希格斯玻色子

更新时间:2024-03-28 23:07:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

希格斯玻色子

本词条涉及专业知识,为防止被恶意篡改,需要本领域专家参与编辑。 请编辑者参考专业文献,协助完善词条,传播更多权威可信的知识。 百科名片

希格斯玻色子

希格斯玻色子是粒子物理学标准模型预言的一种自旋为零的玻色子,至今尚未在实验中观察到。它也是标准模型中最后一种未被发现的粒子。物理学家希格斯提出了希格斯机制。在此机制中,希格斯场引起自发对称性破缺,并将质量赋予规范传播子和费米子。希格斯粒子是希格斯场的场量子化激发,它通过自相互作用而获得质量。2012年7月2日,美国能源部下属的费米国家加速器实验室宣布,该实验室最新数据接近证明被称为“上帝粒子”的希格斯玻色子的存在。

希格斯玻色

中文名:

希格斯粒子,希格斯子,上帝粒

别称外号:

子 提出者: 彼得·希格斯(P.W.Higgs)

外文名:Higgs boson

目录 简介

诠释

研究背景 研究历史 理论 物理理论 方程简式 标准模型 其他模型 验证 成果

萍踪难觅 最新发现 相关著作 进展

博客传闻 或被发现 诡异情况 发现踪迹 接近证明 展开 简介 诠释

研究背景 研究历史 理论 物理理论 方程简式 标准模型 其他模型 验证 成果

萍踪难觅 最新发现 相关著作 进展 博客传闻 或被发现 诡异情况 发现踪迹 接近证明 展开 编辑本段简介 诠释

标准模型给出了自然界四种相互作用中的电磁相互作用和弱相互作用的统一描述,但是在能量低于一定条件后,电磁相互作用和弱相互作用将呈现为不同的相互作用,这被称为电弱相互作用的对称性自发破缺。希格斯粒子就是在标准模型解释电弱对称性自发破缺的机制时引入的。 研究背景

1964年,英国物理学家彼得·希格斯(P.W.Higgs)发表了一篇学术理论文章,提出一种

粒子场的存在,预言一种能吸引其他粒子进而产生质量的玻色子的存在。他认为,这种玻色子是物质的质量之源,是电子和夸克等形成质量的基础,其他粒子在这种粒子形成的场中游弋并产生惯性,进而形成质量,构筑成大千世界。2012年7月4日,当欧洲核研究组织宣布发现一种与“上帝粒子”“一致”的亚原子粒子时,希格斯说,“难以置信”。 这种理论中的粒子后来被别人以“希格斯”的名称命名,外号“上帝粒子”。

当其他粒子相继被发现时,48年来,“上帝粒子”始终遁形。[1] 希格斯提出了希格斯机制。在此机制中,希格斯场引起电弱相互作用的对称性自发破缺,并将质量赋予规范玻色子和费米子。希格斯粒子是希格斯场的场 量子化激发,它通过自相互作用而获得质量。欧洲核子研究中心的大型强子对撞机(Large Hadron Collider,简称LHC)将有机会发现希格斯粒子。

希格斯玻色子被认为是物质的质量之源,“上帝粒子”是1988年诺贝尔物理学奖获得者莱德曼对希格斯玻色子的别称。这种粒子是物理学家们从理论上假定存在的一种基本粒子,目前已成为整个粒子物理学界研究的中心,莱德曼更形象地将其称为“指挥着宇宙交响曲的粒子”。

自1899年汤姆逊爵士发现电子开始,直至如今,在一个多世纪的时间

欧洲核子研究中心大型强子对撞机

里 ,人类一直孜孜不倦的探索着微观世界的奥秘。1995年3月2日,美国费米实验室向全世界宣布他们发现了顶夸克时,一套称之为标准模型的粒子物理学模型所预言的62个基本粒子中的61个都已经得到了实验数据的支持与验证,看上去标准模型马上就要获得决定性的胜利,对物质微观结构的探索已经到达了它的尾声,似乎人类也马上就要听到这一跌宕起伏的,充满了高潮与华彩的探索乐章的终曲,但是仍然有一个粒子,游离在这座辉煌的大厦之外,仿佛一个幽灵,这就是希格斯粒子,而且就是这个粒子可能会击垮整座大厦。但是也许会为我们揭示出一条全新的探索旅途。就让我们先来回顾一下上个世纪中期以来粒子物理学的发展历史,以及现在处于主流的标准模型理论。 研究历史

在电弱统一理论从建立到获得成功,其中一个关键的因素就是对称自发破残原理推测出来的希格斯玻色子,用它来解释电弱统一理论中的W+1、W-1、Z0玻色子非零质量的获得机制。

英国物理学家希格斯

但到如今,电弱统一理论已经获得了诺贝尔奖从而得到大家普遍的承认,而作为电弱统一理论基础的希格斯玻色子(X0)仍然没有在大家的视野中揭开它神秘的面纱,这个难题一直以来都困扰着所有从事基本粒子研究的爱好者们。虽说到现在为止还没有人发现它的踪迹,但很多实验表明了电弱统一理论是完全正 确的,这使得人们相信它必然存在,发现它只是时间的问题。但是科学是一门以事实说话的学问,不是大家想当然的就能解决的问题。因此找到一种合乎自然辩证逻辑的理论是解释现象的关键。 为了修补上述理论的缺陷,英国物理学家希格斯提出了希格斯场的存在,并进而预言了希格斯玻色子的存在。假设出的希格斯玻色子是物质的质量之源,是电子和夸克等形成质量的基础。其他粒子在希格斯玻色子构成的场中,受其作用而产生惯性,最终才有了质量。之后所有的粒子在除引力外的另3种力的框架中相互作用,统一于标准模型之下。标准模型预言了62种基本粒子的存在,这些粒子基本都已被实验所证实,而希格斯玻色子是最后一种未被发现的基本粒子。

据香港《文汇报》14日报道,欧洲核子研究中心(CERN)日前公布了来自大型强子对撞器(LHC)的重要数据,显示“可能看到”有“上帝粒子”之称的希格斯玻色子(Higgs boson)。该理论可解释粒子为何拥有质量,从而演化为万事万物。人类距离了解宇宙诞生之谜或许将要迈进一大步。

CERN昨日表示,两个团队透过LHC看到希格斯玻色子的可能踪迹,但是数据肯定性尚不足以被称为“发现”,目前还需要更多的实验和分析。其中一个团队表示,探测到的讯息约为126千兆电子伏特左右。CERN早前已表示,不会在今年公布发现了“上帝粒子”。 编辑本段理论 物理理论

电弱统一理论内部结构模型图

科学家们建立起被称为标准模型的粒子物理学理论,它把基本粒子分成3大类:夸克、轻子与玻色子。标准模型的缺陷,就是该模型无法解释物质质量的来源。在本质上,这个场就像一池黏黏的蜜糖,除了非质量的基本粒子,通过此场的时候,会将粒子转变成带有质量的粒子,就像是原子的成分。在标准模型中,希格斯粒子包含了一个中性与两个带电成分的区域。两个带电和一个中性区域皆是Goldstone玻色子,是纵向三极化分量带质量的W+、 W–和 Z 玻色子。

维持中性成分的量子对应到具有质量的希格斯粒子。既然希格斯场是一个标量场,希格斯粒子没有自旋,也就没有内在的角动量。标准模型没有预测希格斯玻色子的质量。如果质量在115和180 GeV/c2之间,则标准模型的能量等级可以有效直到普朗克尺度(1016 TeV)。 许多理论学家预测新的物理学会建构在标准模型之上能量在TeV的尺度,基于不足的标准模型性质。希格斯粒子(或其他的电弱对称机制)可能的最大质量是1.4 TeV;除了这一点,标准模型变的不相容,因为统一性违反了一些散射的过程。许多超对称性的模型预测出最轻的希格斯粒子的质量比现在实验在高一点,大约120 GeV或者更低。 9维至8维-五期希格斯玻色子的能量(eV),大小(cm)及分裂结构表

所在时空维度: 第9维(含第8维) 的「希格斯场」 宇宙时间: 10秒至10秒 五期希格斯玻色子 单位能量(eV)及大小(cm) 时空维度本质: 能量:2.9812×102 4eV至 6.7784×1011 波长:6.62×10-30cm至 1.83×10-16cm(×2p)(注1,2) 自:普朗克(单位)能量: 1.2211×1028eV, 及 普朗克(单位)长度 1.616×10cm 的 分裂次数 第9维 「希格斯场」-前期 二次大爆炸(大爆胀) 宇宙时间: 10秒-10秒 第9维 「希格斯场」-中期 宇宙时间: 10秒至10秒 第9维 「希格斯场」-后期 宇宙时间:10秒至10秒 (电,弱力统一第五期希格斯玻色子 希格斯玻色子:能量及大小 7.453×10eV至1.819×1020eV 2.6476×10cm至1.084×1025cm 衰变并结合为-第10,9代-夸克 第四期希格斯玻色子 希格斯玻色子:能量及大小 1.819×1020至4.4423×1016eV 1.084×1025cm至4.442×1022cm 衰变并结合为-第8,7代-夸克, 第三期希格斯玻色子 希格斯玻色子:能量及大小 4.4423×1016eV至1.0845×1013eV 4.442×1022cm1.8194×1018cm 衰变并结合为-第6,5代-夸克, 第二期希格斯玻色子 至第五期- 自普朗克能量分裂14至16次(1.22×10eV÷2至÷2) 时空维度能量: 2.9812×10eV至7.2783×1020eV 时空维度波长: 6.62×10cm至2.71×1026cm 上述能量区为: 本宇宙二次大爆炸区(大暴胀区) 第四期- 自普朗克能量分裂26至38次(1.22×10eV÷2至÷2) 时空维度能量: 7.2783×1020至1.7769×1017eV 时空维度波长: 2.71×1026至1.11×10-22cm 第三期- 自普朗克能量分裂38至50次

