Universal Magnetic Properties of Frustrated Quantum Antiferromagnets in Two Dimensions
更新时间:2023-03-20 16:54:01 阅读量: 实用文档 文档下载
- universal推荐度:
- 相关推荐
We present a theory of frustrated, two-dimensional, quantum antiferromagnets in the vicinity of a quantum transition from a non-collinear, magnetically-ordered ground state to a quantum-disordered phase. Using a sigma-model for bosonic, spin-1/2, spinon fi
3
9
9
1
v
o
N
8
1
1
v
5
40
1
1
3
9
/
t
am
-
d
n
co
:v
i
X
r
aUniversalmagneticpropertiesoffrustratedquantumantiferromagnetsintwodimensionsAndreyV.Chubukov1,2,T.Senthil1andSubirSachdev11DepartmentsofPhysicsandAppliedPhysics,P.O.Box208284,YaleUniversity,NewHaven,CT06520-8284and2P.L.KapitzaInstituteforPhysicalProblems,Moscow,Russia(February1,2008)AbstractWepresentatheoryoffrustrated,two-dimensional,quantumantiferromag-netsinthevicinityofaquantumtransitionfromanon-collinear,ingasigma-modelforbosonic,spin-1/2,spinon elds,weobtainuniversalscalingformsforavarietyofobservables.Ourresultsarecomparedwithnumericaldataonthespin-1/2triangularantiferromagnet.
TypesetusingREVTEX
We present a theory of frustrated, two-dimensional, quantum antiferromagnets in the vicinity of a quantum transition from a non-collinear, magnetically-ordered ground state to a quantum-disordered phase. Using a sigma-model for bosonic, spin-1/2, spinon fi
Ausefulclassi cationoftwo-dimensional,quantum,Heisenbergantiferromagnetsispro-videdbythestructureofthemagnetically-orderedgroundstate:thespin-condensatesonthesitescaneitherbecollinearornon-collineartoeachother.Collinearmagnetshavebeenextensivelystudiedinrecentyearsandmanyoftheirpropertiesarereasonablywellunder-stood.TheypossessanO(3)/O(2)orderparameterwhose uctuationsdescribethelowtemperature(T)propertiesofthemagnetically-orderedstate[1].Thequantum-disorderedstatehasonlyintegerspinexcitations(thespinonsarecon ned)andspin-Peierlsorderisexpectedforcertainvaluesofthesingle-sitespin[2].The nite-Tcrossoverbetweenthesetwostateshasalsobeenstudiedinsomedetail[3].
Lessisknown,however,aboutnon-collinearantiferromagnets,whicharethesubjectofthispaper.Examplesincludethetriangular,kagome,andsquare(with rst,second,andthirdneighborinteractions)lattices.Themagnetically-orderedstatecompletelybreaksthespin-rotationsymmetry,yieldinganSO(3)orderparameter[4].Spaceandtimede-pendenttwistsofthisorderparameterthende nethreeindependentspin-sti nesses,spin-susceptibilities,andassociatedspin-wavevelocities.Forsimplicity,wewillrestrictourat-tentionheretomagnetswithcoplanarspinsandaninternalsymmetry(aC3vsymmetryonthetriangularandkagomelattices,andascrewaxissymmetryfortheincommensurateplanarspiralsonthesquarelattice),whichleadstojusttwoindependentsti nesses(ρ⊥,ρ ),susceptibilities(χ⊥,χ ),andspin-wavevelocities(c⊥=(ρ⊥/χ⊥)1/2,c =(ρ /χ )1/2);morecomplicatednon-collinearmagnetswillhavesimilarproperties.Thelong-wavelengthactionfortheSO(3)orderparameterhasanSO(3)×O(2)symmetry,theO(2)beingacontinuummanifestationoftheinternalsymmetrynotedabove[4].AspacetimedimensionD=2+ studyofsmall uctuationsoftheSO(3)orderparameteraboutthemagnetically-orderedstatewasperformedbyAzariaet.al.[5];theyfoundthatthesti nessesandsuscepti-bilitiesbecameasymptoticallyequaluponapproachingthecriticalpointseparatingthemagnetically-orderedandquantum-disorderedphases,withthecriticaltheorypossessinganenlargedO(4)symmetry.AlargeNtheorybaseduponSp(N)symmetry[6]foundasim-ilarmagnetically-orderedstate,butwasalsoabletoaccessthequantum-disorderedphase.
