Quantum phase transitions in an effective Hamiltonian fast and slow systems

更新时间:2023-05-21 07:15:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

An effective Hamiltonian describing interaction between generic "fast" and a "slow" systems is obtained in the strong interaction limit. The result is applied for studying the effect of quantum phase transition as a bifurcation of the ground state of the "

Quantumphasetransitionsinane ectiveHamiltonian:fastandslowsystems

IsabelSainz,1A.B.Klimov,2andLuisRoa3

SchoolofInformationandCommunicationTechnology,

RoyalInstituteofTechnology(KTH),Electrum229,SE-16440Kista,Sweden

2

DepartamentodeF´ sica,UniversidaddeGuadalajara,Revoluci´on1500,44420Guadalajara,Jalisco,Mexico.

3

CenterforQuantumOpticsandQuantumInformation,DepartamentodeF´ sica,

UniversidaddeConcepci´on,Casilla160-C,Concepci´on,Chile.

(Dated:February3,2008)

Ane ectiveHamiltoniandescribinginteractionbetweengenericfastandaslowsystemsisob-tainedinthestronginteractionlimit.Theresultisappliedforstudyingthee ectofquantumphasetransitionasabifurcationofthegroundstateoftheslowsubsysteminthethermodynamiclimit.Examplesasatom- eldandatom-atominteractionsareanalyzedindetail.

PACSnumbers:42.50.Ct,42.50.Hz,42.50.Fx

1

arXiv:0801.4689v1 [quant-ph] 30 Jan 2008

I.INTRODUCTION

Frequently,intheprocessofinteractionbetweentwoquantumsystems,onlyoneofthemcanbedetectedex-perimentally.Inthiscase,avarietyofphysicale ectsappearintheprocessofsuchinteractionwhichcanbede-scribedintermsofane ectiveHamiltoniancorrespond-ingtotheobservedsystem.Thesimplestexampleofsuchasituationariseswhenafastsysteminteractswithaslowsystem.Then,thefastsystemcanbeadiabaticallyelim-inatedandtheslowsystemisdescribedbyane ectiveHamiltonian.TheseconsiderationswereassumedinthefamousBorn-Oppenheimerapproximation.Aregularap-proachtothequantumdynamicsoftheobservedsystemisprovidedbytheLietransformationmethodTheadvantageofthismethodconsistsinthepossibilityofvaryingthesystem’sparameters,changingrelationsbe-tweenthem,whichallowsustodescribedi erentphysicalregimesusingthesamemathematicaltool.Inparticu-lar,suchanimportantexampleasexpansionontheres-onancesinquantumsystemsnotpreservingthenumberofexcitationscanbeobtainedInthiscaseagenericHamiltoniangoverninginteractionoftwosubsystemsbe-yondtheRotatingWaveApproximation(RWA)canberepresentedasaseriesinoperatorsdescribingallpossibletransitionsinthesystem.

Severalinterestingfeaturesappearingintheprocessofinteractionofquantumsystemscanberealizedbystudy-ingevolutionofonlytwogenericquantumsystemwithonequantumchannel.Eveninsuchasimplecasewemaydiscriminateatleastthreeinterestinglimits:a)whentheinteractionconstantgismuchhigherthanthecharacter-isticfrequenciesofbothinteractingsystems;b)whengissmallerthanthefrequenciesofthesystemsandc)whengishigherthanthefrequencyofonesystembutsmallerthatthefrequencyoftheotherone.

Thea)caseofverystrongcouplingshouldbestudiedcarefully,becauseusingtheexpansionparameterlikeaninteractionconstantoveracharacteristicfrequencycouldbequitetricky.Forinstance,thetypeofthespectrumcorrespondingtothenon-perturbedandtotheperturbed

systemscanbedi erent:eithercontinuousordiscrete.Theb)casecorrespondstoasituationwherethereso-nanceexpansionisapplicable.Thisparticularcaseleadstodispersive-likeinteractionsAsitwasshowninRef.theevolutionisgovernedbyane ectiveHamiltoniandescribingacertainresonantinteractionandtherepre-sentationspaceofthetotalsystemcanbealwaysdividedinto(almost)invariantsubspaces.

