K型热电偶和MAX6675简介

更新时间:2023-12-21 15:35:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

热电偶的原理及单片K型热电偶放大与数字转换器MAX6675 2007年09月21日 星期五 下午 08:45

摘要:MAX6675是Maxim公司推出的具有冷端补偿的单片K型热电偶放大器与数字转换器。文中介绍器件的特点、工作原理及接口时序,并给出与单片机的接口电路及温度读取、转换程序。

关键词:热电偶放大器 冷端补偿 数字输出

热电偶是一种感温元件 , 它把温度信号转换成热电动势信号 , 通过电气仪

表转换成被测介质的温度。热电偶测温的基本原理是两种不同成份的均质导体组成闭合回路 , 当两端存在温度梯度时 , 回路中就会有电流通过,此时两端之间就存在 Seebeck 电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端, 温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系 , 制成热电偶分度表 ; 分度表是自由端温度在 0 ℃ 时 的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时 , 只要该材料两个接点的温度相同 , 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此 , 在热电偶测温时 , 可接入测量仪表 , 测得热电动势后 , 即可知道被测介质的温度。

热电偶优点

热电偶是工业中常用的温度测温元件,具有如下特点:① 测量精度高:热电偶与被测对象直接接触,不受中间介质的影响。 ② 热响应时间快:热电偶对温度变化反应灵敏。③ 测量范围大:热电偶从 -40~+ 1600℃ 均可连续测温。 ④性能可靠, 机械强度好。 ⑤ 使用寿命长,安装方便。

热电偶的种类及结构: ( 1 )热电偶的种类

K 型(镍铬 - 镍硅) WRN 系列 N 型(镍铬硅 - 镍硅镁) WRM 系列

E 型(镍铬 - 铜镍) WRE 系列 J 型(铁 - 铜镍) WRF 系列 T 型(铜 - 铜镍) WRC 系列 S 型(铂铑 10- 铂) WRP 系列 R 型(铂铑 13- 铂)WRQ系列 B 型(铂铑 30- 铂铑 6 ) WRR 系列等。

( 2 )热电偶的结构形式:热电偶的基本结构是热电极,绝缘材料和保护管;并 与显示仪表、记录仪表或计算机等配套使用。在现场使用中根据环境,被测介质等多种因素研制成适合各种环境的热电偶。 热电偶简单分为装配式热电偶,铠装式热电偶和特殊形式热电偶;按使用环境细分有耐 高温热电偶,耐磨热电偶,耐

腐热电偶,耐高压热电偶,隔爆热电偶,铝液测温用热电偶,循环硫化床用热电偶,水泥回转窑炉用热电偶,阳极焙烧炉用热电偶,高温热风炉用热电偶,汽化炉用热电偶,渗碳炉用热电偶,高温盐浴炉用热电偶,铜、铁及钢水用热电偶,抗氧化钨铼热电偶,真空炉用热电偶,铂铑热电偶等

注意:热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:

①组成热电偶的两个热电极的焊接必须牢固;

②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 热电偶冷端的温度补偿

由于热电偶的材料一般都比较贵重,而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。

在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

热电偶作为一种主要的测温元件,具有结构简单、制造容易、使用方便、测温范围宽、测温精度高等特点。但是将热电偶应用在基于单片机的嵌入式系统领域时,却存在着以下几方面的问题。①非线性:热电偶输出热电势与温度之间的关系为非线性关系,因此在应用时必须进行线性化处理。②冷补偿:热电偶输出的热电势为冷端保持为0℃时与测量端的电势差值,而在实际应用中冷端的温度是随着环境温度而变化的,故需进行冷端补偿。③数字化输出:与嵌入式系统接口必然要采用数字化输出及数字化接口,而作为模拟小信号测温元件的热电偶显然法直接满足这个要求。因此,若将热电偶应用于嵌入式系统时,须进行复杂的信号放大、A/D转换、查表线性线、温度补偿及数字化输出接口等软硬件设计。如果能将上述的功能集成到一个集成电路芯片中,即采用单芯片来完成信号放大、