We present a theory of frustrated, two-dimensional, quantum antiferromagnets in the vicinity of a quantum transition from a non-collinear, magnetically-ordered ground state to a quantum-disordered phase. Using a sigma-model for bosonic, spin-1/2, spinon fi
Thelatterstatewaspredictedtobeafeatureless,fullygappedspin- uid,withuncon ned,bosonicspin-1/2spinonexcitations.Wealsonotethattherearealternativeapproachestothequantumdisorderedphase[7]whicharequitedisconnectedfromthestructureoftheorderedstate.
Inthispaper,weshallpresentatheoryoftheuniversal, nite-Tpropertiesofnon-collinearantiferromagnetsinthevicinityofthecriticalpoint.Wewilldescribethecrossoverfromthemagnetically-orderedstate,withitslow-lyingspin-waveexcitations,tothefullygappedquantum-disorderedstateviaanintermediatequantum-criticalregion.Ourresultsareincompleteagreementwithsomepreviousstudiesofthemagnetically-orderedstate[5]andthequantumdisorderedstate[6],andestablishafundamentalconnectionbetweentheO(4)-symmetriccriticalpointofRef.[5]andthedecon nedbosonicspinonsofRef.[6];arelatedconnectionwasnotedrecentlyinRef.[8].WewillalsoobtainnewresultsforthelowTbehaviorofthedynamicstructurefactoranduniformsusceptibilityofmagnetically-orderedantiferromagnets.
Ourmotivationforthisstudyissimilartothatfortheanolagousrecentstudyofcollinearantiferromagnets[3].AgivenS=1/2antiferromagnetmaybeeithermagnetically-ordered(asisexpectedforthetriangularlattice)orquantum-disordered(thekagomelattice)[9].AtlowT,themagneticallyorderedmagnethasthermally-excitedclassicalspin-wave uctu-ations(therenormalized-classical(RC)region),whilethequantum-disorderedmagnethasonlyactivateddeviationsfromitsground-stateproperties.AthigherThoweverboththesemagnetsareexpectedtocrossovertoaquantum-critical[1](QC)regionwhereclassicalandthermal uctuationsareequallyimportant.Manypropertiesofthisregionareuniversal,andarethusamenabletonumericalandexperimentaltests.Inparticular,therearesigni cantquantitativedi erencesbetweentheQCbehaviorofcollinearandnon-collinearmagnets,whichareadirectconsequenceofthepresenceofdecon nedspinonsinthelatter.
Webeginbypresentingoure ectiveaction.Wechoosetodescribethelocalspincon g-urationbyanSU(2)rotationaboutareferenceorderedstate.ThechoiceofSU(2)ratherthanSO(3)issigni cant,andhastheimmediateconsequenceofsuppressingthevortices[10]
We present a theory of frustrated, two-dimensional, quantum antiferromagnets in the vicinity of a quantum transition from a non-collinear, magnetically-ordered ground state to a quantum-disordered phase. Using a sigma-model for bosonic, spin-1/2, spinon fi
associatedwithπ1(SO(3))=Z2forwhichtheSU(2) eldisdouble-valued.ThischoiceismotivatedpartlybytheresultsofRef.[6],wherevorticesweresuppressedinthequantum-disorderedphasebyaHiggscondensate.WeparametrizetheSU(2)matrixbytwocomplexnumbersz1,z2with|z1|2+|z2|2=1,andwritedownthemostgeneral,long-wavelengthactionwithanSU(2)×O(2)invariance:
S= d2xdτ1
4 z µz µz z 2 (1)
0000000Itiseasytoshowthatgx=1/2ρ0⊥,gτ=1/2χ⊥,γx=(ρ ρ⊥)/ρ⊥,γτ=(χ χ⊥)/χ⊥,
wherethesuperscript0denotesbarevalues;notethatiftheγµ=0,ShasanenlargedO(4)symmetry.TheactionScanbeexplicitlyderivedbyalong-wavelengthanalysisofthemodelsofRefs.[5]and[6];wehavealsolearnedofarecentstudyofSbyAzariaet.al.[11].Thestaggeredspin-structurefactor(wavevectorsmeasuredasdeviationsfromtheordering
)canbeshowntobetheFouriertransformofRez(x1,τ1)z(x2,τ2).NotewavevectorG
thatthisisquarticinthez,consistentwiththeidenti cationofthezquantaasspin-1/2bosonicspinons.