场) 【注:10秒时,第3代:夸克 被禁闭(表2-1注:4),产生 高能量超子,第8维时空诞生】 希格斯玻色子:能量及大小 1.0845×1013至1.6946×1011eV 1.8194×1018cm至1.1644×1016cm 衰变并结合为-第4,3代-夸克, 第一期希格斯玻色子 希格斯玻色子:能量及大小 1.6946×1011eV;7.3165×1016cm 衰变并结合为-第2,1代-夸克, 五期希格斯玻色子存在于所有 规范粒子中,是10代夸克及 10代电子,微中子(即轻子)的 质量来源 (1.22×10eV÷2至÷2) 时空维度能量: 1.7769×1017eV至4.3382×1013eV 时空维度波长: 1.11×10-22至4.55×10-19cm 第二期- 自普朗克能量分裂50至56次(1.22×10eV÷2至÷2) 时空维度能量: 4.3382×1013至6.7784×1011eV 时空维度波长: 4.55×10-19至2.911×1017cm 第一期- 自普朗克能量分裂56次 (1.22×10eV÷2) 时空维度能量: 6.7784×1011eV至6.2619×1011eV 时空维度波长: 1.83×1016cm(×2p)至 1.98×1016cm(×2p)(表2-1注1,2) 能量较低的 第2期希格斯玻色子分裂组合成为: t’,b’,t,b夸克. 而 第2期WWZ弱玻色子 分裂为τ’电子及τ电子, 当分裂出第3代t,b夸克及τ电子时,即第8维时空的誔生 (第4代t’,b’,夸克及第4代τ’电子,因能量太高尚未发现) 方程简式

用方程式可以简要的表达以下这种变化: 一、夸克(K+2/3、K-2/3)、味玻色子(W+1、W-1)及电荷粒 (E+1、E-1)的生成方程

1、H+8/3 → K+2/3 + W+1 + E+1 2、H-8/3 → K-2/3 + W-1 + E-1 二、夸克(K-1/3、K+1/3)、味玻色子(W+1、W-1)及中微子(M 0)的生成方程

1、V-4/3 → K-1/3 + W-1 + M 0

2、V+4/3 → K+1/3 + W+1 + M 0 三、希格斯玻色子(X0)、引力子(G0)及味玻色子(W+1、W-1)的生成方程 1、H+8/3 + H-8/3 → X0 + W+1 + W-1 2、V+4/3 + V-4/3 → G0 + W+1 + W-1

四、磁单极子(C0)、胶子(J0)、光子(Y0)及不带荷的味玻色子(Z0)的生成方程 1、H+8/3 + H-8/3 → C0 + J0 + Z0 2、V+4/3 + V-4/3 → Y0 + J0 + Z0模型 标准模型

粒子物理学在上个世纪50年代,经历了一个短暂的困难时期,按照诺贝尔奖得主,电弱统一理论提出者之一的斯蒂芬·温伯格的话来说那是“一个充满挫折与困惑的年代”,几乎当时已经应用的理论都遇到了很大的问题。这些困惑激励着物理学家们给出新的解答,从60年代开始,基于杨-米尔斯的非阿贝尔规范场理论,逐步构建完成了现代的标准模型理论。今天,标准模型早已成为粒子物理学的主流理论,它的很多预言不断为一个又一个激动人心的实验成果所证实。标准模型是一套描述强作用力、弱作用力及电磁力这三种基本力及组成所有物质的基本粒子的理论。它属于量子场论的范畴,但是没有描述重力。

标准模型包含费米子及玻色子两类——费米子为拥有半整数的自旋并遵守泡利不相容原理(这原理指出没有相同的费米子能占有同样的量子态)的粒子;玻色子则拥有整数自旋而并不遵守泡利不相容原理。简单地说,费米子组成物质的粒子,而玻色子负责传递各种作用力。电弱统一理论与量子色动力学在标准模型中合并为一。这些理论都基于规范场论,即把费米子跟玻色子配对起来,以描述费米子之间的力。由于每组中介玻色子的拉格朗日函数在规范变换中都不变,所以这些中介玻色子就被称为“规范玻色子”。

标准模型所包含的玻色子有:负责传递电磁力的光子;负责传递弱核力的W及Z玻色子;负责传递强核力的8种胶子。 希格斯玻色子也是一种玻色子,然而它与上述这些规范玻色子不同,希格斯粒子负责引导规范变换中的对称性自发破缺,是惯性质量的来源,因此并不是规范玻色子。那么为何质量问题如此重要呢?要解答这个问题,必须回到20世纪60年代理论探索的开始阶段。在研究过程中,杨-米尔理论无论应用到弱还是强相互作用中所遇到的主要障碍就是质量问题,由于规范理论规范对称性禁止规范玻色子带有任何质量,然而这一禁忌却与实验中的观测不相符合,如果不能解决质量问题,将使得整个研究失去基础。一开始人们试图通过自发对称破缺机制,即打破规范理论中对拉氏量对称性的严格要求,使得物理真空中的拉氏量不再满足这种对称性,然而到了1962年,每一个自发对称性破缺都被证明必定伴随着一个无质量无自旋粒子,这无疑也是不可能的。1964年,英国物理学家希格斯(Higgs)解决了这个问题,使得自发对称性破缺发生时,那个无质量无自旋粒子仍然存在,但它将变成规范粒子的螺旋性为零的分量,从而使规范粒子获得质量。这一方法被今天的标准模型所借鉴,标准模型通过引入基本标量场——希格斯场来实现所谓希格斯机制。通过希格斯场产生对称性破缺,同时在现实世界留下了一个自旋为零的希格斯粒子。

这样我们也就明白了为何希格斯粒子如此重要的原因,可以说它是整个标准模型的基石,如果希格斯粒子不存在,将使整个标准模型失去效力。

其他模型

美国进行的一项新的原子撞击实验结果显示,所谓的“上帝粒子”实际上可能是5种截然不同的粒子。一些理论家认为希格斯玻色子并不单单指一种粒子,而是多种质量相似但所带电

假象的希格斯玻色子

荷存在差异的粒子。美国伊利诺斯州巴达维亚费米实验室的研究人员指出,他们发现了能够证明这种“多种粒子理论”的证据。有关“上帝粒子”的单一粒子理论就此面临挑战。

在费米实验室万亿电子伏粒子对撞机最近进行的一项名为“DZero”的实验中,科学家发现质子和反质子相撞更多地是产生物质粒子而不是反物质粒子。研究报告联合执笔人、费米实验室理论物理学家亚当·马丁表示,两者之间相差很少,不到1%,但无法利用假定只存在一种希格斯玻色子的标准模型加以解释。同时他认为这种影响实际上非常小,但如果将标准模型中所有最初原则考虑在内,这种影响仍远远超过科学家的想象。 标准模型假设只存在一种希格斯粒子,无法解释DZero实验的结果。如果科学家假定希格斯玻色子实际上是指5种粒子——也就是对标准模型进行扩展,形成双希格斯二重态模型——DZero实验的结果便可以解释。亚当·马丁表示,在对标准模型进行扩展时,加入了新的粒子和新的交互作用。新的交互作用对物质和反物质区别对待,因此能够促使实验中出现更大的影响。 编辑本段验证

在欧洲核子研究中心大型强子对撞机工作的科学家分别以两个独立的实验寻找希格斯玻色子,这两个实验分别称为Atlas和CMS。

欧洲核子研究中心1991年开始设计兴建的欧洲大型强子对撞机位于法国和瑞士边境地区地下100米深、约27公里长的环形隧道中,耗资总计约100亿美元,于2008年9月10日正式开始调试运行。它凭借能使单束粒子流能量达到7万亿电子伏特而成为世界上能级最高的对撞机。科学家普遍期望在这一对撞机的帮助下,能够发现希格斯玻色子。 不过希格斯认为,迄今已运行多年的美国费米实验室的万亿电子伏特加速器可能已经获得了希格斯玻色子存在的数据。

欧洲核子中心大型强子对撞机2000年,位于瑞士的欧洲核子研究中心(CERN)的工作人员通过世界上最大的正负电子对撞机LEP攫取了115GeV的希格斯粒子,但是他们当时的统计数据不足以做出任何确定的推论。 2003年,物理学家试图通过位于美国芝加哥的费米实验室的正负质子对撞机,让质子与反质子相互对撞分析出希格斯粒子的运动轨迹,试图证实或否定CERN先前的实验结果。但是由于先前计划从旧实验中回收反质子的方案并不可行,而且存在已有二十年之久的正负质子对撞机同样也到了更换的阶段,需要很长的时间来修复,因此费米实验室的研究遇到了一定的挫折。