冷端补偿、线性化及数字化输出功能,则将大大简化热电偶在嵌入式领域的应用设计。

Maxim公司新近推出的MAX6675即是一个集成了热电偶放大器、冷端补偿、A/D转换器及SPI串口的热电偶放大器与数字转换器。 1 性能特点

MAX6675的主要特性如下:

①简单的SPI串行口温度值输出; ②0℃~+1024℃的测温范围; ③12位0.25℃的分辨率; ④片内冷端补偿; ⑤高阻抗差动输入; ⑥热电偶断线检测; ⑦单一+5V的电源电压; ⑧低功耗特性;

⑨工作温度范围-20℃~+85℃; ⑩2000V的ESD信号。

该器件采用8引脚SO帖片封装。引脚排列如图1所示,引脚功能如表1所列。

表1 MAX6675引脚功能

引 脚 1 2 3 4 5 6 7 8 2 工作原理

MAX6675的内部结构如图2所示。该器件是一复杂的单片热电偶数字转换器,内部具有信号调节放大器、12位的模拟/数字化热电偶转换器、冷端补偿传感和校正、数字控制器、1个SPI兼容接口和1个相关的逻辑控制。

图2 MAX6675内部结构框图

名 称 GND T- T+ VCC SCK CS SO N.C. 接地端 K型热电偶负极 K型热电偶正极 正电源端 串行时钟输入 片选端,CS为低时、启动串行接口 串行数据输出 空引脚 功 能

2.1 温度变换 MAX6675是通过冷端补偿检测和校正周围温度变化的。该器件可将周围温度通过内部的温度检测二极管转换为温度补偿电压,为了产生实际热电偶温度测量值,MAX6675从热电偶的输出和检测二极管的输出测量电压。该器件内部电路将二极管电压和热电偶电压送到ADC中转换,以计算热电偶的热端温度。当热电偶的冷端与芯片温度相等时,MAX6675可获得最佳的测量精度。因此在实际测温应用时,应尽量避免在MAX6675附近放置发热器件或元件,因为这样会造成冷端误差。 2.5 测量精度的提高

MAX6675内部具有将热电偶信号转换为与ADC输入通道兼容电压的信号调节放大器,T+和T-输入端连接到低噪声放大器A1,以保证检测输入的高精度,同时使热电偶连接导线与干扰源隔离。热电偶输出的热电势经低噪声放大器A1放大,再经过A2电压跟随器缓冲后,被送至ADC的输入端。在将温度电压值转换为相等价的温度值之前,它需要对热电偶的冷端温度进行补偿,冷端温度即是MAX6675周围温度与0℃实际参考值之间的差值。对于K型热电偶,电压变化率为41μV/℃,电压可由线性公式Vout=(41μV/℃)×(tR-tAMB)来近似热电偶的特性。上式中,Vout为热电偶输出电压(mV),tR是测量点温度;tAMB是周围温度。 2.2 冷端补偿

热电偶的功能是检测热、冷两端温度的差值,热电偶热节点温度可在0℃~+1023.75℃范围变化。冷端即安装MAX6675的电路板周围温度,比温度在-20℃~+85℃范围内变化。当冷端温度波动时,MAX6675仍能精确检测热端的温度变化。

图3 MAX6675 SO端输出数据的格式

2.3 热补偿

在测温应用中,芯片自热将降低MAX6675温度测量精度,误大小依赖于MAX6675封装的热传导性、安装技术和通风效果。为降低芯片自热引起的测量误差,可在布线时使用大面积接地技术提高MAX6675温度测量精度。 2.4 噪声补偿