WestudiedSbygeneralizingztoanN-component,unit-length,complexvector,andperforminga1/Nexpansion;SthenhasaSU(N)×O(2)invariance,whileforγµ=0itisinvariantunderO(2N).ThismethodallowsustoworkdirectlyinD=2+1andaccessboththeQCandRCregions.NotethattheextensiontolargeNisdi erentfromthatusedinRefs.[8,12].
WeexpectthatSpossessesquantum-disorderedandmagnetically-ordered(withthezquantacondensed)asthecouplings(saygx)arevaried.AkeypropertyofthepresentlargeNexpansionisthatthelong-distancephysicsatthecriticalpointatgx=gcisO(2N)-symmetric.Thisismanifestedinthemagneticallyorderedphase(gx<gc)bythecriticalbehaviorofthesti nesses.Josephsonscalingisobeyedbythefullyrenormalizedρ ,ρ⊥,χ ,χ⊥allofwhichvanishas(gc gx)ν,whereνisthecorrelationlengthexponent(ν=1 16/3Nπ2+O(1/N2)).However,therelativedi erencesbetweenthesti nessesalsovanishatthecriticalpoint:wede ned 1=(ρ ρ⊥)/ρ⊥, 2=(χ χ⊥)/χ⊥,andfound
2
We present a theory of frustrated, two-dimensional, quantum antiferromagnets in the vicinity of a quantum transition from a non-collinear, magnetically-ordered ground state to a quantum-disordered phase. Using a sigma-model for bosonic, spin-1/2, spinon fi
1=γ1(ξJ) φ1+γ2(ξJ) φ2
2=γ1(ξJ) φ1 2γ2(ξJ) φ2(2)
whereγ1=(2γx+γτ)/3;γ2=(γx γτ)/3,andξJistheJosephsonlengthmeasuredinlatticeunits.Thepositivecrossoverexponentsφ1,2measuretheirrelevancyoftheγµtermsinS;theγµareactually‘dangerously’-irrelevantas 1,2controllong-wavelengthphysicsforgx<gc.Toorder1/N,wefoundφ1=1+32/3π2N,φ2=1+112/15π2N[13].Wenowpresentourscalingresultsforthewavevector-(k)andfrequency-(ω)dependentstaggered(χs)anduniform(χu)spinsusceptibilitiesinthevicinityofgx=gc.Werestrictourselvestogx<gc,althoughmorecompleteresultshavebeenobtained[14].Wefound
χs(k,ω)=22πN0
h¯c2⊥ 2kBT 2 NkBT k, kBTΦuω,x, 1, 2(3)
whereN0istheon-sitemagnetizationatT=0,Φ1s,Φ1uareuniversalfunctionsofthedimensionalvariablesω=h¯ω/kBT,x=NkBT/4πρ⊥.Wefoundtheexponentη¯=1+32/3π2N.TheprefactorofΦsremainsnon-singularatgx=gcasN0~¯¯=(1+η(gc gx)βwith2β¯)ν.Allscalingfunctionsarede nedsuchthattheyremain niteasx→∞.Asbefore[3],theargumentxdetermineswhetherthesystemisintheQC(x 1)orRC(x 1)region.