2008年8月,靠近瑞士和法国边境的欧洲核子研究中心将开始运行新的大型质子对撞机(LHC)。这架大型质子对撞机安放在位于地下175米深处,周长约为27公里的隧道中,计划造价约为80亿美元。科学家普遍期望在这一对撞机的帮助下,能够发现希格斯玻色子。欧洲大型欧洲大型强子对撞机(LargeHadronCollider 简称LHC)实验结果显示,找到了希格斯玻色子存在的证据。

2011年6月10日,费米实验室提交给《物理评论快报》的文章内容,该实验室的科学家Dmitri Denisov叙述:我们并没有看到相关的信号特征,如果希格斯玻色子确实存在,根据目前的实验程序,我们应该会从加速器的数据上读出来,但是我们审视了全部的数据,就是没有发现该出现的东西,也就是说,本该出现的信号消失了,这是个匪夷所思的现象。针对费米实验室发布的数据,欧洲核研究结构的发言人詹姆斯·吉利斯(James Gilies)在瑞士的日内瓦回应说:由该机构负责运行的欧洲大型强子对撞机的粒子加速器所取得的阶段性成果目前还不适宜公布,但可以肯定的是会在接下来的数周时间内进行进一步的数据解析,而费米实验室则太早将数据的解读分析进行发布。

2011年7月22日,用作模拟宇宙大爆炸的“末日机器”LHC,位于法国与瑞士边境的地底,它的两个实验区域Atlas和CMS以接近光速对撞超过180万亿个质子,从爆炸生成的粒子碎片和量子波动中,各自发现约30个疑似上帝粒子,其质量都是约143十亿电子伏特(GeV)。同时,这些对撞也排除其它上帝粒子出现的“质量范围”。 此外,位于美国芝加哥附近的Tevatron粒子加速器也传来好消息,它早前从对撞中发现,在142至148GeV之间出现“大量粒子”,而它们与LHC发现的粒子相似。而这一切如果属实的话,人类或许可能改变对这个世界的认知。

2011年8月,欧洲核子研究中心表示,一些迹象表明,这种粒子也许真不存在,只是人们的“幻想”。 该机构2011年8月已经向在印度孟买召开的相关研讨会提交了报告,称通过其大型强子对撞机找到的实验数据都对找到希格斯玻色子的踪迹“意义不大”。与此同时,该中心许多科学家也认为“希格斯玻色子不存在”的可能性越来越大。 在粒子物理学的标准模型中,总共预言了62种基本粒子,其中61种都已被验证,唯独希格斯玻色子始终游离在物理学家的视野之外。找到这种粒子,就找到了建筑粒子物理学经典理论大厦的最后一块基石,如证明它不存在,整座大厦就要被推倒重建。 欧洲核子研究中心研究主任塞尔希奥·贝托卢奇说:“如果希格斯玻色子真的不存在,那么它的缺位将使人们的目光转向‘新物理学’。” 许多世界顶级物理研究机构曾试图通过对撞试验寻找希格斯玻色子,但都没有成功。 根据 BBC 的报道,当前LHC探测希格斯玻色子的计划于2011年10月完成,希格斯玻色子在2011年12月12日已被“阶段性发现”,尽管要得到最终的官方确认还需要更多实验数据

2011年12月13日,欧洲核子研究中心科学家示,他们发现了希格斯玻色子存在的迹象,这种碎片有时被称为“上帝粒子”,因为它是宇宙中所有物质的质量之源。 但是随后,欧洲科研人员又表示,现有数据无法确切证实,估计可能在2012年年底得到答案。对此,一些科学家提出质疑:1.考虑其它误差后,不能说找到了希格斯玻色子存在的证据。对欧洲实验室13号的结果,综合后的结论是无效的。 2.就是找到后,也只能解析为何其它粒子会有质量,而不是给物质以质量。3.有科学家认为,“上帝粒子”是媒体误导的夸大之词。 编辑本段成果

萍踪难觅

然而希格斯粒子的真面目却始终无缘识荆,有过几次,人们似乎已经发现了希格斯粒子的踪影,然后它却似乎是故意在人们面前闪现一下影子,然后就如同鬼魅般消失在幽暗之中了。

2000年,位于瑞士的欧洲核子研究中心(CERN)的工作人员通过世界上最大的正负电子对撞机LEP攫取了115GeV的希格斯粒子,但是他们当时的统计数据不足以做出任何确定的推论。

另一次在2003年,物理学家试图通过位于美国芝加哥的费米实验室的正负质子对撞机,让质子与反质子相互对撞分析出希格斯粒子的运动轨迹,试图证实或否定CERN先前的实验结果。但是由于先前计划从旧实验中回收反质子的方案并不可行,而且存在已有二十年之久

的正负质子对撞机同样也到了更换的阶段,需要很长的时间来修复,因此费米实验室的研究遇到了一定的挫折。

然而人们似乎已经下定决心一定要找到这个神秘的粒子。2008年8月,靠近瑞士和法国边境的欧洲核子研究中心将开始运行新的大型质子对撞机(LHC)。这架大型质子对撞机安放在位于地下175米深处,周长约为27公里的隧道中,计划造价约为80亿美元。计划实施时,将有来自34个国家150个研究实验室近2000名科学家参加。乐观的估计,将在2010年前后提供一个确切的答案。

于2003年开始兴建的欧洲大型强子对撞机位于法国和瑞士边境地区地下175米深、约27公里长的环形隧道中,耗资总计约20亿美元,预计将于2008年6月正式开始运行。届时,它将凭借能使单束粒子流能量达到7万亿电子伏特而成为世界上能级最高的对撞机。科学家普遍期望在这一对撞机的帮助下,能够发现希格斯玻色子。

不过希格斯认为,迄今已运行多年的美国费米实验室的万亿电子伏特加速器可能已经获得了希格斯玻色子存在的数据。希格斯说,希望能在迎来自己80岁生日前证实希格斯玻色子的存在。他幽默地说:“如果届时还是没有发现,那我只能祝愿自己活得再长久一些了。”但他强调,如果总是不能证实希格斯玻色子的存在,那么他将“非常、非常困惑”,因为他“无法想象除此之外还能怎样解释物质是如何获得质量的”。

物理学家们怀着对科学的热爱和虔诚,一直致力于理解物质的真正本质,完成对所有物理现象的统一理论,从而获得整个世界的终极知识。 最新发现

美国物理学家于2011年7月27日报告说,他们已大幅度缩小了希格斯玻色子的搜寻范围,困扰物理学界40多年的“希格斯玻色子存在之谜”有可能于今年九月末揭开。 美国费米国家实验室的物理学家在欧洲高能物理学会议上报告说,他们利用实验室的正反质子对撞机模拟宇宙大爆炸状态,分析撞击中产生的数千亿粒子。他们成功将隐藏的希格斯玻色子质量范围确定在110至155Gev/c间。按计划,到今年9月末他们可能采集足够数据,得出最终结论。

本月22日,欧洲核子研究中心根据大型强子对撞机的实验数据,也发现了希格斯玻色子存在的线索,他们认定,150至450Gev/c区间并非希格斯玻色子的质量区间。 2012年7月2日,美国能源部下属的费米国家加速器实验室宣布,该实验室最新数据接近证明被称为“上帝粒子”的希格斯玻色子的存在。

Gev/c是基本粒子质量的一个单位,其中Gev是10亿电子伏特,c是光速的平方。根据爱因斯坦的质能公式,物质的能量等于质量乘以光速的平方,因此,以电子伏特为单位的能量除以光速的平方,就用来衡量粒子的质量。

希格斯玻色子是物理学基本粒子“标准模型”理论中最后一种未被发现的基本粒子,其自旋为零,其他粒子在希格斯玻色子作用下产生质量,为宇宙形成奠定基础。迄今为止,“标准模型”预言的其他粒子都已发现,但希格斯玻色子的存在尚未在实验中证实,它又被称为“上帝粒子”。一旦研究证实希格斯玻色子不存在,“标准模型”理论将被推翻。 相关著作

1988年诺贝尔物理学奖获得者莱德曼在其与和泰雷西合著的《上帝粒子:假如宇宙是答案,究竟什么是问题?》的结尾充分流露出了物理学家们对终极前景的渴望,他这样写道:

物理学家莱德曼

“天空中出现了一道炫目的光芒,一束光亮照亮了我们这位沙滩主人。在巴赫B小调弥撒曲庄严、高潮的和弦配乐下,也可能是在斯特拉·温斯基的短笛独奏《春之祭》中,天空中的光慢慢地变成了上帝的脸,微笑着,但带着极度甜蜜的悲伤表情。”

标准模型是这样一个被物理学家们寄予很高期望的,通往终极的理论,然而标准模型自身有两个很重要的缺陷:模型中包含了过多的参数,并且理论未能描述重力。而且正如本文一开始指出的,标准模型所预言的希格斯粒子却始终未能在实验中发现。莱德曼对希格斯粒子忧心忡忡,认为它是一个阻止我们获得终极知识的“大坏蛋”。