MAX6675的测量精度对电源耦合噪声较敏感。为降低电源噪声影响,可在MAX6675的电源引脚附近接入1只0.1μF陶瓷旁路电容。

热电偶系统的测量精度可通过以下预防措施来提高:①尽量采用不能从测量区域散热的大截面导线;②如必须用小截面导线,则只能应用在测量区域,并且在

无温度变化率区域用扩展导线;③避免受能拉紧导线的机械挤压和振动;④当热电偶距离较远时,应采用双绞线作热电偶连线;⑤在温度额定值范围内使用热电偶导线;⑥避免急剧温度变化;⑦在严劣环境中,使用合适的保护套以保证热电偶导线;⑧仅在低温和小变化率区域使用扩展导线;⑨保持热电偶电阻的事件记录和连续记录。

2.6 SPI串行接口

MAX6675采用标准的SPI串行外设总线与MCU接口,且MAX6675只能作为从设备。MAX6675 SO端输出温度数据的格式如图3所示,MAX6675 SPI接口时序如图4所示。MAX6675从SPI串行接口输出数据的过程如下:MCU使CS变低并提供时钟信号给SCK,由SO读取测量结果。CS变低将停止任何转换过程;CS变高将启动一个新的转换过程。一个完整串行接口读操作需16个时钟周期,在时钟的下降沿读16个输出位,第1位和第15位是一伪标志位,并总为0;第14位到第3位为以MSB到LSB顺序排列的转换温度值;第2位平时为低,当热电偶输入开放时为高,开放热电偶检测电路完全由MAX6675实现,为开放热电偶检测器操作,T-必须接地,并使能地点尽可能接近GND脚;第1位为低以提供MAX6675器件身份码,第0位为三态。

3 测温应用

下面给出MAX6675应用于嵌入式系统的具体方法。这里以AT89C2051单片机为例,给出MAX6675与单片机接口构成的测温电路及相应的温度值读取、转换程序。 MAX6675为单片数字式热电偶放大器,其工作时无需外接任何的外围元件,这里为降低电源耦合噪声,在其电源引脚和接地端之前接入了1只容量为0.1μF的电容。

MAX6675与AT89C2051单片机的接口电路如图5所示。

由于AT89C2051不具备SPI总线接口,故这里采用模拟SPI总线的方法来实现与MAX6675的接口。其中P1.0模拟SPI的数据输入端(MISO),P1.1模拟SPI的串行时钟输出端SCK,P1.2模拟SPI的从机选择端SSB。下面给出相应的温度值读取程序及数据转换程序。 ;温度值读取程序 ;位定义

SO BIT T1.0 ;数据输入 CS BIT P1.1 ;从机选择 SCK BIT P1.2 ;时钟

;数据字节定义

DATAH DATA 30H ;读取数据高位 DATAL DATA 31H ;读取数据低位 TDATAH DATA 32H ;温度高位 TDATAL DATA 33H ;温度低位 ;读温度值子程序

READY:CLR CS ;停止转换并输出数据 CLR CLK ;时钟变低 MOV R2,#08H READH:MOV C,SO

RLC A ;读D15~D8高8位数据 SETB CLK NOP CLR CLK DJNZ R2,READH

MOV DATAH,A;将读取的高8位数据保存 MOV R2,#08H

READL:MOV C,SO ;读D7~D0低8位数据 RLC A SETB CLK NOP CLR CLK DJNZ R2,READL

MOV DATAL,A;将读取的低8位数据保存 SETB CS

;启动另一次转换过程 RET

;数据转换子程序,将读得的16位数据转换为12位温度值,去掉无用的位。 D16T12:MOV A,DATAL CLR C RLC A MOV DATAL,A

;数据整体右移1位,

MOV A,DATAH;以去掉D15伪志位 RLC A

SWAP A ;将DATAH中的数据高低4位互换 MOV B,A ;数据暂存于B中

MOV A,#0FH ;得到温度值的D11~D8位,并将D15~D12位置0 MOV TDATAH,A;转换后的数据送温度高位 MOV A,B;取出温度值的D7~D4位 ANL A,#0F0H MOV B,A;暂存B中 MOV A,DATAL