Animportantdi erenceintheabovescalingformsfromthoseforcollinearmagnets[3]isinthevalueofη¯.Herewehaveη¯closetounity,whiletheanalogousexponentforcollinearmagnetswasclosetozero.Thisisaconsequenceofthepresencehereofdecon nedspinons:itisthezquantawhichbehavelikealmostfreeparticles(atT=0, z z ~1/k2 ηwithηcloseto0)whilethestaggeredsusceptibilityisacorrelatorofacompositeoperatoroftwo
¯spinons(χs~1/k2 ηwithη¯closeto1).
WehavecomputedΦs,Φuina1/Nexpansiontolinearorderin 1,2.Wedescribeourresultsastheyrelatetovariousobservables.
Correlationlength.Asincollinearmagnets,wede nethecorrelationlength,ξ,from
We present a theory of frustrated, two-dimensional, quantum antiferromagnets in the vicinity of a quantum transition from a non-collinear, magnetically-ordered ground state to a quantum-disordered phase. Using a sigma-model for bosonic, spin-1/2, spinon fi
thelong-distancee r/ξdecayoftheequal-timespin-spincorrelationfunction.Wefoundthat,toorder1/N,thereisasimplerelationshipbetweenthevaluesofξforcollinearandnon-collinearmagnets.Forallvaluesofx,thenon-collinearξisprecisely1/2thepreviouslycomputedξ[3]fortheisotropicO(2N)sigmamodel.Thefactorof1/2isasignatureofdecon nedspinons.Thecollinearexpressionforξ[3]howevermustbeusedwiththee ectivevaluesρs=ρ⊥(1+N 1/(2N2 2)),χ=χ⊥(1+N 2/(2N2 2)andc=(ρs/χ)1/2;noticealsothefactorof4di erenceinthecoulingconstantin(1)andin[3].ForthephysicalcaseN=2,wehaveto rstorderin 1,2thatρs=(2ρ⊥+ρ )/3,c=(2c⊥+c )/3,andourresultforξisthenconsistentintheRCregionwiththatofAzariaet.al.[5].
Staticuniformsusceptibility.TheresultforχuisobtainedbyevaluatingtheresponsetoavectorpotentialcoupledtotheconservedchargeoftheSU(N)symmetry.
IntheRCregion(NkBT 4πρs)weobtained
χu= gµB
(N+1)χ⊥2χ⊥NkBT
h¯c 2kBT√4π 1 0.31
5+1)/2],x¯=NkBT/4πρsandα=0.8+O(1/N).Notethattheslope
ofthelinearinTtermisprecisely1/2ofthatintheO(2N)sigma-model[3].Thefactorof1/2isagainasignatureofspin-1/2spinonsandshouldbeamenabletoexperimentaltests.Staggereddynamicsusceptibilityandstructurefactor.IntheRCregion,thescalingform
(3)forχscollapsesintoareducedscalingforminwhichthephysicalξ,ratherthanc/kBTisthemostimportantlengthscale[1,3].Wefound
χs(k,iωn)=2N0
4πρs
ξ2f(kξ,ωnξ/c)
(N+1)/(N 1)×(6)
We present a theory of frustrated, two-dimensional, quantum antiferromagnets in the vicinity of a quantum transition from a non-collinear, magnetically-ordered ground state to a quantum-disordered phase. Using a sigma-model for bosonic, spin-1/2, spinon fi
werefisascalingfunction.Notethatcomputationswereinfactdoneonlytoorder1/N-theformatarbitraryNfollowsfromareasonableguessaboutthewavefunctionrenormalizationofthecomposite eld.Theoverallfactorin(6)is
chosensuchthatf(0,0)=1+O(1/N),Thebehavioroff(x,y)atintermediatex,y=O(1)israthercomplicated,chie ybecausespin-wavevelocityalsoacquiresasubstantialdownturnrenormalizationatkξ=O(1)[1].Howeveratkξ~ωξ/c 1,velocityrenormalizationisirrelevantandweobtained
f(x,y)= N 1
x2+y2 log(x2+y2)
ρs 2 ¯k,ω)Ξ(
16(ω+¯/2iδ)2)1 η
2(9)k(1+whereAN√ω2)/12Θ2+...]where...standforhigherpowersof2Θ/√=1+O(1/N).Atsmallkandω,wehaveReΦs=(ωandforregularcorrec-
tionsin1/N.ForImΦsweobtainedthefollowingasymptoticlimitsforlargeN
We present a theory of frustrated, two-dimensional, quantum antiferromagnets in the vicinity of a quantum transition from a non-collinear, magnetically-ordered ground state to a quantum-disordered phase. Using a sigma-model for bosonic, spin-1/2, spinon fi
ImΦs= ANsin(πη¯/2)(
ω
πe ω2 2¯/2k)1 η;ω 1,
ω 1and
ω.
