为:84(千米/时),北京、上海两市间的路程为:84 ×15= 1260(千米).

【例 46】 一辆汽车从甲地开往乙地,如果车速提高 20%可以提前1小时到达.如果按原速行驶一段距离后,再将速

度提高 30% ,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?

15

发相向而行,1小时20分钟之后,甲汽车走到了第2段公路的1/3处,与从B 市迎面开来的乙汽车相遇。那么A、B两市之间相距多少千米?

47、 两人沿着铁路边的小道,从两地出发,以相同的速度相对而行,同时一列火车开来,列车从甲身边开过用了 10秒钟,3分钟后,乙遇到了火车,列车从乙身边开过只用了9秒钟。火车离开乙多少时间后,两人才相遇?

48、 甲乙两名运动员在一条环形跑道上练习跑步,他们同时从同一个地点出发,沿着相反的方向跑,每人跑完第一圈回到出发点以后立即调头加速跑第二圈。跑第一圈时,乙的速度是甲的速度的2/3。甲跑第二圈时的速度比第一圈时提高了1/3,乙跑第二圈时速度提高了1/5。已经知道甲乙两人第二次相遇点距第一次相遇点190米。求这条环形跑道的长度是多少米?

49、 从甲地到乙地是上坡路,小明上坡每分钟走60米,下坡每分钟走100米,小明去时比返回路上多用了8分钟,求两地路程时多少米?

50、 A、B两地相距1000米,甲乙两人同时从A地出发,在A、B间往返锻炼,甲步行每分钟行60米,乙步行每分钟行160米,40分钟后停止运动。甲乙两人第几次相遇时距离B地最近,最近时多少米?

51、 一条公路上,甲、乙两地相距750米,张明每小时走4千米,李强每小时走5千米,8点整,他们两人从甲、乙两地同时出发相对而行,2分钟后他们都调头反向而行,再过了4分钟,他们又调头反向而行,依次按照2、4、6、8...(连续是偶数)分钟调头而行,那么张明和李强相遇时是8点几分?

52、 有甲乙丙三辆汽车各自以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙晚出发10分钟,出发后60分钟追上丙。问:甲出发后多少分钟追上乙? 53、 甲、乙两地是电车的始发站,每隔一定的时间两地同时各自发一辆电车,小张和小王分别骑车同时从甲、乙两地出发,相向而行,每辆电车都隔4分钟遇到迎面开来的电车,小张每隔5分钟遇到迎面开来的一辆电车,小王每隔6分钟遇到迎面开来的一辆电车。已知电车行完全程要用56分钟,求小张和小王相遇时走了多少分钟?

46

54、 一条轮船顺流而下,每小时行7.8千米,水流的速度为每小时1.8千米。现在有甲、乙两条同样的轮船同时从一地点反向而行,经过一段时间后同时返回,甲、乙两船1又1/3小时后又同时回到了出发点,那么在1又1/3小时内有几分钟,甲、乙两船的前进方向是相同的?

55、 甲、乙两地之间的公路长是200米,其中平路占到1/4,由甲地到乙地去,上坡路的千米数是下坡路千米数的2/3,一辆车从甲地到乙地出发一共用去了3又5/6小时。已知汽车行上坡路的速度比平路慢10%,行下坡路比平路快20%。照这样,汽车从乙地返回甲地要用几小时? 56、 某人骑车从A地出发到B地去,原计划早上8时出发,10时到达。出发一段时间以后,因自行车发生故障原地修理了15分钟,修车地点距离全程的中点2.4千米,修好车以后虽然将车速提高了1/4,但是仍比计划迟到了5分钟。求A城到B城的公路的长度?

57、 某人以上坡速度每小时1千米,下坡速度每小时1又1/3千米的速度翻越一座山岭,去时用了5小时,返回时用了5又1/2小时,若是以去时为标准,这山岭的上坡和下坡各有几千米? 58、 野兔逃出60步以后,一条狗去追它。野兔每逃4步的时间,狗可跑3步,野兔跑3步的路程,等于狗跑2步的路程。问狗跑多少步才能抓住野兔?