ANL A,#0F0H ;取出温度值的D3~D0 SWAP,A

ORL A,B ;合并成低位字节

MOV TDATAL,A ;转换后的数据送温度高位 RET 结语

MAX6675将热电偶测温应用时复杂的线性化、冷端补偿及数字化输出等问题集中在一个芯片上解决,简化了将热电偶测温方案应用于嵌入式系统领域时复杂的软硬件设计,因而该器件是将热电偶测温方案应用于嵌入式系统领域的理想选择。 热电偶测量误差及其注意事项

王魁汉 吴玉锋

王魁汉先生,沈阳东大传感技术有限公司总经理;吴玉锋先生,东北大学硕士研究生。

关键词: 测量误差 注意事项 K状态 分流误差 热电偶劣化

一 前言

在现有的测温系统中,最常用的温度传感器热电偶,因其结构简单,往往被误认为“热电偶两根线,接上就完事”,其实并非如此。热电偶结构虽然简单,但在使用中仍然会出现各种问题,如安装或使用方法不当,将会引起较大的测量误差,甚至检定合格的热电偶也会因操作不当,在使用时不合格,在渗碳等还原性气氛中,如果不注意,K型热电偶也会因选择性氧化而超差。

为提高测量精确度,减少测量误差,延长热电偶使用寿命,要求使用者不仅应具备仪表操作技能,还应具有物理、化学及材料等多方面知识。作者根据多年实践,并参阅有关资料,在这里较详细地介绍热电偶的测量误差及其注意事项。

二 测量误差的主要影响因素

1. 插入深度的影响

(1)测温点的选择

热电偶安装位置,即测温点的选择是最重要的。测温点的位置,对于生产工艺过程而言,一定要具有典型性、代表性,否则将失去测量与控制的意义。

(2)插入深度

热电偶插入被测场所时,沿着传感器的长度方向将产生热流。当环境温度低时就会有热损失,致使热电偶与被测对象的温度不一致而产生测温误差。总之,由热传导而引起的误差,与插入深度有关。而插入深度又与保护管材质有关。金属保护管因其导热性能好,其插入深度应深一些(约为直径的15~20倍),陶瓷材料绝热性能好,可插入浅一些(约为直径的10~15倍)。对于工程测温,其插入深度还与测量对象是静止或流动等状态有关,如流动的液体或高速气流温度的测量,将不受上述限制,插入可浅一些,具体数值应由实验确定。

2. 响应时间的影响

接触法测温的基本原理是测温元件要与被测对象达到热平衡。因此,在测温时需保持一定时间,才能使两者达到热平衡。而保持时间的长短,同测温元件的热响应时间有关。而热响应时间主要取决于传感器结构及测量条件,差别极大。对于气体介质,尤其是静止气体,至少应保持30min以上才能达到平衡;对于液体而言,最快也要在5min以上。

对于温度不断变化的被测场所,尤其是瞬间变化过程,全过程仅1s,则要求传感器的响应时间在毫秒级。因此,普通的温度传感器不仅跟不上被测对象的温度变化速度出现滞后,而且也会因达不到热平衡而产生测量误差。最好选择响应快的传感器。对热电偶而言除保护管影响外,热电偶的测量端直径也是其主要因素,即偶丝越细,测量端直径越小,其热响应时间越短。测温元件热响应误差可通过下式确定。

Δθ=Δθ0exp(-t/t) (1) 式中

Δθ——在t时刻,测温元件引起的误差,K或℃ Δθ0——“t=0”时刻,测温元件引起的误差,K或℃ t——测量时间,s τ——时间常数,s

ε——自然对数的底(2.718) 因此,当t=τ时,则Δθ=Δθ0/e 即为0.368,

如果当t=2τ时,则Δθ=Δθ0/e2 即为0.135。

当被测对象温度以一定速度α(k/s或℃/s)上升或下降时,经过足够时间后,所产生的响应误差可用下式表示:

Δθ∞=-ατ (2) 式中

Δθ∞—经过足够时间后,测温元件引起的误差

由式(2)可以看出,响应误差与时间常数(τ)成正比。为了提高检定效率许多

企业采用自动检定装置,对入厂热电偶进行检定,但是,该装置也并非十分完善。二汽变速箱厂热处理车间就发现如果在400℃点的恒温时间不够,达不到热平衡,就容易发生误判。

3. 热辐射的影响

插入炉内用于测温的热电偶,将被高温物体发出的热辐射加热。假定炉内气体是透明的,而且,热电偶与炉壁的温差较大时,将因能量交换而产生测温误差。

在单位时间内,两者交换的辐射能为P,可用下式表示: P=σε(Tw4-Tt4) (3) 式中

σ——斯忒藩—波尔兹常数 ε——发射率

Tt——热电偶的温度, K Tw——炉壁的温度, K

在单位时间内,热电偶同周围的气体(温度为T),通过对流及热传导也将发生热量交换的能量为P'

P'=αA(T-Tt) (4) 式中α——热导率 A——热电偶的表面积

在正常状态下,P=P',其误差为: Tt-T=σε(Tt4-Tw4)/ αA (5) 对于单位面积而言其误差为 Tt-T=σε(Tt4-Tw4)/ α (6)

因此,为减少热辐射误差,应增大热传导,并使炉壁温度Tw尽可能接近热电偶温度Tt。另外,在安装时还应注意:热电偶安装位置应尽可能避开从固体发出的热辐射,使其不能辐射到热电偶表面;热电偶最好带有热辐射遮蔽套。

4. 热阻抗增加的影响

在高温下使用的热电偶,如果被测介质为气态,那么保护管表面沉积的灰尘等将烧熔在表面上,使保护管的热阻抗增大;如果被测介质是熔体,在使用过程中将有炉渣沉积,不仅增加了热电偶的响应时间,而且还使指示温度偏低。因此,除了定期检定外,为了减少误差,经常抽检也是必要的。例如,进口铜熔炼炉,不仅安装有连续测温热电偶,还配备消耗型热电偶测温装置,用于及时校准连续测温用热电偶的准确度。

三 热电偶测温应注意的事项

1. 热电偶丝不均质影响

(1)热电偶材质本身不均质

热电偶在计量室检定时,按规程要求,插入检定炉内的深度只有300mm。因此每支热电偶的检定结果,确切地说只能体现或主要体现出从测量端开始300mm长偶丝的热电行为,然而当热电偶较长时,则大部分偶丝处于高温区,如果热电偶丝是均质的,那么依据均质回路定则,测量结果与长度无关。然而,热电偶丝并非均质,尤其是廉金属热电偶丝其均质性较差,又处于具有温度梯度的场合,那么其局部将产生热电动势,该电动势称为寄生电势。由寄生电势引起的误差称为不均质误差。

在现有贵金属、廉金属热电偶检定规程中,对热电偶的不均质尚未作出规定,只有在热电偶丝材标准中,对热电偶丝的不均匀性有一定要求。对廉金属热电偶采用首尾检定法求出不均匀热电动势。正规热电偶丝材生产厂,均按国家标准要求,生产出不均匀热电动势符合要求的产品。

(2)热电偶丝经使用后产生的不均质

对于新制热电偶,即使是不均匀热电动势能满足要求,但是,反复加工、弯曲致使热电偶产生加工畸变,也将失去均质性;且使用中热电偶长期处于高温下也会因偶丝的劣化而引起热电动势变化,如插入工业炉中的热电偶,将沿偶丝长度方向发生劣化,并随温度增高,劣化增强,当劣化的部分处于具有温度梯度的场所,也将产生寄生电动势叠加在总热电动势中而出现测量误差。