IntheT=0quantum-disorderedphase,ImΦsshowsaclearsignatureofdecon nedspinons-thespectralweightat xedkisabroadbandcontinuumratherthanthedelta-functionpeakpresentincollinearmagnets[14].
Localsusceptibilityandspin-latticerelaxation.ThelocaldynamicstructurefactorS(ω)isgivenbyS(ω)= d2kS(k,ω)/4π2.Simpleinspectionthenshowsthatforω~cξ 1,theintegrationovermomentumisalsocon nedtok~ξ 1andthereforeS(ω)isauniversalobservable.ThesmallfrequencylimitofS(ω)isdirectlyrelatedtothespin-latticerelaxationrateofnuclearspinscoupledtoelectronicspinsintheantiferromagnet:1/T1∝S(ω→0).IntheRCregion,we ndusingourpreviousresultsforthescalingfunctionsthatforω~cξ 1
S(ω)∝2N0ξ
4πρs (3N+1)/2(N 1)(10)
ForN=2,wethenhave1/T1∝T7/2ξ.
DeepintheQCregion,wefound
S(
whereK(Nρ⊥ NkBTω)ω(11)5 1)/64πatωBNsin(πη¯/2)/32πatω)=
We present a theory of frustrated, two-dimensional, quantum antiferromagnets in the vicinity of a quantum transition from a non-collinear, magnetically-ordered ground state to a quantum-disordered phase. Using a sigma-model for bosonic, spin-1/2, spinon fi
exponentiallylarge,andthereisauniversalcontributiontoS(k)fromclassical uctuationswhichscalesasξ2.IntheRCregionwethenhaveS(k)≈kBTχs(k,0),whereχs(k,0)isgivenby(6).Atk=0thisyieldsS(0)∝T2N/(N 1)ξ2.ForN=2,wethenobtainS(0)∝T4ξ2.
ApplicationtotheS=1/2triangularantiferromagnet.Weperformeda1/SexpansiononthisantiferromagnettoobtaintheT=0valuesofρ⊥,ρ ,χ⊥,χ (alltoorder1/S),andN0(toorder1/S2).ForS=1/2thisgaveusN0=0.266;χ⊥=0.07/Ja2;χ=0.077/Ja2;ρs=0.087J;c=(ρs/χ)1/2=1.06Ja.FortheuniformsusceptibilityintheRCregimewethenobtainedχu=(gµB/h¯a)2[0.08/J+0.08kBT/J2+O(T2/J3)].Ontheotherhand,intheQCregime,wehaveχu=(gµB/h¯a)2[0.13kBT/J2+0.07/J(kBT/2πρs)1 1/ν+...].Thetemperaturedependenceinthesubleadingtermislikelytobequitesmallintheregionofexperimentalinterest(kBT~2πρs),andwecanwellapproximatethistermbyaconstant.Notehowever,thatthefactor0.07isanN=∞result-the1/Ncorrectionstothisfactorhavenotbeencomputed.Further,thecorrelationlengthbehavesintheRCregimeasξ≈0.25(4πρs/kBT)1/2exp[4πρs/kBT]where4πρs≈1.09J,anddeepintheQCregionasξ=0.53Ja/kBT.