59、 有12个旅客,要到20千米以外的火车站乘车,此时离火车开车只有3小时一辆汽车每次只能坐4人,每小时行驶20千米,每小时只能走4千米,在只有一辆汽车的情况下,要想3小时内全部人员到达车站,最少需要几小时?

60、 东西两村相距23千米,途中要经过一座山岭,某人每小时平路走3千米,上山时走2千米,下山时走2.5千米,他从东村到西村需要9小时,从西村到东村需要8小时54分,问东西两村之间的距离是多少千米?

61、 甲、乙两名运动员分别从相距100米的直线跑道两端相对同时出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒。在这段时间内两人一共相遇了多少次?最后一次相遇距乙的起点有多远?

62、 有两个班的小学生要到少年宫去参加活动,但是只有一辆汽车接送,在甲班上车出发的同时,乙班同时步行出发,车到中途某处,甲班下车步行,车立即调头返回接乙班同学,乙班同学上车以

47

后直接开往少年宫。已知学生步行速度为每小时4千米,汽车载学生时车速为每小时40千米,空车时的速度为每小时50千米。这样乙班步行了5千米,求学校到少年宫路程为多少千米?(学生下车上车时间不计,两班必须同时到达)

63、 如图一条圆形跑道的长度为1.2米。AB为圆的直径,在A、B两个点上各有一只蚂蚁,两只蚂蚁爬行的速度分别为每秒4厘米和每秒6厘米,两只蚂蚁同时从A、B两点出发相向爬行,并且分别按1、3、5、7....(连续的奇数)秒调头爬行,当两只蚂蚁第一次相遇时,已经爬行了多少秒?

64、 米老鼠和唐老鸭进行越野比赛,按照原定的速度,他们同时出发以后,米老鼠将比糖老鸭早到终点1/2分钟。在比赛前,米老鼠喝兴奋剂使自己的速度提高了20%,唐老鸭穿上了一种特殊的魔力鞋使自己的速度提高了25%,在比赛中魔力鞋发生故障原地修理了2分钟。最后比赛的结果是:唐老鸭比米老鼠早到1/2分钟,那么唐老鸭跑完全程实际一共需要多少分钟的时间?

65、 甲、乙两车同时从A、B两地同时出发相向而行,乙的速度是甲的速度的4/5,两车出发1小时后,乙车因发生故障原地修理了30分钟。然后以原速的3/4继续前进,然后两车相遇。这样比预计相遇时间推迟了3/8小时。已知两车相遇点距中点37.5千米。那么A、B之间的公路长为多少千米?

下面的试题选自湖北教育出版社朱华伟/胡兴虎 《小学数学竞赛分类题典》中的各类行程问题

一、行程问题中标准时间类

1、从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟。现在打算在火车开车前10分到达火车站,骑摩托车的速度应该是多少?

48

2、小明从家里到学校去上课,开始时以每分走50米的速度行走,走了2分。这时他想:若根据以往上学的经验,再按照这个速度走下去,将要迟到2 分。于是他立即加快速度,每分钟多走了10米,结果小明早到了5分钟。小明家到学校的路程是多少米?

3、一个人从县城骑车到乡下去办厂。他从县城骑车出发,用了30分钟行完了全程的一半路程。这时,他加快了速度,每分比原来多行了50米,又骑了20分钟后,他从路旁的里程碑上知道,必须再骑2千米才能到达乡办厂。求县城到乡办厂之间的总路程是多少?

4、一辆车从甲地开往乙地,如果把车的速度提高20%,可比原定时间提前1个小时到达,如果按照原定速度行驶120千米后,再将速度提高25%,则可提早40分钟到达。那么甲、乙两地相距多少千米?

5、某人从甲城到乙城,两城之间相距24千米,步行一半路程后改骑自行车,一共经4小时到达;回来时,仍有一半路程步行,一半路程骑摩托车,而步行的速度是原速的3/4,摩托车的速度比自行车的速度提高了1倍,但仍比去时多用了30分钟才回到甲城。求原来步行与自行车的速度各自是多少?