作者在实践中发现有的热电偶经计量部门检定合格的产品(多为廉金属热电偶)到现场使用时却不合格,再返回到计量部门检定仍然合格,其中主要原因是偶丝不均质引起的。生产热电偶的技术人员都切身体会到,热电偶的不合格率也随其长度的增加而增加,皆是受热电偶丝材不均质的影响。总之,由不均质即寄生电动势引起的误差,取决于热电偶丝自身的不均质程度及温度梯度的大小,对其定量极其困难。

2. 铠装热电偶的分流误差

(1)分流误差

瓦轴集团渗碳炉用铠装热电偶,仅使用一周就不准了。为探讨原因,作者曾到现场考察,并未发现异常,且从炉子上取下来经计量室检定结果合格。那么问题何在呢?最后,根据该支热电偶的现场安装特点,经研究发现,上述问题是铠装热电偶的分流误差造成的。

所谓分流误差即用铠装热电偶测量炉温时,当热电偶中间部位有超过800℃的温度分布存在时,因其绝缘电阻下降,热电偶示值出现异常现象。依据

均质回路定则,用热电偶测温只与测量端与参考端两端温度有关,与中间温度分布无关。但因铠装热电偶绝缘物是粉末状MgO,温度每升高100℃,其绝缘电阻下降一个数量级,当中间部位温度较高时,必定有漏电流产生,使在热电偶输出电势中有分流误差出现。

(2)分流误差产生的条件

将铠装热电偶水平插入炉内,其规格及实验条件为:直径Φ4.8mm,长度为25m,中间部位加热带的长度为20m,温度为1000℃。本次实验中,热电偶的测量端与中间部位温差为200℃。如果测量端温度高于中间部位,则产生负误差;相反,则产生正误差。如果两者的温差为200℃,那么,分流误差约为100℃。这是绝对不能忽视的,分流误差的产生条件与铠装热电偶种类和直径等因素有关,见表。

3. 分流误差的影响因素及对策

高温下铠装热电偶产生分流误差的现象,正在引起人们的重视,因此有必要了解分流误差的影响因素,并采取适当对策以减少或消除分流误差的影响。

(1)铠装热电偶直径

对于长度为9m的K型铠装热电偶(MgO绝缘),只将热电偶中间部位加热。实验结果表明:分流误差的大小与其直径的平方根成反比(直径过细,不遵守此规律),即直径越细,分流误差越大。

当中间部位温度高于800℃时,对于Φ3.2mm铠装热电偶将产生分流误差。但对于Φ6.4mm及Φ8mm铠装热电偶,当中间部位的温度为900℃时,仍未发现分流误差。对于Φ6.4mm(热电极丝直径为Φ1.4mm)与Φ8mm(热电极丝直径为Φ2.0mm)的铠装热电偶,当中间部位温度为1100℃时,直径为Φ8mm的铠装热电偶产生的分流误差仅为Φ6.4mm的一半。此数值(50%)近似于两种铠装热电偶电极丝直径的平方比(1.42/2.02),而电极丝直径平方比,即为电极丝的电阻比。因此,为了减少分流误差,应尽可能选用粗直径的铠装热电偶。

(2)中间部位的温度

如中间部位的温度超过800℃,有可能产生分流误差,其大小将随温度的升高呈指数关系增大。因此除测量端外,其他部位应尽可能避免超过800℃。 当中间部位加热带温度高于800℃时,其加热带的长度越长,距离测量端越远,分流误差越大。因此,应尽可能缩短加热带长度,且不要在远离测量端处加热,以减少分流误差。

(3)热电偶丝的电阻

当铠装热电偶的直径相同时,分流误差将随热电偶丝的电阻增大而增加。因此,采用电阻小的热电偶丝更好。例如:直径相同的S型铠装热电偶同K型热电偶相比,其分流误差减少40%。因此,可采用S型热电偶测量炉内温场分布,费用虽高,但较准确。