Thelastcasec)possessesapeculiarproperty:besidesof ndingacorrespondinge ectiveHamiltonian,wecanalsoprojectitouttothelowerenergystateofthefastsystem,whichwouldnevergetexcitedundergivenre-lationsbetweenthesystem’sparameters,andthus,de-scribeane ectivedynamicsoftheslowsysteminthelimitofstronginteraction.Itiswellknownthatinthisregimesuchaninterestinge ectasQuantumPhaseTran-sitionsmayoccur.

Thequantumphasetransitions(QPT)areacommonfeatureofnon-linearquantumsystems.Suchtransitionsoccuratzerotemperatureandareassociatedwithanabruptchangeinthegroundstatestructure.QPTarerelatedtosingularitiesintheenergyspectrumand,atthecriticalpointsde ningQPT,thegroundstateen-ergyisanon-analyticfunctionofthesystem’sparame-tersQualitatively,forawideclassofquantumsys-tems,severalimportantpropertiesofQPTcanbestud-iedintheso-calledthermodynamic(semiclassical)limit[7,8].Then,QPTcanbeanalyzedintermsofaclassicale ectivepotentialenergysurface[9].InthislanguageQPTarerelatedtotheappearanceofanewclassicalseparatrixwhenthecouplingparametersacquirecertainvalues.Accordingtothestandardsemiclassicalquantiza-tionschemeandthecorrespondenceprinciple,theenergydensityisproportionaltotheclassicalperiodofmotion,divergingontheseparatrix,whichexplainsahighdensityofquantumstatesatthecriticalpoints.

Inthisarticlewestudye ectiveHamiltoniansdescrib-ingevolutionofagenericquantumsystemXinteract-ingwithaquantumsystemYinthecasewherethecharacteristicfrequencyofthesystemXisessentiallylowerthanthecorrespondingfrequencyofthesystem

An effective Hamiltonian describing interaction between generic "fast" and a "slow" systems is obtained in the strong interaction limit. The result is applied for studying the effect of quantum phase transition as a bifurcation of the ground state of the "

2

Y,ωX ωY,andtheinteractionconstantgsatis esthestrongcouplingcondition:ωX g ωY.Weshowthat,dependingonthetypeofinteractionandthenatureofquantumsystemsdi erentphysicalsituationstakeplace,butgenericallysuche ectiveHamiltoniansdescribeQuantumPhaseTransitionsintheslowsystem.

II.

EFFECTIVEHAMILTONIAN

Now,wewillbeinterestedinthelimitwheretheslowsystemfrequencyislessthan/oroftheorderofthecou-plingconstant,ω1 g ω2.FollowingthemethoddescribedinRef.[2]wecanadiabaticallyremoveallthetermsthatcontainthefastsystem’stransitionop-erators,Y±.Inparticular,thecounter-rotatingtermX+Y++X Y andtherotatingtermX+Y +X Y+canbeeliminatedfromtheHamiltonian(1)byasubsequentapplicationofthefollowingLie-typetransformations:

U1=exp[ε(X+Y+ X Y )],U2=exp[ (X+Y X+Y )],

(4a)(4b)

LetusconsiderthefollowinggenericHamiltoniande-scribinganinteractionbetweentwoquantumsystems:

H=ω1X0+ω2Y0+g(X++X )(Y++Y ),

(1)

whereX0andY0arethefreeHamiltoniansoftheXandYsystemsrespectively,andsuchthatω1 ω2.TheaboveHamiltoniandoesnotpreservethetotalexcita-tionnumberoperatorN=X0+Y0and,inthelimitω1,ω2 g,leadstotheappearanceofmultiphoton-nm

typeinteractionsoftheformX+Y which,undercer-tainphysicalconditionsonthefrequenciesω1,2,describeresonanttransitionsbetweenenergylevelsofthewholesystem(see[3]andreferencestherein).

Theraising-loweringoperatorsX±,Y±describetran-sitionsbetweenenergylevelsofthesystemsXandYrespectivelyandconsequentlyobeythefollowingcom-mutationrelations:

[X0,X±]=±X±,

[Y0,Y±]=±Y±.