Considernowthenumericalresultsforχu.Thedataofrecentseriesexpansionstudies[15]showthatχuobeysaCurie-WeisslawathighT,passesthroughamaximumatT≈0.4J,andthenfallsdown.Theregionbelowthemaximumisquitesmall;nevertheless,we ttedthisdatabyastraightlineandfound0.13±0.03fortheslopeandabout0.06fortheintercept-theresultsareinbetteragreementwithourQCratherthantheRCresult.Finally,atverylowT,weexpectacrossovertotheRCregime,andthecorrespondingvalueofχuatT=0isalsoconsistentwiththedata.WealsocomparedthedataforthecorrelationlengthandS(0)atkBT~0.4JandfoundroughconsistencywithourexpressionsinthecrossoverregionbetweenQCandRCregimes.Notethatourinterpretationofthenumericaldataisdi erentfromthatinRef.[15].
Toconclude,wehavepresentedatheoryofthecriticalpropertiesofnon-collinearquan-tumantiferromagnetsintwodimensions.Ourkeyassumptionwasonthevalidityofa
We present a theory of frustrated, two-dimensional, quantum antiferromagnets in the vicinity of a quantum transition from a non-collinear, magnetically-ordered ground state to a quantum-disordered phase. Using a sigma-model for bosonic, spin-1/2, spinon fi
continuumdescriptioninSU(2)variables,whichsuppressedvortexexcitations.However,wewerethenabletoshowthatourresultswereconsistentwithearlierlargeN[6]andD=2+ [5]studies.Thequantumdisorderingtransitionwasdescribedbyananisotropicsigma-modelforspin-1/2,bosonicspinon elds.Allphysicalobservablesinvolveacollectivemodeoftwospinons,andwecomputedexplicitscalingformsforavarietyofexperimentallymeasurablequantities.OurresultsforχuintheQCregionareroughlyconsistentwithrecentnumericaldataonthespin-1/2triangularantiferromagnet[15];thismaybeviewedasindirectevidenceforthepresenceofdecon nedspinons.However,numericalresultsalsoseemtoindicatethattheTrangewhereQCbehaviormaybeobservedisrathernarrowforthissystem.Moredetailedstudies,especiallyinquantum-disorderednon-collinearmagnetswillbequiteuseful.
TheresearchwassupportedbyNSFGrantNo.DMR-9224290.S.S.isgratefulforLPTHE,Universit´eParis7,forhospitality.WethankP.Azaria,B.Delamotte,P.Lechmen-niat,D.MouhannaandN.Readforhelpfuldiscussions.
We present a theory of frustrated, two-dimensional, quantum antiferromagnets in the vicinity of a quantum transition from a non-collinear, magnetically-ordered ground state to a quantum-disordered phase. Using a sigma-model for bosonic, spin-1/2, spinon fi
REFERENCES
[1]S.Chakravarty,B.I.HalperinandD.R.Nelson,Phys.Rev.B39,2344(1989);S.Tyc,
B.I.HalperinandS.Chakravarty,Phys.Rev.Lett62,835(1989);S.ChakravartyandR.Orbach,ibid64,224(1990).
[2]N.ReadandS.Sachdev,Phys.Rev.Lett.62,1694(1989);Phys.Rev.B42,4568(1990).
[3]A.Chubukov,S.SachdevandJinwuYe,Phys.Rev.B,submitted;S.SachdevandJinwuYe,Phys.Rev.Lett.69,2411(1992);A.V.ChubukovandS.Sachdev,Phys.Rev.Lett.71,169(1993).