(4)绝缘电阻

高温下氧化物电阻率将随温度升高呈指数降低,分流误差大小主要取决于高温部分的绝缘性能,绝缘电阻越低,越容易产生分流误差。当绝缘电阻增加10倍或减少至1/10时,其分流误差也随之减少至1/10或增大10倍。为减少分流误差,应尽可能采用直径粗的铠装热电偶,增加绝缘层厚度。如上述措施无效时,只好采用装配式热电偶。

4. 短程有序结构变化(K状态)的影响

K型热电偶在250~600℃温度范围内使用时,由于其显微结构发生变化,形成短程有序结构,因此将影响热电势值而产生误差,这就是所谓K状态。它是Ni-Cr合金特有的晶格变化,当Cr含量在5~30%范围内存在着原子晶格的有序→无序转变由此而引起的误差,因Cr含量及温度的不同而变化。将K型热电偶从300℃加热至800℃,每50℃取一点,测量该点电势。在450℃时偏差最大可达4℃,在350~600℃范围内,均为正偏差。由于K状态的存在,使K型热电偶在升温或降温检定结果不一致,故在廉金属热电偶检定规程中明文规定检定顺序:由低温向高温逐点升温检定;而且在400℃检定点,不仅传热效果不佳,难以达到热平衡,又恰好处于K状态误差最大范围。因此,对该点判定合格与否时应很慎重。

Ni-Cr合金短程有序结构变化的现象,不仅存在于K型,而且在E型热电偶正极中也有此现象,但作为变化量E型热电偶仅为K型的2/3。总之,K状态与温度、时间有关,当温度分布或热电偶位置变化时,其偏差也会发生很大变化,故难以对偏差大小作出准确评价。

5. 使用气氛的影响

(1)选择性氧化

对于含Fe的Ni-Cr合金,如氧分压低于特定值,则同O2亲和力大的Cr将发生选择性氧化,这是Ni-Cr合金特有的晶界氧化。如用显微镜观察外表面氧化层,可看到绿色析出物,这种现象通常称为“绿蚀”。尤其是当温度在800~1050℃范围内,体系内又含有CO、H2等还原性气体时,K型热电偶的正极更容易发生选择性氧化。这种因Cr含量降低而引起热电势偏低,已成为K型热电偶在热处理行业长期使用的限制因素。

如采用的气体很纯,且系统中不含氧,可延长热电偶使用寿命;可如热电偶丝表面有氧化层时,仍可为Cr的选择性氧化提供足够的氧。因此,在非氧化性气氛中使用时,应采用干净、抛光的偶丝。同时,应尽可能避免在带有微量氧的惰性气体或氧分压很低的空气中使用。当保护管长度与直径较大时(即保护管很细),由于空气循环不良,形成缺氧状态,其残余的少量氧仍可为Cr的选择

性氧化提供条件。

(2)选择性氧化的对策

为防止或减缓K型热电偶因选择性氧化而引起劣化,除在材质方面加以改善外,还应在热电偶结构上采取相应对策:(a)选择对氧亲和力较Cr更强的金属作为吸气剂,封入保护管内,防止Cr发生选择性氧化,也可采用增加保护管直径或吹气的方法增加氧含量。(b)装配式热电偶实体化。作者开发的专利产品—实体型渗碳炉用热电偶,即开发出具有密封结构的装配式热电偶,可防止Cr发生选择性氧化,经瓦轴集团、一汽、二汽、易普森工业炉、沈重、沈齿、钱江摩托等十几家企业多年使用证明,此方案有效。使用寿命在12个月以上,用户很满意。

(3)使用气氛的影响

热电偶的稳定性,因使用温度、气氛不同,对同一种传感器,如K型热电偶的最高使用温度也因直径不同而变化,直径相同的K型热电偶也因结构的不同,其稳定性也有很大差异。在选择热电偶时,必须针对使用条件考虑:常用温度及最高使用温度;氧化还原等使用气氛;抗振动性能。