《一千零一夜》里有这样一个著名的故事:一只大鸟夺走了王子的戒指,王子去追逐这只大鸟,这只大鸟飞过一段距离后,就故意停下来等王子追近,每次王子感到马上就要赶上大鸟的时候,大鸟却一下子又振翅飞走了。好像终极知识就是可恶那只大鸟,每当我们觉得已经就要得到之时,他就一下子又走远了。一旦希格斯粒子被证实不存在,那么整个物理学就将经历一场新的困惑和震动,我们不得不再次目睹终极理想离我们远去。

米兰·昆德拉说过一句古老的犹太谚语:“人类一思考,上帝就发笑”(见《小说的艺术》和《生命不能承受之轻》)。其话语中认为人类命运是早就注定的,无法逃脱宿命论。但是人类是思考的动物,几千年来,人类真理和真相寄托于宗教,但是失败了;近代以来,现在科学家们汇聚人类的智力财富,开始了新的探索,对比浩瀚的宇宙,也许我们很渺小,但是探索的历程以及这一历程中的新发现正是我们人类生存的意义所在。 编辑本段进展

博客传闻

北京时间2010年7月13日,几家国外媒体报道了意大利帕多瓦大学物理学家托马索·多里戈日前发表的个人博客文章。文中称美国费米实验室的万亿电子伏加速器(Tevatron)很可能已经发现了希

希格斯玻色子

格斯玻色子,即所谓的“上帝粒子”。但14日清晨,《新科学家》却登文辟谣,几乎同时,各媒体纷纷跟进,多里戈亦更新博文以正视听。一时间,卷入者各执一词,讨论版沸沸扬扬。

多里戈的博客名为《量子日记生还者》,其自称是一名实验粒子物理学家,与欧核中心(CERN)的CMS实验小组以及美国费米国家实验室的CDF小组有协作关系。这篇题为“有关发现希格斯粒子的传闻”的博文早在7月9日就已挂到网上,其中那段备受争议的文字是:“我从两个不同的、可能是独立的信息源打听到,一万亿电子伏加速器实验即将公布一些发现轻微希格斯波粒子信号的证据,一个信息源称发现了‘三倍标准差效应’,而另一个信息源并没有明确指出这一发现,只是表示实验得到了一个意外的结果。”

或许当时这段令人既兴奋又疑惑的文字夹杂在篇幅庞大的数据分析中不易被人发现,直到13日经《每日电讯报》《物理学家组织网》等主流媒体或科学网站报道可能已经发现了希格斯玻色子后,才惹出大范围的争议。

多里戈所谓的“三倍标准差效应”,是指一种关于结果确定性的统计数据,如果他获得的数据属实,从统计学上讲该实验的结果就有99.7%的可能性是发现了希格斯玻色子。通常,一个“五倍标准差效应”(正确的可能性达99.9999%)才能被认为确定性的程度已高到足以证明一个完全合理的新发现,一个“三倍标准差效应”不具有足够确定性,但仍能意味着这是希格斯玻色子存在的一个强有力证据。这正是科学类媒体加深关注的原因。 尽管对事件进行一手报道的几家媒体语气还算客观,甚至有些模棱两

希格斯玻色子(17张)

可,但经几手转载加工后的文章则显得不那么冷静,标题做得更是铁板钉钉,由此引发舆论与学界的轩然大波也就在所难免。一时间多里戈的博客几乎被寻找各自证据的人踏破。 14日,题为《“上帝粒子已发现”之说实无根据》的文章赫然登载于英国《新科学家》网站头条。文章称,正在都灵参加2010年粒子物理与宇宙学国际研讨会的物理学家们,对“上帝粒子被发现”的消息十分疑惑。《物理学家组织网》也随后查证说,多里戈并不是希格斯玻色子研究团队的成员。

被卷入事件的主角——费米实验室,发布在推特(Twitter)上的言辞更是分外犀利:“这就是一为求名气的博客作者散布的谣言,仅此而已。”

《纽约时报》却能以相对平和的心态看待此事,其描述是:可能的确还没达到能发现希格斯玻色子的数据规模,但如果加以证实,仍将能解开宇宙物质与反物质的反对称性之谜。 面对强大的质疑声浪,肇事者多里戈再发博文,指出自己的物理分析一贯清晰详尽,其又拿出了大量崭新的图表数据予以佐证。尽管与之前相比语气审慎了许多,但他依旧声言,关于这一主题的更多信息会在本月召开的巴黎高能物理国际会议上披露出来。 或被发现

2011年4月26日,据国外媒体报道,据内部消息透露,

摄影师正在大型强子对撞机开放日当天拍照

全球最大的核粒子加速器——长达17公里的大型强子对撞机(LHC)已经发现了传说中的“上帝粒子“——希格斯玻色子。

据悉,该传闻来自于一份泄露的内部记录,据说这份笔记出自于大型强子对撞机的物理学家们。不久前,一篇匿名文章公布了哥伦比亚大学数学家彼得-沃伊特(Peter Woit)博客里一份记录的部分内容,随之上述传闻便传开来。

对于这样的传闻,有些物理学家视之为恶作剧,而另一些物理学家则相信了,并且称该发现是人类在理解宇宙运行原理之路上一个重大的粒子物理学突破。美国锡拉丘兹大学(Syracuse University)的物理学家谢尔登-斯通(Sheldon Stone)表示:“如果这个传闻是真的,那么这将让人激动不已。”

根据标准模型,希格斯玻色子预计是存在的。物理学家们相信,希格斯玻色子赋予了所有其他粒子质量,在宇宙大爆炸后对宇宙的形成起着决定性作用。然而长期以来,那些相信希格斯玻色子能够解释为什么物体有质量的物理学家们都无法找到希格斯玻色子。费米实验室质子—反质子对撞机(Tevatron)以及欧洲大型强子对撞机 (LHC)等大型核粒子加速器都在不断地寻找着希格斯玻色子和其他亚原子物质。这些加速器以极快的速度将粒子撞击在一起,从而产生大量其他粒子。 据悉,泄露的记录表明大型强子对撞机的ATLAS粒子探测实验可能获得了一个希格斯玻色子的信号,该信号与希格斯玻色子预期产生的信号保持这大部分特征的一致性,然而该信号的一些其他方面与预期并不符合。

对此,斯通称:“它的生产速度要比在标准模型下预期的希格斯玻色子生产速度还要快。这个信号可能是一些其他粒子的存在证据。”斯通补充道:“从某种意义上说,这更有趣了,

一个希格斯玻色子正变成两束强子和两束电子

这可能是在标准模型之外的新物理现象。”斯通指出泄露的记录并非是ATLAS研究队伍的正式结果,所以现在就猜测该传闻的有效性和意义有点为时过早了。“实际上在该内部合作实验结果被核准前就对其进行公开讨论是相当不合理、不科学的。所以这个‘结果’在该团队正式公布前并非最后结果。”其他研究人员也赞成斯通的看法,认为不要对这个可能的发现太

过激动,要保持耐心和警惕。加利福尼亚理工学院(Caltech)物理学家肖恩-卡罗尔(Sean Carroll)表示:“不要担心,希格斯玻色子!我并没有传播有关你的那些无礼传闻,不像那些人。”

此外,另一些研究人员已经对这个可能的发现产生了怀疑。费米实验室(Fermilab)和欧洲粒子物理研究所(CERN)的粒子物理学家托马索-多里戈(Tommaso Dorigo)认为该信号是假的,进一步检验后就会销声匿迹。多里戈指出,比如费米实验室的科学家就未在他们的Tevatron数据中发现希格斯玻色子信号,而Tevatron实验和ATLAS实验原理是相似的。“我敢和那些相信在粒子物理学有着名望的人士打赌,该信号并非源于希格斯玻色子。”

加拿大粒子和核子物理国家实验室的负责人奈杰尔-罗杰尔(Nigel Lockyer)表示:“我个人的看法是这样的激动只是预先为新结果和新发现火上加油而已。” [2] 诡异情况

欧洲大型欧洲大型强子对撞机(LargeHadronCollider 简称LHC)实验结果显示,找到了希格斯玻色子存在的证据。但是,费米国家实验室也在进行相关研究,根据2011年6月10日费米实验室提交给《物理评论快报》的文章内容,该实验室的科学家Dmitri Denisov叙述:我们并没有看到相关的信号特征,如果希格斯玻色子确实存在,根据目前的实验程序,我们应该会从加速器的数据上读出来,但是我们审视了全部的数据,就是没有发现该出现的东西,也就是说,本该出现的信号消失了,这是个匪夷所思的现象。 针对费米实验室发布的数据,欧洲核研究结构的发言人詹姆斯·吉利斯(James Gilies)在瑞士的日内瓦回应说:由该机构负责运行的欧洲大型强子对撞机的粒子加速器所取得的阶段性成果目前还不适宜公布,但可以肯定的是会在接下来的数周时间内进行进一步的数据解析,而费米实验室则太早将数据的解读分析进行发布。