(2)

wherethesmallparameters,εand ,arede nedby 1.(5)

ω2 ω1

Thetransformations(4a)and(4b)generatedi erent

nknk

kindsofterms:suchasX±Y±+h.c.,X±Y +h.c.,nn

Y±+h.c.,andX±+h.c.withcoe cientsdependingonX0andY0.Undertheconditionω1,g ω2alltherapidlyoscillatingterms,i.e.thosecontainingpowersofY±,canberemovedbyapplyingtransformationssimilarto(4),withproperlychosenparameters.Then,theef-fectiveHamiltonianisdiagonalfortheoperatorsoftheYsystem.Theresultcanbeexpressedasapowerseriesofthesingleparameterδ=g/ω2 1.ε=

Itisworthnotingthatitisnotenoughthatδbeasmallparameterfortheformalexpansionin(4)(andthesubsequenttransformations).Abalanceisnecessarybe-tweenthee ectivedimensionsofthesubsystemsandδ.Thee ectivedimensionsofthesystemdependontheorderofthepolynomialsφ1,2,andonthepowersoftheelementsX±,0andY±,0involvedineachtransformation.Itwasshownbefore[3],thatthepowersofthesmallparametersareincreasingfasterthanthepowersofX±,0andY±,0,whichimpliesthatwecanfocusonthee ectivedimensionsintroducedwith(4).

Takingintoaccounttheabovementionedconsidera-tions,keepingonlytermsuptothirdorderinδanddis-regardingsmallcorrectionstothee ectivetransitionfre-quencies,wearriveatthefollowinge ectiveHamiltonian:

g

Wedonotimposeanyconditiononthecommutatorsbetweentransitionoperators,whicharegenerallysomefunctionsofdiagonaloperatorsandofsomeintegralsofmotion[N1,X0]=[N2,Y0]=0:

[X+,X ]= X0φ1(X0,N1),[Y+,Y ]= Y0φ2(Y0,N2),

(3a)(3b)

whereφ1(X0,N1)=X+X andφ2(Y0,N2)=Y+Y aresomepolynomialsofX0andY0respectively(fromnowonweomitthedependenceonintegralsN1,2inthearguments)and zφ(z)=φ(z) φ(z+1).Theobjects(X0,X±)and(Y0,Y±)areknownaspolynomialdeformedalgebrasslpd(2,R)[11].

Heff=ω1X0+ω2Y0 2ω1δ2 x, yΦ(X0,Y0+1)+gδ yφy(Y0)(X++X )

1+

2

An effective Hamiltonian describing interaction between generic "fast" and a "slow" systems is obtained in the strong interaction limit. The result is applied for studying the effect of quantum phase transition as a bifurcation of the ground state of the "

Becausethee ectiveHamiltonian(6)isdiagonalfor

the

operators

of

theY

fastsystem,wemayprojectitoutontoaminimalenergyeigenstateoftheYsystem,|ψ0 Y,substitutingY0byitseigenvaluey0:Y0|ψ0 Y=y0|ψ0 Y.The rstordere ectthencomesfrom(X++X )2the,whiletheterm~(X++X )4

term~

de nesa nestructureofthee ectivepotential,obtainedafterprojectingthee ectiveHamiltonian(6)ontothestate|ψ0 Y.

Itisimportanttostressthat,althoughδisasmallparameter,thee ectoftheterms~δn,n≥1,couldbeinprinciplecomparablewiththemaindiagonaltermω1X0,especiallyifthealgebraofXoperatorsdescribeabigsubsystem,i.e.,largespinorbigphotonnumber.Inthiscasenon-triviale ectssuchasQPTmayoccur.Now,wemayproceedwithanalysisofthee ectiveHamiltonian(6)inthethermodynamiclimit,focusingonthepossiblebifurcationofthegroundstate.

III.

EXAMPLES

A.

Atom- eldinteraction(Dickemodel)

TheHamiltoniangoverningtheevolutionofAsym-metricallypreparedtwo-levelatomsinteractingwithasinglemodeofquantized eldhastheform

H=ω1n +ω2Sz+g(S++S ) a +a

,(8)wheren =a aandSz,±aregeneratorsofthe(A+1)-dimensionalrepresentationofthesu(2)algebra.