[4]B.I.HalperinandW.M.Saslow,Phys.Rev.B16,2154(1977);A.F.AndreevandV.I.Marchenko,p.23,21,(1980);T.DombreandN.Read,Phys.RevB39,6797(1989).
[5]P.Azaria,B.Delamotte,andT.Jolicoeur,Phys.Rev.Lett.64,3175(1990);P.Azaria,
B.DelamotteandD.Mouhanna,Phys.Rev.Lett68,1762(1992).
[6]N.ReadandS.Sachdev,Phys.Rev.Lett.66,1773(1991);Int.J.Mod.Phys.B5,219(1991).
[7]ughlin,Phys.Rev.Lett.,59,2095(1987);K.Yang,L.K.WarmanandS.M.Girvin,Phys.Rev.Lett.70,2641(1993).
[8]P.Azariaet.al.,Saclaypreprint1993.
[9]B.Bernu,C.LhuillierandL.Pierre,Phys.Rev.Lett.69,2590(1992);R.R.P.SinghandD.Huse,ibid68,1706(1992)andreferencestherein.
[10]H.KawamuraandS.Miyashita,J.Phys.Soc.Jpn.53,4138(1984)
[11]P.Azaria,B.Delamotte,P.Lechmenniat,andD.Mouhanna,privatecommunication.
We present a theory of frustrated, two-dimensional, quantum antiferromagnets in the vicinity of a quantum transition from a non-collinear, magnetically-ordered ground state to a quantum-disordered phase. Using a sigma-model for bosonic, spin-1/2, spinon fi
[12]T.GarelandP.Pfeuty,J.PhysC9,743(1976);D.Bailin,A.LoveandM.A.Moore,
J.Phys.C10,1159(1977);H.KawamuraPhys.Rev.B38,4916(1988).
[13]ngandW.Ruhl,Z.Phys.C51,127(1991)havecomputedscalingdimensionsof
awholeclassoftensoroperatorsattheO(2N) xedpoint.Theirresultscanbeusedtodeducevaluesforφ2andη¯whichareconsistentwithours.
[14]A.Chubukov,S.SachdevandT.Senthil,inpreparation.
[15]N.Elstner,R.R.P.SinghandA.P.Young,Phys.Rev.Lett.,71,1629(1993).
- 1Comment on Magnetic Relaxations of Antiferromagnetic Nanoparticles in Magnetic Fields
- 2TitaniumDioxideNanomaterialsSynthesis,Properties,Modificatio
- 3quantum-espresso安装
- 4Incompressible Quantum Hall Fluid
- 5Properties of Hadrons in the Nuclear Medium
- 67.1 Conditional Properties(part)
- 7Luminescence properties of defects in GaN
- 8Gravitional coupling constant in higher dimensions
- 9Origin of Galactic and Extragalactic Magnetic Fields
- 10The One With Two Parts
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Antiferromagnets
- Properties
- Frustrated
- Dimensions
- Universal
- Magnetic
- Quantum
- Two
- 《工作制服管理制度》(第1版)
- 专题七 原电池与化学电源教学研讨
- 高中数学复习专题讲座数列的通项公式与求和的常用方法
- 高考古诗鉴赏秘籍
- VB2005 连接数据库
- 《矿产勘查》撰稿注意事项
- 宝宝学说话,你是否帮了倒忙?
- 基层员工薪酬福利设计培训
- 2013竞赛题—问答
- 中国石油3项科研成果获国家发明专利授权
- 新版八年级下英语第二单元第三课时教案
- 双配合物的制备及分析
- 广东省茂名市2014届高三第二次高考模拟考试文综地理试卷
- 2013年儿童职业体验馆加盟调查研究报告(二)
- MHS麦克维尔风冷螺杆机组操作手册
- 淘宝鞋店创业计划书
- 柴油发电机操作标准作业程序
- 第4章 教学模式与策略的选择和设计
- 膝关节盘状半月板及撕裂的MRI诊断
- 第九章 耐酸防腐、保温隔热工程