接着,吉利斯认为欧洲大型强子对撞机(LHC)的实验成果会在今年夏天进行公布,同时也暗示说:LHC取得的数据和费米实验室公布的数据有些不同之处,这些不同之处也使得LHC的科学家们更有信心用更加有说服力的证据证明上帝粒子是存在的。[3] 发现踪迹

2011年12月13日,瑞士日内瓦,欧洲核子研究中心当天宣布发现了被称作“上帝粒子”的希格斯玻色子的踪迹。

ATLAS协作发言人出席新闻发布会 [4]

两个实验小组的负责人宣布,他们在大致相同的124-125GeV的位置,也就是相当于130倍质子质量的位置上看到了数据“峰值”。 Atlas实验小组发言人贾诺蒂说,这也许是因为数据波动造成的,但也许是因为更为有趣的原因,现在不能排除任何可能。 一些科学家指出,尽管目前还没有得到结论性的实验结果,但是两个探测器都发现了少量过量的潜在衰变粒子,这与质量超过质子130倍的希格斯玻色子的存在相符。 英国曼彻斯特大学物理学家伦博尔德教授说,希格斯玻色子是否存在的发现不大可能成为一份圣诞礼物,但是物理学家完全可能在一年之内取得这项成果。[5]

接近证明

2012年7月2日, 美国能源部下属的费米国家加速器实验室宣布,该实验室最新数据“强烈表明”被称为“上帝粒子”的希格斯玻色子的存在,不过这些数据只是接近证明它的存在。有专家称,如果真能找到希格斯玻色子存在的直接证据,有关发现将获得诺贝尔奖。由于希格斯玻色子是最后一种未被发现的基本粒子,对完善粒子物理学理论“大厦”有重要意义。一旦它被证伪,“标准模型”理论“大厦将倾”。科学界相信它的存在并认为发现它只是时间问题。[6]

北京时间7月4日下午消息,欧洲核子研究中心的科学家们发现了一种新的亚原子粒子,这可能是难以捉摸的希格斯玻色子,而希格斯玻色子被认为是在宇宙形成的关键。

标准模型理论

求助编辑百科名片 粒子物理学的标准模型是一套描述强力、弱力及电磁力这三种基本力及组成所有物质的基本粒子的理论。它隶属量子场论的范畴,并与量子力学及狭义相对论兼容。到现时为止,几乎所有对以上三种力的实验的结果都合乎这套理论的预测。但是标准模型还不是一套万有理论,主要是因为它并没有描述到引力。

目录

内容 1. 内容 2. 世代 3. 测试及预测 质疑 1. 缺陷 2. 质疑 展开 内容 1. 内容 2. 世代 3. 测试及预测 质疑 1. 缺陷 2. 质疑 展开 编辑本段内容 内容

费米子及玻色子-模型图

标准模型包含费米子及玻色子——费米子为拥有半整数的自旋并遵守泡利不兼容原理(这原理指出没有相同的费米子能占有同样的量子态)的粒子;玻色子则拥有整数自旋而并不遵守泡利不兼容

标准模型理论

原理。简单来说,费米子就是组成物质的粒子而玻色子则负责传递各种作用力。

电弱统一理论与量子色动力学在标准模型中合并为一。这些理论都是规范场论,即它们把费米子跟玻色子(即力的中介者)配对起来,以描述费米子之间的力。由于每组中介玻色子的拉格朗日函数在规范变换中都不变,所以这些中介玻色子就被称为规范玻色子。标准模型所包含的玻色子有:

标准模型所包含的玻色子模型图册(4张)

胶子- 强相互作用的媒介粒子,自旋为1,有8种

光子 - 电磁相互作用的媒介粒子,自旋为1,只有1种 W 及 Z 玻色子 - 弱相互作用的媒介粒子,自旋为1,有3种 希格斯粒子- 引导规范组的自发对称性破缺,亦是惯性质量的源头。 实际上规范玻色子的规范变换是可以准确地利用一个称为“规范群”的酉群去描述。强相互作用的规范群是SU(3),而电弱作用的规范群是SU(2)×U(1)。所以标准模型亦被称为SU(3)×SU(2)×U(1)。

在众玻色子中,只有希格斯玻色子不是规范玻色子。而负责传递引力相互作用的玻色子——引力子则未能被包括入标准模型之中。

标准模型包含了十二种“味道”(Flavor) 的费米子。组成大部份物质三种粒子:质子、中子及电子,当中只有电子是这套理论的基本粒子。质子和中子只是由更基本的夸克,受强作用力吸引而组成。 世代

三代粒子-模型图

费米子可以分为三个“世代”。第一代包括电子、上及下夸克及电子中微子。所有普通物质都是由这一代的粒子所组成;第二及第三代粒子只

能在高能量实验中制造出来,而且会在短时间内衰变成第一代粒子。把这些粒子排列成三代是因为每一代的四种粒子与另一代相对应的四种粒子的性质几乎一样,唯一的分别就是它们的质量。例如,电子跟μ子的自旋皆为半整数而电荷同样是-1,但μ子的质量大约是电子的二百倍。 τ电子与电子中微子,以及在第二、三代中相对应的粒子,被统称为轻子。它们与其他费米子不同处在于它们没有一种叫“色”的性质,所以它们的作用力(弱力、电磁力)会随距离增加变得越来越弱。相反,夸克间的强力会随距离增加而增强,所以夸克永远只会在色荷为零的组合中出现,这些不同的组合被统称为“强子”。

强子-模型图

强子有两种:由三颗夸克组成的费米子,即重子(如质子及中子);以及由夸克-反夸克对所组成的玻色子,即介子(如π介子)。 标准模型中62种基本粒子:

规范粒子13种:传递强相互作用的媒介——胶子8种 传递弱相互作用的媒介——中间玻色子W+W-Z0

传递电磁作用的媒介——光子

为了实现电弱相互作用在低于250Gev的能量范围内分解为电磁相互作用和弱相互作用的特殊粒子——希格斯粒子。

夸克36:

六味:上夸克,下夸克;粲夸克,奇异夸克;底夸克,顶夸克 三色:红 绿 蓝

夸克有六味,每味三色,再加上各自对应的反粒子,总共36种不同状态的夸克。

轻子12:电子e μ子 τ子 以及各自的中微子共六种 它们的反粒子六种 测试及预测

在W玻色子、Z玻色子、胶子、顶夸克及魅夸克未被发现前,标准模型已经预测到它们的存在,而且对它们性质的估计非常精确。

CERN的大型电子-正子对撞机测试并确定标准模型有关Z玻色子衰变的预测。

编辑本段质疑

缺陷

虽然标准模型对实验结果的解释很成功,它从未被接受为基础物理的完全理论。这是因为它有两个很重要的缺陷:

模型中包含了十九个参数,如各粒子的质量,而这些数字并不能只从计算中得出而必须由实验决定。 这理论未能描述引力。

大一统理论:统一群粒子-模型图

大一统理论试图解决第一个缺陷。它假设SU(3)、SU(2)及U(1)群其实是一个更大的对称群的成员。在高能状态(比现时实验能达到的能量还要高),这一个群的对称性才能保存;在低能状态,它经过一个称为自发失称的过程而变成SU(3)×SU(2)×U(1)。第一个大一统理论由Georgi及Glashow于1974年提出,他们用SU(5)作为那个统一群。大一统理论与标准模型不同,它预测质子衰变的存在。但是在1999年,超级神冈的实验并未能深测到质子衰变,并确定质子半衰期的下限为6.7× 1032年。一些其他实验都否定了不少大一统理论(包括SU(5))。

质子半衰期-模型图2

质子半衰期-模型图1

同时,若从宇宙论的角度出发,标准模型亦被视为不完全。在这理论中,物质和反物质是对称的。但是宇宙中的物质比起反物质多出很多。还有,由于对重力的匆略,标准模型并未能为宇宙开始时的宇宙膨胀找出一个机制。

理论所预测的希格斯玻色子到现时(2012年)已被发现,正等待进一步的证明。 质疑

首个与标准模型不相乎的实验结果在1998年出现:日本超级神冈中微子探测器发表有关中微子振荡的结果。结果显示中微子拥有非零质量,因为零质量粒子以光速行进而不会感受到时间的推移。

但是标准模型并不容纳非零质量的中微子,因为它假设了宇宙中只有左旋中微子(即相对于运动轴,其自旋方向为逆时针)。如果中微子质量非零,它们的行进速度必会小于光速。正因如此,理论上我们就可以超越一颗中微子,以致我们可以选择一个令这颗中微子运动方向颠倒而自旋不变的参考系,导致它变为右旋。

物理学家为此修定标准模型,加入更多的自由参数以准许中微子带质量。这个新的模型仍叫做标准模型。

超对称理论是标准模型的一个延伸,它提出传统模型中的每一种基本粒子都有一个大质量、超对称的伙伴。超对称粒子被视为对暗物质的其中一个解释。

基本粒子

求助编辑百科名片

基本粒子

基本粒子,即在不改变物质属性的前提下的最小体积物质。它是组成各种各样物体的基础。并不会因为小而断定它不是某种物质。现在科学家利用粒子加速器加速一些粒子,有时候用粒子相撞的方法,来研究基本粒子。 基本粒子