6、王华家在东面山上,他每天要到对面即西面山上的工厂上班。两山之间相隔了一段平地。从家到工厂之间的路程是2040米,他上坡时的速度每分行120米,下坡速度是每分行240米,行走平地那段路程,来回都是2分。因此,由家到工厂一共需要12分钟,由工厂回到家中一共需要13分钟,平地路程是两边端点到工厂路程的一半,平地这段路程为多少?

7、一辆汽车按计划速度行驶了1小时,剩下的路程用计划速度的3/5继续行驶,到达目的地的时间比计划的时间迟到了2小时。如果按照计划速度行驶的路程再增加60千米,则到达目的地的时间比计划时间只迟了1小时。问:计划速度是多少?全程是多少千米? 二、行程问题中同时到达类

1、甲班和乙班学生同时从学校去公园游玩,甲班步行速度每小时是4千米,乙班步行速度是每小时3千米。同时学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐1个班的学生,为了使甲、乙两班的学生尽早即在最短时间内到达公园。那么乙班的学生需要步行距离是甲班学生步行距离的几分之几?

49

2、甲乙两个班的小学生要到少年宫去参加活动,但是只有一辆汽车接送,在甲班上车出发的同时,乙班同时步行出发,车到中途某处,甲班下车步行,车立即调头返回接乙班同学,乙班同学上车以后直接开往少年宫。已知学生步行速度为每小时4千米,汽车载学生时车速为每小时40千米,空车时的速度为每小时50千米。若使两个班的学生同时到达少年宫。甲班学生步行了全程的几分之几? 3、甲、乙两个班学生到离校24千米的飞机场去参观,但是只有一辆汽车,一次只能乘坐一个班的学生。为了尽快地到达飞机场,两个班级商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后再步行去飞机场,汽车则从某处立即返回接在途中步行的乙班学生。如果甲、乙两班的学生步行速度是相同的,汽车速度使他们步行速度的7倍。那么汽车应该在距离飞机场多少千米的地方返回接乙班的学生才能使两班的学生同时到达飞机场? 三、行程问题中相遇类

1、甲骑车从A到B,乙骑车从B到A,甲每小时比乙每小时多走2千米。两人在上午8点同时出发,到上午10点两人还相距36千米,到中午12点两人又相距36千米。求A、B两地之间的距离? 2、甲、乙、丙三人只有一辆自行车,他们同时出发作100千米的旅行,甲先带着丙以时速25千米前进,乙以时速5千米步行。经过了一段时间后,丙下车改步行,速度同乙,而甲又折回去接乙,并将乙带上而与丙同时到达目的地。求这次旅行所用的时间?

3、甲、乙、丙三辆车中,甲车的速度是每小时行驶50千米,乙车每小时行驶60千米,丙车的速度是每小时行驶70千米,甲、乙两车从北镇,丙车从南镇同时相向出发,丙车遇到乙车后2小时再遇到甲车。两镇距离的1/4是多少千米?

4、李华每小时步行4千米,从学校出发到20.4千米外的冬令营报到,半小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米,又过了1.5小时,张明从学校骑车去营地报到,结果三人同时在途中某地相遇。问:骑车人每小时行驶多少千米?

5、从甲市到乙市有一条公路,它分成三段。在第一段上,汽车速度是每小时40千米;在第二段上,汽车的速度是每小时90千米,在第三段上,汽车的速度是每小时50千米。已知第一段路的长恰好是第三段的2倍。现在两辆汽车分别从甲、乙两市同时出发,相向而行,1小时20分在第二段路的1/3处(从甲市到乙市的方向)相遇,那么甲乙两市相距多少千米?

50

3、A、B两城相距240千米,一辆汽车原计划用6小时从A城开到B城,汽车行驶了一半路程,因故在途中停留了30分钟。如果按照原定的时间到达B城,汽车在后半段路程速度应该加快多少?

4、甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车。 【解析】 11-7=4分钟

甲乙车的速度比=1:0.8=5:4 甲乙行的时间比=4:5=16:20

所以是在乙车出发后的16+11=27分钟追上甲车

5、铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进。行人速度为3.6千米/小时,骑车人速度为10.8千米/小时。这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒。这列火车的车身总长是多少米?

6、小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?

7、甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?