1.E ective elddynamics

Firstletussupposethattheatomsformafastsubsys-temsothat,

X0=n ,X+=a ,X =a,

Y0=Sz,Y±=S±,

andthus,φy(Y0)=C2 S2

Cz+Sz

andφx(X0)=n ,where

2=A/2(A/2+1)istheeigenvalueoftheCasimiropera-torofthesu(2)algebra(integralofmotioncorrespondingtotheatomicsubsystem).

Projectingthee ectiveHamiltonianontothemini-mumenergystateoftheatomicsystem|0 at,sothaty0= A/2,weobtainthefollowinge ectiveHamilto-nianforthe eldmode:

Heff=ω 1n Agδ

a+a 2+gAδ3 a+a 4,(9)whereω 1=ω1(1 2Aδ2).

Rewriting(9)intermsofpositionandmomentumop-erators,

Heff=

ω 1

3

2

cosθ,Sx→

A

2

sinφsinθ,

andthusrewritethee ectiveHamiltonian(11)asaclas-sicalHamiltonianfunction,

Hcl=

A

1 ξ 2for

ξ>1.ItisworthnotingthattheglobalminimumofHclatξ<1convertsintoalocalmaximumforξ>1,sothatHcl(θ )<Hcl(θ ).Thismeansthattheatoms,initiallypreparedattheminimumoftheHamiltonianfunction,spontaneouslychangetheirgroundstateenergyatsomevalueofthesystem’sparameters.Classically,

An effective Hamiltonian describing interaction between generic "fast" and a "slow" systems is obtained in the strong interaction limit. The result is applied for studying the effect of quantum phase transition as a bifurcation of the ground state of the "

thisimpliesappearanceofaseparatrix,whichleadstothediscontinuityontheenergydensityspectruminthethermodynamiclimit.Itisalsoworthnotingthatthereisalossoftherotationalsymmetryinthisprocess:thenewgroundstateisobviouslynotinvariantunderrotationsaroundaxisx,whiletheinitialgroundstateisclearlyinvariantunderx-rotations.

Itiseasytoseethatthelasttwotermsin(12)areoflowerorderintheparameterAδandcanbeneglectedinthe rstapproximationfordescriptionofQPTatξ=1.

B.

Spin-spininteraction

ingsystemwhenthetotalexcitationnumberisnotpre-served.Analyzingthosee ectiveHamiltoniansinthethermodynamiclimitwehaveobservedabifurcationofthegroundstateleadingtothee ectoftheQuantumPhaseTransitions.

Itisinterestingtonotethat,formultidimensionalsys-tems,whenalgebraicallytheXsystemisadirectsumofseveralnon-interactingsubsystems,aninterestinge ectofgenerationofentangledstates(inthenon-preservingexcitationcase)canbeobserved.Really,letussupposethatin(1)X0,±=X0,±1+X0,±2,[Xj,1,Xj,2]=0,j=0,±;thenthecorrespondinge ectiveHamiltonian(uptoa rstnon-trivialorderinδ)takestheformHeff≈ω1(X0,1+X0,2)+ω2Y0+

gδ[(X+,1+X ,1)2+(X+,2+X ,2)2

+2(X+,1+X ,1)(X+,2+X ,2)] yφy(Y0),

wherewecanclearlyseethatthelasttermcontainstheoperatorproduct~X+,1X+,2which,togetherwithquadratictermsinX±,1(2),impliesaspontaneousgen-erationofentangledstatesofX1andX2startingfromtheminimumenergystate.Thiscanbecorroboratedbytheentanglingpowermeasurebyconsideringauniformdistributionoftheinitialfactorizedstates[12].Thuswecansaythat,intheregimestudiedhere,entanglementcanbegeneratedinabipartitesystemthevicinityofaPhaseTransition.

Asasecondexampleletusconsideradipole-dipolelikeinteraction,thatis,

X0=Sz1,X±=S±1,

Y0=Sz2,Y±=S±2.

Thee ectiveHamiltonianfortheslowspinsystem(afterprojectingontotheloweststateofthefastspinsystemwitheigenvalue A2/2)takestheformsimilarto(10),with

222

Heff=ω 1Sz1 2A2gδSx1+2A2ω1δSz1

4322

+16gA2δ3Sx1+24gδA2{Sx,Sz},

(13)

whereω 1=ω1 2A1ω1δ2 20gδ3A21.The rsttwo

termsaredominantforδ 1anddescribetheLipkin-Meshkovmodel,sothatthecriticalpointisreachedatξ=4A2A2 1=1inthethermodynamicallimit.The1gδ/ω

e ectoftherestofthetermsin(13)isnegligibleinthevicinityofξ=1.