? 上夸克 ? 反上夸克 ? 下夸克 ? 反下夸克 ? 粲夸克

夸克

? 反粲夸克 ? 奇夸克 ? 反奇夸克 ? 顶夸克 ? 反顶夸克 ? 底夸克 ? 反底夸克

? 电子 ? 正电子 ? 反τ子 ? τ子中微子

? μ子

? 反μ子

? τ子

费米子

轻子

? 反电子中微? 反μ子中微

? 电子中微子 ? μ子中微子

子 子 ? 反τ子中微

玻色子 规范玻色子 ? 光子

? 胶子

? W玻色子 ? Z 玻色子

目录 简介

基本粒子 强子 轻子 传播子 主要特征 粒子的质量 粒子的寿命

粒子具有对称性 自旋 守恒

双重属性粒子性和波动性 主要结构

基本粒子的秘密 夸 克 模 型 基本粒子表 第一代 第二代 第三代

基本粒子理论

一个发展中的理论

各种大统一模型理论相继提出 基本粒子分族特性

基本粒子和相互作用的标准模型 基本粒子物理学 第一阶段 第二阶段 第三阶段 同名电影 基本资料 演员表 职员表 制作发行 幕后制作 幕后花絮 影片评价 剧情简介 展开 简介

基本粒子 强子 轻子 传播子 主要特征 粒子的质量 粒子的寿命 粒子具有对称性 自旋 守恒

双重属性粒子性和波动性 主要结构 基本粒子的秘密 夸 克 模 型 基本粒子表 第一代 第二代 第三代

基本粒子理论

一个发展中的理论

各种大统一模型理论相继提出 基本粒子分族特性

基本粒子和相互作用的标准模型 基本粒子物理学

第一阶段 第二阶段 第三阶段 同名电影 基本资料 演员表 职员表 制作发行 幕后制作 幕后花絮 影片评价 剧情简介 展开

编辑本段简介 基本粒子

名称:基本粒子

英语名称:elementary particle

基本粒子是指人们认知的构成物质的最小最基本的单位。但在夸克理论提出后,人们认识到基本粒子也有复杂的结构,故现在一般不提“基本粒子”这一说法。根据作用力的不同,粒子分为强子、轻子和传播子三大类 强子

强子就是是所有参与强力作用的粒子的总称。它们由夸克组成,已发现的夸克有六种,它们是:顶夸克、上夸克、下夸克、奇异夸克、粲夸克和底夸克。其中理论预言顶夸克的存在,2007年1月30日发现于美国费米实验室。现有粒子中绝大部分是强子,质子、中子、π介子等都属于强子。(另外还发现反物质,有著名的反夸克,现已被发现且正在研究其利用方法,由此我们推测,甚至可能存在反地球,反宇宙)奇怪的是夸克中有些竟然比质子还重,这一问题还有待研究。

轻子

轻子就是只参与弱力、电磁力和引力作用,而不参与强相互作用的粒子的总称。轻子共有六种,包括电子、电子中微子、μ子、μ子中微子、τ子、τ子中微子。电子、μ子和τ子是带电的,所

基本粒子

有的中微子都不带电,且所有的中微子都存在反粒子;τ子是1975年发现的重要粒子,不参与强作用,属于轻子,但是它的质量很重,是电子的3600倍,质子的1.8倍,因此又叫重轻子。

补充:

已经发现的轻子包括电子、μ子(渺子)、τ子(陶子,重轻子)三种带一个单位负电荷的粒子,分别以e-、μ-、τ-表示,以及它们分别对应的电子中微子、μ子中微子、τ子中微子三种不带电的中微子,分别以ve、νμ、ντ表示。加上以上六种粒子各自的反粒子,共计12种轻子。

轻子不一定都很轻,τ子的质量比很多重子都大。 轻子是基本粒子的一族,与玻色子和夸克不同。

所有已知带电轻子都可带有一正电荷或一负电荷,视乎他们是粒子还是反粒子。所有中微子和它们的反粒子都是电中性的。 传播子

传播子也属于基本粒子。传递强作用的胶子共有8种,1979年在三喷注现象中被间接发现,它们可以组成胶子球,由于色禁闭现象,至今无法直接观测到。光子传递电磁相互作用,而传递弱作用的W+,W-和Z0,胶子则传递强相互作用。重矢量玻色子是1983年发现的,非常重,是质子的80一90倍。[1]

编辑本段主要特征

基本粒子要比原子、分子小得多,现有最高倍的电子显微镜也不能观察到。质子、中子的大小,只有原子的十万分之一。而轻子和夸克的尺寸更小,还不到质子、中子的万分之一。

粒子的质量

粒子的质量是粒子的另外一个主要特征量。按照粒子物理的 规范理论,所有规范粒子的质量为零,而规范不变性以某种方式 被破坏了,使夸克、带电轻子、中间玻色子获得质量。现有的粒子质量范围很大。光子、胶子是无质量的,电子质量很小,π介子质量为电子质量的280倍;质子、中子都很重,接近电子质量的2000倍,已知最重的粒子是顶夸克。己发现的六种夸克,从下夸克到顶夸克,质量从轻到重。中微子的质量非常小,目前己测得的电子中微子的质量为电子质量的七万分之一,已非常接近零。

粒子的寿命

粒子的寿命是粒子的第三个主要特征量。电子、质子、中微子是稳定的,称为 \长寿命\粒子;而其他绝大多数的粒子是不稳定的,即可以衰变。一个自由的中子会衰变成一个质子、一个电子和一个中微子; 一个π介子衰变成一个μ子和一个中微子。粒子的寿命以强度衰减到一半的时间来定义。质子是最稳定的粒子,实验已测得的质子寿命大于10的33次方年。(右图片绘制:张嘉年)

粒子具有对称性

粒子具有对称性,有一个粒子,必存在一个反粒子。1932年科学家发现了一个与电子质量相同但带一个正电荷的粒子,称为正电子;后来又发现了一个带负电、质量与质子完全相同的粒子,称为反质子;随后各种反夸克和反轻子也相继被发现。一对正、反粒子相碰可以湮灭,变成携带能量的光子,即粒子质量转变为能量;反之,两个高能粒子碰撞时有可能产生一对新的正、反粒子,即能量也可以转变成具有质量的粒子。 自旋

粒子还有另一种属性—自旋。自旋为半整数的粒子称为费米子,为整数的称为玻色子。 守恒

物质是不断运动和变化的,在变化中也有些东西不变,即守恒。粒子的产生和衰变过程就要遵循能量守恒定律。此外还有其他的守恒定律,例如轻子数和夸克数守恒,这是基于实验上观察不到单个轻子和夸克的产生和湮灭,必须是粒子、反粒子成对地产生和湮灭而总结出来的。

双重属性粒子性和波动性

微观世界的粒子具有双重属性粒子性和波动性。描述粒子的粒子性和波动性的双重属性,以及粒子的产生和消灭过程的基本理论是量子场论。量子场论和规范理论十分成功地描述了粒子及其相互作用。 编辑本段主要结构 基本粒子的秘密

1933年,狄拉克关于正电子存在的预言被证实,1

保罗·狄拉克

936年安德森因此获得诺贝尔物理学奖。1955年塞格雷和钱伯林利用高能加速器发现了反质子,他们因此获1959年物理奖。第二年又有人发现了反质子。1959年王淦昌等人发现了反西格玛负超子。这些都为反物质的存在提供了证据。莱因斯等利用大型反应堆,经过3年的努力,终于在1956年直接探测到铀裂变过程中所产生的反中微子。他因此获 1995年物理学奖。到1968年,人们才探测到了来自太阳的中微子。1947年鲍威尔利用自己发明的照相乳胶技术在宇宙线中找到了1934年汤川秀树提出的介子场理论中预言的介子。汤川秀树获1949年物理奖,鲍威尔获 1950年物理奖。到50年代末,基本粒子的数目已达30种。这

些粒子绝大多数是从宇宙射线中发现的。自1951年费米首次发现共振态粒子以来,至80年代已发现的共振态粒子达300多种。 所有的基本粒子都是共振态,共振态的发现其实已经揭开了基本粒子的秘密,即所有的基本粒子都是共振态.共振态分二类,一类是不稳定的,如强子类;另一类是稳定的,如电子.中子等.它门不容易发生自发衰变.不存在绝对稳定的基本粒子,如电子在一定的条件下也会堙灭(与正电子相遇时)。产生基本粒子的外因是物质波的交汇,交汇处形成波包.内因是交汇处发生了共振,客观表现为共振态--即基本粒子的产生. 夸 克 模 型