对于装配式热电偶而言,气氛的影响,首先取决于保护管材质及热电偶结构,因此,熟悉、掌握各种保护管材料的物理、化学性能是很必要的。例如:在粉末冶金行业中,常用钼管作为热电偶保护管,在1600℃的H2气氛下,使用效果较好。然而,钼管在氧化性气氛下,很短时间就因氧化而蚀损。其次,应根据使用气氛,选择合适的热电偶,在1300℃以上的氧化性气氛中,选择铂铑热电偶,在还原性、真空条件下采用钨铼热电偶较好。

对于K型热电偶,适于在空气、O2等气氛中工作,但在H2气氛中使用时,其表面被H2还原,短时间无影响,如长时间暴露在H2中,在加速还原同时,将使偶丝发生晶粒长大而断线;在CO或煤气等还原性气氛中,其劣化将显著加快而超差。

对于铠装热电偶,氢原子半径很小,易透过外套进入其内部,同样也将加速劣化,致使热电势值大幅度降低。

(4)绝缘电阻的影响

热电偶用绝缘物,在高温下,其绝缘电阻随温度升高而急骤降低,因此,将有漏电流产生,该电流通过绝缘电阻已经下降的绝缘物流入仪表,使仪表指示不稳或产生测量误差,也可能发生记录仪乱打点的现象。

四 热电偶劣化与使用寿命

1. 热电偶的劣化

热电偶的使用寿命与其劣化有关,所谓热电偶的劣化,即热电偶经使用后,出现老化变质的现象。由金属或合金构成的热电偶,在高温下其内部晶粒要逐

渐长大。同时合金中含有少量杂质,其位置或形状也将发生变化,而且,对周围环境中的还原或氧化性气体也要发生反应。伴随上述变化,热电偶的热电动势也将极其敏感地发生变化。因此热电偶的劣化现象是不可避免的。

2. 热电偶的使用寿命

热电偶的劣化是一个量变过程,对其定量很困难,将随热电偶的种类、直径、使用温度、气氛、时间的不同而变化。热电偶的使用寿命是指热电偶劣化发展到超过允许误差,甚至断线不能使用的时间。

(1)装配式热电偶的寿命 我国标准中仅对热电偶的稳定性有要求。即规定在某一温度下经200h,使用前后热电动势的变化。但是,尚未发现对使用寿命有规定。日本有关热电偶使用寿命的要求,是依据日本JIS(C-1602-1995)标准中规定的热电偶连续使用时间。对B、R、S型热电偶而言为2000h, K、E、J、T型热电偶为10000h。

在实际使用时,装配式热电偶通常有保护管,只有在特殊情况下才呈裸丝使用。因此,在多数场合下,保护管的寿命决定了热电偶寿命。对热电偶的实际使用寿命的判断,必须是通过长期收集、积累实际使用状态下的数据,才有可能给出较准确的结果。

(2)铠装热电偶的寿命

由于铠装热电偶有套管保护与外界环境隔绝,因此套管材质对铠装热电偶寿命影响很大,须根据用途选择热电偶丝及金属套管。当材质选定后,其寿命又随着铠装热电偶直径的增大而增加。铠装热电偶同装配式热电偶相比,虽有许多优点,但使用寿命往往低于装配式热电偶。

五 结语

热电偶是科研、生产最常用的温度传感器,虽然结构简单,但若使用中不注意仍然会产生较大测量误差。作者针对使用中容易出现的问题,详细探讨了测温点的选择,热电偶的插入深度、响应时间、热辐射及热阻抗等产生误差的主要原因,并指出热电偶不均质、使用气氛、绝缘电阻,K型热电偶选择性氧化、K状态及铠装热电偶分流误差等使用中的注意事项。对提高测量精确度,延长热电偶使用寿命有一定帮助。

(全文完)

本文来源:https://www.bwwdw.com/article/e485.html

Top