IV.

CONCLUSIONS

Acknowledgments

Wededucethee ectiveHamiltonianofagenericslowquantumsysteminteractingwithanotherfastoscillat-

Oneoftheauthors(I.S.)thanksSTINT(SwedishFoundationforInternationalCooperationinResearchandHigherEducation)forsupport.Thisworkwassup-portedbyGrants:CONACyTNo

1080535.

[1]S.Steinberg,inLieMethodsinOptics(LectureNotesin

Physics250,45)(Springer-Verlag,Berlin,1987).[2]A.B.KlimovandL.L.S´anchez-SotoPhys.Rev.A61,

063802(2000);A.B.Klimov,L.L.S´anchez-Soto,A.Navarro,andE.C.Yustas,J.Mod.Opt.492211(2002);I.Sainz,A.B.Klimov,andLuisRoa,Phys.Rev.A73,032303(2006).

[3]A.B.Klimov,I.Sainz,S.M.Chumakov,Phys.Rev.A

68,063811(2003).[4]LuisRoa,A.Kr¨ugel,andC.Saavedra,Phys.Letts.A

366,563(2007).

[5]S.Sachdev,QuantumPhasetransitions(CambridgeUni-versityPress,Cambridge,1999).

[6]F.IachelloandN.V.Zam r,Phys.Rev.Lett.92,212501

(2004).

[7]W.D.Heiss,F.G.Scholtz,andH.B.Geyer,J.Phys.

A38,1843(2005);S.DusuelandJ.Vidal,Phys.

[8]

[9][10][11]

Rev.B71,224420(2005);P.ZanardiandN.Paunkoviquant-ph/0512249(2005).

H.J.Lipkin,N.Meshkov,andA.J.Glick,Nucl.Phys.62,188(1965);R.BotetandR.Jullien,Phys.Rev.B28,3955(1983);J.I.Cirac,M.Lewenstein,K.Mølmer,andP.Zoller,Phys.Rev.A57,1208(1998);F.LeyvrazandW.D.Heiss,Phys.Rev.Lett.95,050402(2005);O.Casta nos,R.L´opez-Pe na,J.G.Hirsch,andE.L´opez-Moreno,Phys.Rev.B74,104118(2006).

G.Liberti,F.PlastinaandF.Piperno,Phys.Rev.A74,022324(2006).

P.W.Milonni,J.R.Ackerhalt,andH.W.Galbraith,Phys.Rev.Lett.50,966(1983);K.ZaheerandM.S.Zubairy,Phys.Rev.A37,1628(1988).

P.W.Higgs,J.Phys.A12,309(1979);M.Ro cek,Phys.Lett.B255,554(1991);D.Bonatsos,C.Daskaloyannis,lazissis,Phys.Rev.A47,3448(1993);P.V.

An effective Hamiltonian describing interaction between generic "fast" and a "slow" systems is obtained in the strong interaction limit. The result is applied for studying the effect of quantum phase transition as a bifurcation of the ground state of the "

Karassiov,serResearch13,188(1992);P.V.Karassiov,J.Phys.A27,153(1994);V.P.KarassiovandA.B.Klimov,Phys.Lett.A189,43(1994);C.Quesne,J.Phys.A28,2847(1995);N.Debergh,J.Phys.A30,5239(1997);B.Abdesselam,J.Beckers,A.Chakrabarti,andN.Debergh,J.Phys.A29,3075(1996);V.Sunilkumar,B.A.Bambah,R.Jagannathan,P.K.Panigrahi,andV.

Srinavasan,J.Opt.B:QuantumSemiclass.Opt.2,126(2000).

[12]P.Zanardi,C.Zalka,andL.Faoro,Phys.Rev.A62,

030301(R)(2000);X.WangandP.Zanardi,Phys.Rev.A66,044303(2002).

本文来源:https://www.bwwdw.com/article/dt14.html

Top