基本粒子如此之多,难道它们真的都是最基本、不可

夸克模型

分的吗?近40年来大量实验实事表明至少强子是有内部结构的。1964年盖尔曼提出了夸克模型,认为介子是由夸克和反夸克所组成,重子是由三个夸克组成。他因此获1969年物理奖。1990年弗里德曼、肯德尔和泰勒因在粒子物理学夸克模型发展中的先驱性工作而获物理奖。1965年,费曼、施温格、朝永振一郎因在量子电动力学重整化和计算方法的贡献,对基本粒子物理学产生深远影响而获物理奖。温伯格和萨拉姆等以夸克模型为基础,完成了描述电磁相互作用和弱相互作用的弱电统一理论。他们因此而获1979年物理奖。目前统一场论的发展正向着把强相互作用统一起来的大统一理论和把引力统一进来的超统一理论前进。并且这种有关小宇宙的理论与大宇宙研究的结合,正在推进着宇宙学的进展。 如今,人类为了把宇宙中的四大基本力统一起来,于是Gabriele Veneziano创造了弦论,弦论的一个基本观点就是,自然界的基本单元不是电子、光子、中微子和夸克之类的粒子。这些看起来像粒子的东西实际上都是很小很小的弦的闭合圈(称为闭合弦或闭弦),闭弦的不同振动和运动就产生出各种不同的基本粒子。它已经成为人类探寻宇宙奥秘的一个非常重要的理论

基本粒子-夸克模型

编辑本段基本粒子表

基本粒子的概念也在随着物理学的发展而不断的变化着,人们的认识也在朝着揭示微观世界的更深层次不断地深入。 “基本粒子”的“祖孙”三代

10飞米 原子核的特写

从汤姆孙发现电子到1932年发现中子,人们认识到质子、中子、电子和光子可以称为基本粒子。当时一度认为一切都已搞清楚:质子和中子构成一切原子核;原子核和电子则构造了自然界的一切原子和分子,而光子仅仅是构成光与电磁波的最小单元。然而好景不长,对物质结构的这样一种“圆满”的解释并没能持续多久,人们很快发觉当时所发现的基本粒子不能圆满地解释核力。

第一代

35岁著名的日本物理学家汤川秀树(1907~1981年)大胆假设,很可能还有未曾发现的新粒子。汤川秀树认为,就像电磁相互作用是通过交换光子而实现的那样,核力是通过核子间交换一种介子而实现的。他还估算出了这种粒子的质量大约是电子质量的200倍。两年之后,美国物理学家卡尔·戴维·安德孙(1905~年)在宇宙射线中发现了一种带电粒子,它的质量是电子的200倍左右,被命名为“m(缪)介子”。理论预言的成功使人们倍感欣慰,但进一步的考察却令人十分扫兴。因为这种m介子根本不与核子相互作用,很明显,它不可能是汤川秀树所预言的粒子。

1947年,巴西物理学家塞色,M·G·拉帝斯等人利用核乳胶在宇宙射线中又发现了一种介子——p介子。p介子的性质完全符合汤川秀树的预言,能够解释核力。实际上,“m介子”不是介子而是一种轻子,所以现在将m介子称为“m 子”。到1947年,人们认识的粒子已达14种之多。其中包括当时已发现的光子(g),正负电子(e±),正负m 子(m ±),三种p介子(p±,p0),质子(p)和中子(n)10种;另外4种就是1956年在实验室中被发现的正反电子中微子、反质子和反中子。这14种粒子各有用武之地,其中质子、中子和电子构成一切稳定的物质;光子是电磁力的传递者,p介子传递核力,中微子在b衰变中扮演不可缺少的角色(b衰变是原子核自发地放射出电子或正电子,或者俘获原子内电子轨道上的一个电子,而发生的转变);而m子则在宇宙射线中出现。以上这些就构成了第一代粒子。 第二代

稳定的秩序似乎并没有维持多久,“完满”的旧理论很快就被一系列新的疑问所冲破。在发现p 介子的1947年,人们利用宇宙射线在云室中拍下了两张有V字形径迹的照片,衰变产物是p±介子和质子(p)。这两种径迹不能用任何当时已发现的第一代粒子来解释,于是人们很自然的想到,这一定是两种未发现的粒子衰变所形成的。在之后的几年里,人们拍摄了十多万张宇宙射线照片,终于发现了这两种不带电的新粒子。其中一个质量为电子质量的

1000倍,现在被叫做“k0介子”;另一个约为电子质量的2200倍,现在称为 l粒子(读“兰布塔”)。我们称它们为第二代粒子,这是因为它们有两个明显的特点:(1) 产生快,衰变慢;(2) 成对(协同)产生,单个衰变。这些特点用过去的理论是无法解释的,所以又称它们为“奇异粒子”。

为了对这些奇异粒子进行定量研究,光靠宇宙射线是不够的。50 年代初,一些大型加速器陆续建成,使人们有可能利用加速器所加速的粒子来轰击原子核,以研究奇异粒子。 到1964年人们又陆续发现了一批奇异粒子,使人们发现的粒子种类达到了33种。这些奇异粒子统称为“第二代粒子”。 第三代

如果我们把已发现的30多种粒子按它们的稳定程度来分类,那么其中有的粒子是稳定的,例如质子、电子等;有的粒子却要自发地衰变成其它粒子,例如m ±、p±、π0、k0、λ0……等。它们衰变的时间一般在10-20 ~10-16秒或大于10-10秒,分别属于电磁作用衰变和弱作用衰变。到了60年代,由于加速器的能量逐步提高和高能探测器的迅速发展,在实验上也发现了衰变时间在10-24~10-23秒范围的快衰变粒子,其衰变属强作用衰变。这些粒子被称为“共振态粒子”,也称“第三代粒子”。由于它们的出现,使粒子种类猛增到上百. 编辑本段基本粒子理论

一个发展中的理论

于基本粒子的结构、相互作用和运动转化规律的理论。它的理论体系就是量子场论。按照量子场论的观点,每一类型的粒子都由相应的量子场描述,粒子之间的相互作用就是这些量子场之间的耦合,而这种相互作用是由规范场量子传递的。

20世纪30年代以来,基本粒子理论在实验的基础上有了很大进展。在粒子结构方面,人们已经通过对称性的研究深入到了一个层次,肯定了强子是由层子和反层子组成的,对真空特别是对真空自发破缺也有了新的认识。在相互作用方面,发展了可描述电磁相互作用的量子电动力学,发展了能统一描述弱相互作用和电磁相互作用的弱电统一理论,可用于描述强相互作用的量子色动力学。它们无一例外都是量子规范场理论,并且都在很大程度上与实验一致,从而使人们对各种相互作用的规律性有了更深一层的了解。 基本粒子理论在本质上是一个发展中的理论,它在许多方面还不能令人满意,其中有两个具有哲学意义的理论问题尚待澄清,即:层次结构问题(见物质结构层次)和相互作用统一问题(见相互作用的统一理论)。在物质结构的原子层次上,可以把原子中的电子和原子核分割开来;在原子核层次上,也可以把组成原子核的质子和中子从原子核中分割出来。可是进入到\基本粒子\层次后,情况有了变化。这种变化在于强子虽然是由带\色\的层子和反层子组成的,但却不能把层子或反层子从强子中分割出来。这种现象被称为\色\禁闭。于是,在\基本粒子\层次,物质可分的概念增添了新的内容。可分并不等于可分割,强子以层子和反层子作为组分,但却不能从强

基本粒子特征

子中分割出层子和反层子。\色\禁闭现象的原因至今还未能从理论上找到明确答案。80年代已知的层子、反层子已达36种,轻子、反轻子已达12种,再加上作为力的传递者的规范场粒子以及 Higgs粒子,总数已很多,这就使人们去设想这些粒子的结构。物理学家们对此已经给出许多理论模型,但各模型之间差别很大,近期内还很难由实验验证和判断究竟哪个模型正确。

各种大统一模型理论相继提出

在弱电统一理论获得成功之后,人们又探求强作用和弱作用、电磁作用三者之间的统一,提出了各种大统一模型理论。这种理论预言质子也会衰变,其寿命约为1032±2年。但还没有得到实验上的证实。在探索力的统一理论时不能不考虑引力。但引力和弱作用力、电磁作用力、强作用力有重要差别,因为它直接与空间、时间的测度有联系,它的传递者──引力子的自旋不同于其他三种作用力的传递者,它的耦合常数有量纲~(质量)-2 ,从而会出现无穷多种发散,不能重整化。如果再考虑到A.爱因斯坦所提出的引力方程的非线性性质,就更增加了引力理论量子化、重整化的困难。初步的探讨认为,引力场也是一种规范场,这就意味着引力和其他三种基本力在逻辑上最终会统一起来。但从问题的深度上可以看到,有一些关键性的因素人们还没有掌握。 基本粒子分族特性 族 轻子 μ e ve vμ 重子 p n λ Σ+ Σ0 Σ- Ξ- Ξ0 介子 π+ π- π0 K+ K- 电荷 -e -e 0 0 +e 0 0 +e 0 -e -e 0 +e -e 0 +e -e 质量(注) 106 0.511 0 0 938.26 939.55 1115.6 1189.4 1192.5 1197.3 1321.2 1314.7 139.6 139.6 135.0 493.8 493.8 平均寿命(s) 2.2*10^-6 稳定 稳定 稳定 稳定 930 2.5*10^-10 8*10^-10 小10^-14 1.5*10^-10 1.7*10^-10 3*10^-10 2.6*10^-8 2.6*10^-8 10^-6 1.2*10^-8 1.2*10^-8 于共有的衰变产物 evμv-e —— —— —— —— pev-e pπ-,nπ0 pπ0,nπ+ λ,辐射 nπ- λπ- λπ0 μ+vμ μ-vμ 辐射 μ+vμ,π+π0 μ-vμ,π-π0 反粒子 μ+ e+ v-e v-μ p- n- λ- Σ- Σ+ Σ+ Ξ+ Ξ0 π- π+ π0 K- K+ K0 K0(反粒子) η 0 0 0 497.8 497.8 548.8 8.6*10^-11 (快衰变方式) 5.4*10^-8 (慢衰变方式) 衰变方式与K0相同 —— π+π-,2π0 3π0,π+π-π0 π+μv-μ,π+ev-,π-μ+vμ-,π-e+v —— 3π0,π0π+π-,π+π-,辐射 K0 K0 η 注:表中粒子的质量是按能量单位1MeV(兆电子伏)给出的。如果与日常单位比较1MeV相当于以1kW功率工作1.6*10^-16s.