8、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

26

9、小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间? 10、一只狗追赶一只野兔,狗跳5次的时间兔子能跳6次,狗跳4次的距离与兔子7次的距离相等.兔子跳出550米后狗子才开始追赶.问狗跳了多远才能追上兔子?

11、主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步.狗跑出10步后,主人开始追,主人跑出了多少步才追上狗?

12、某人从甲地前往乙地办事,去时有2/3的路程乘大客车,1/3的路程乘小汽车;返回时乘小汽车与大客车行的时间相同,返回比去时少用了5小时,已知大客车每小时行24千米,小汽车每小时行72千米,甲地到乙地的路程、是多少千米?

13、某工厂每天派小汽车于上午8时准时到总工程师家接他到工厂上班,有一天早晨总工程师临时决定提前回工厂办事,匆匆从家步行出发,途中遇到接他的小汽车,立即上车到工厂,结果比平时早40分钟到达。总工程师上车时是几时几分?

14、小明从家去体育馆看球赛.去时他步行5分钟后,跑步8分钟,到达体育馆。回来时,他先步行10分钟后,开始跑步,结果比去时多用了3分15秒钟回到家.他跑步的速度与步行的速度比是多少?

27

15、B在A,C两地之间,甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信。乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?

16、甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?

17、在400米环形跑道上,A、B两点相距100米(如图)。甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步。甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟.那么,甲追上乙需要的时间是()秒。

18、小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?

19、甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?

20、已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?

21、甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?

28

22、一支解放军部队从驻地乘车赶往某地抗洪抢险,如果将车速比原来提高1/9,就可比预定的时间20分钟赶到;如果先按原速度行驶72千米,再将车速比原来提高1/3,就可比预定的时间提前30分钟赶到。这支解放军部队的行程是多少千米?

23、甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的2倍。甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰。求从山顶到山脚的距离。

24、甲、乙两车分别从A,B两地同时相向开出,四小时后两车相遇,然后各自继续行驶三小时,此时甲车距B地10千米,乙车距A地80千米.问甲车到达B地时乙车还要经过多少小时才能到达A地?

25、从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,那么摩托车的速度应是多少?

26、同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?

27、小明从家到学校时,前一半路程步行后一半路程乘车,从学校回家时,前1/3时间乘车,后2/3时间步行,结果去学校的时间比回家所用的时间多2小时,已知小明步行的速度为每小时5千米,乘车速度为每小时15千米,那么小明从家到学校的路程是( )千米?

29

28、A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时。丙车与甲、乙两车距离相等时是几点几分?

29、小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?

30、红光农场原定9时来车接601班同学去劳动,为了争取时间,8时同学们就从学校步行向农场出发,在途中遇到准时来接他们的汽车,于是乘车去农场,这样比原定时间早到12分钟。汽车每小时行48千米,同学们步行的速度是每小时几千米?

31、从甲地到乙地,如果提速20%,提前1小时到达,如果按原速先行120米,再提速25%,则提前40 分钟,问甲到乙的距离?

奥数小学阶段行程问题各类经典试题汇总

撰稿人:童老师 武汉童老师小学奥数 电话027-67832070

--以下题目选自《小学名校数学名题6年级》1—36题

1、一列客车从甲城开往乙城要8个小时,一列火车从乙城开往甲城要12个小时。两车同时从两城开出,相遇时客车行了264千米,求甲乙两个城市之间相距多少千米?

2、某船往返于相距180千米的两港之间,顺水而下要10个小时,逆水而上需要用15个小时。由于暴雨后水速增加,该船顺水而行只需9个小时,那么逆水而行需要多少个小时?

3、甲乙两个人骑自行车分别从AB两地同时相向而行,第一次两车在距离B 地7千米的地方相遇,相遇后两车继续往前走,一直到达对方后立即返回,返回时在距离A地4千米处又相遇了。那么AB两地相距多少千米?

4、甲乙丙三人,甲每分钟走60米,乙每分钟走70千米,丙每分钟走80千米,甲乙从东镇,丙冲西镇,同时相向出发,丙遇到了乙后,再经过了10分钟遇到了甲,请问两镇之间相距多少千米?

30

本文来源:https://www.bwwdw.com/article/e4rf.html

Top