编辑本段基本粒子和相互作用的标准模型

相互作用标准模型(英文)

相互作用标准模型

编辑本段基本粒子物理学

研究比原子核更深层次的微观世界中物质的结构、性质,和在很高能量下这些物质相互转化及其产生原因和规律的物理学分支。又称高能物理学。其发展大致经历3个阶段。 第一阶段

(1897~1937) 可追溯到1897年发现第一个基本粒子电子。1932 年 J.查德威克在用a粒子轰击核的实验中发现了中子,随即人们认识到原子核是由质子和中子构成的,从而形成所有物质都是由基本的结构单元——质子、中子、电子构成的统一的世界图像。质子、中子、电子和A.爱因斯坦提出并被 R.A.密立根和 A.H. 康普顿等人实验证实的光子、W.泡利假设存在的中微子(1956年最终被实验证实)以及P.A.M.狄拉克预言并被 C.D.安德森 1932 年在宇宙线中观察到的正电子都被认为是基本粒子或亚原子粒子。

Lucky Red [意大利] ….. (2006) (Italy) (theatrical)

Momentum Pictures [英国] ….. (2006) (UK) (all media) Rialto Film AG [瑞士] ….. (2006) (Switzerland) (theatrical) TFM Distribution [法国] ….. (2006) (France) (theatrical) 其它公司

Medienboard Berlin-Brandenburg [德国] ….. funding 上映日期 上映国家 德国 德国 奥地利 意大利 瑞士 意大利 罗马尼亚 英国 英国 瑞士 法国 比利时 荷兰 荷兰 西班牙 加拿大 瑞典 斯洛文尼亚 捷克 波兰 爱沙尼亚 日本 匈牙利 土耳其 英文名 Germany Germany Austria Italy Switzerland Italy Romania UK UK Switzerland France Belgium Netherlands Netherlands Spain Canada Sweden Slovenia Czech Republic Poland Estonia Japan Hungary Turkey 上映时间(备注) 2006年2月12日 ….. (Berlin International Film Festival) (premiere) 2006年2月23日 2006年2月24日 2006年3月31日 2006年4月6日 ….. (German speaking region) 2006年4月21日 2006年6月7日 ….. (Transilvania International Film Festival) 2006年7月7日 ….. (Cambridge Film Festival) 2006年7月14日 2006年8月30日 ….. (French speaking region) 2006年8月30日 2006年9月13日 2006年9月18日 ….. (Film by the Sea Film Festival) 2006年10月5日 2006年10月6日 2006年10月7日 ….. (Vancouver International Film Festival) 2006年10月13日 2006年10月26日 2006年11月9日 2006年11月24日 2006年12月8日 ….. (Tallinn Black Nights Film Festival) 2007年3月24日 2007年4月12日 2007年5月4日 幕后制作

系出名门

影片根据法国作家米歇尔·乌埃勒贝克1998年的同名畅销小说改编,可以说,米歇尔·乌埃勒贝克是当今法国文坛在世界最具影响的文学名家,他的作品早已成为出版社竞相争抢的摇钱树,而其囊括的奖项更是不胜枚举。

米歇尔·乌埃勒贝克于1958年2月26日出生在留尼汪岛,父亲是高山向导,母亲是麻醉师。6岁时,他被交给祖母抚养,身为共产主义者的祖母给他取了化名似的名字“米歇尔”。年幼时,米歇尔就具有超越年龄的思考和判断力,同学们称他为“爱因斯坦”。 17岁的米歇尔考入高等农业学校,1980年,他拿到了农机工程师的学位,并结婚成家。可随着儿子的出生和漫长失业生涯的延续,他的婚姻也画上了句号,沉重的打击甚至让他住进了精神病院。

米歇尔的文学之路从20岁时拉开序幕,他开始写诗,1985年,他遇到了《新法兰西文学评论》的主编米歇尔·布尔多,第一次发表了自己的诗歌,并和布尔多结下了深厚的友情。1991年,米歇尔出版了关于美国恐怖小说家洛夫克拉夫特的传记,14年后,英文版面世,史蒂芬·金为此书作序。

米歇尔曾进入国民议会大厦任行政秘书,但很快离开。1992年,他出版了第一本诗集,获Tristan Tzara奖。1994年,他推出了自己的小说处女作《Extension du domaine de la lutte》,1999年,这本小说被搬上大银幕。1996年,他的第二本诗集获得了法国最重要的文学奖--花神奖。两年后,他的作品合集再获国家文学新秀大奖,第二本小说《基本粒子》被译成25种文字出版,并获Novembre奖。此后,米歇尔前往爱尔兰和西班牙继续创作,2005年的《La possibilité d'une île》成为联盟奖的得主。

德国全明星阵容 本片导演奥斯卡·罗勒从影不过10余年,但他的作品虽大多名不见经传,却很受各种大小电影节的关注。1997年的《Silvester Countdown》在慕尼黑电影节获奖;2000年的《无家可归》(Unberührbare, Die)又分别在乌拉圭、鹿特丹、迈阿密和伊斯坦布尔等电影节连连夺奖;2003年的《焦虑》获柏林电影节金熊奖提名;2004年的《求爱三兄弟》(Agnes und seine Brüder)在巴伐利亚电影节摘走最佳剧本奖。他出身文学家庭,年轻时辗转于伦敦、罗马和纽伦堡,曾从事记者、编剧和小说作家,他与众不同的影片风格与其文学底蕴和剧本特色密不可分。

《基本粒子》获今年柏林电影节银熊奖,扮演布鲁诺的德国演员莫里茨·布莱特鲁继2001年以《死亡实验》称雄德国影坛之后,终于成为国际影帝。而扮演安娜贝尔的正是同他一起主演《罗拉快跑》的弗兰卡·波坦特。 在制片人中,伯恩德·伊辛格位居首席,他的成功作品包括《神奇四侠》、《生化危机》和《帝国陷落》等。

幕后花絮 ·对于这部充满沉重内涵的黑色小说,导演奥斯卡·罗勒用了3年时间才完成剧本改编。 ·莫里茨·布莱特鲁最初不想接受布鲁诺的角色,因为与他在《求爱三兄弟》中的角色过于相近,但最终,只有布鲁诺最适合莫里茨。 ·在同米歇尔·乌埃勒贝克会面之前,一直是其经纪人负责同影片制片人进行磋商,时间长达1年半之久。 影片评价

一句话评论 米歇尔·乌埃勒贝克的小说本来不适合拍成电影,但德国导演奥斯卡·罗勒的努力让人称道。

《基本粒子》改编自法国作家米歇尔·乌艾尔贝克的同名畅销小说,影片主角是一对同父异母的兄弟米歇尔和布鲁诺,他们的性格和命运都截然不同:分子生物学家米歇尔出于对人类世界和社会现实的失望,研究和创造了人类无性繁殖的理论,导致了现有人类的灭亡和新人类的诞生,而放浪形骸的浪子布鲁诺作为70年代性解放潮流的代表,最后进了精神病院。

剧情简介

迈克尔和布鲁诺是一对同母异父的兄弟,因为他们的母亲曾是60年代性解放的信奉者,于是母亲的放浪形骸对兄弟俩的性格也造成了深重影响,而迈克尔与布鲁诺完全相悖。迈克尔是一位分子生物学家,专注于基因实验,对女人视若不见。布鲁诺是一位外表迷人的学校教师,却沉浸于迷乱的欲求之中,甚至对15岁大的女学生都不肯放过,爱情隔绝于他的身心之外。

布鲁诺的玩世不恭事出有因,年少时他曾同母亲有过不伦之恋,一只猫咪目睹了两人的交欢并破坏了布鲁诺的高潮快感,布鲁诺一气之下竟残忍的杀死了猫咪。此后的他一直在风尘女子的躯体上寻求满足,直到邂逅了克里斯蒂娜,即使两人以性开始,但布鲁诺还是感知到爱的存在。

同时,迈克尔也遇到了自己童年的梦中情人安娜贝尔,并且两人顺理成章的开始相恋。然而世事难料,怀孕后的安娜贝尔因患有重病,必须堕胎并切除子宫;而克里斯蒂娜也因突发骨病而双腿瘫痪,布鲁诺虽然不离不弃,可仍无法阻止克里斯蒂娜离开人世,深受打击的布鲁诺精神崩溃,只能在疯人院中了却余生……

本文来源:https://www.bwwdw.com/article/dxkr.html

Top