船舶结构力学课程习题集答案
更新时间:2024-03-14 06:58:01 阅读量: 综合文库 文档下载
- 船舶结构力学课后答案推荐度:
- 相关推荐
1
第1章 绪 论 .................................................................................1
第2章 单跨梁的弯曲理论 ............................................................2
第3章 杆件的扭转理论 ............................................................15
第4章 力法 ...............................................................................17
第5章 位移法 .............................................................................29
第6章 能量法 .............................................................................41
第7章 矩阵法 .............................................................................56
第9章 矩形板的弯曲理论 ..........................................................69
第10章 杆和板的稳定性 ............................................................75
第1章 绪 论
1.1 题
1)承受总纵弯曲构件:
连续上甲板,船底板,甲板及船底纵骨,连续纵桁, 龙骨等远离中和轴的纵向连续构件(舷侧列板等) 2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨 3)承受局部弯曲构件:甲板板,平台甲板,船底板,
目 录
1
2
纵骨等
4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵
骨,递纵桁,龙骨等
1.2 题
甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上
浪水压力,横向作用)
舷侧外板:横向水压力等骨架限制力沿中面
内底板:主要承受横向力货物重量,骨架限制力沿中面
为纵向力
舱壁板:主要为横向力如水,货压力也有中面力
?v(l)?0v'(l)?012?12 ?p'?v1(0)?0N1(0)??22)图2.2?v(x)??0x?Mx22EI?N?x36EIx0?l33p(x?l)3 6EI3p(x?l)2 6EI3)图2.3?v(xx)??0xx?N?x36EI??qxdx6EI3?l22.2题
a) v1?vpppl?1131?pl?1131??vp?(3???)??(?2?)? ?6EI?41626EI?164444????pl3第2章 单跨梁的弯曲理论
2.1题
设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(x1)
1
)M0x2EI233 =
?512EIpl3
31?13?pl3?9pl???()??? ?192EI96EI1624???图
N?x33p(x?l)4?6EI2.13p(x?l)2?6EI
V2?3v(x)??6EI?l4l23l4
p(x?3l)42?MlMl2Pl9'6EI b) v(0)???(1?2)
33EI6EI6EI0.1Pl6EI2?16EI?4?原点在跨中:v1(x1)?v0?M0x12EI2?N?x16EI3?l43p(x?l)46EI,
=??5Pl23?27EI?73Pl21620EI
2
?(l)??MlMl23EI?6EI?2Pl96EI(1?13)
24Pl2 =?0.1Pl26EI?3?27EI??107Pl1620EI
22p??l?v?l???3??2l?2???3??l?3?1?1??3?3??3EIl6EI??m?2?13??m?1?13???
2 =
37pl2430EI
7ql4?3ql4 c) vl图2.1
2??ql4192EI?5768EI?2304EI v'(0)?ql3?pl2?ql2l3124EI16EI?16?6EI?ql?11?ql38EI????3612???96EI d)2.1?图、2.2?图和2.3?图的弯矩图与剪力图如图2.1、图2.2和图2.3
3
3
4
1)
??右??M?Ml6EI13q1l?2ql324EI?Ml?l?q?q??0??21?45EI?23EI??
2l2120 2)?0??Ml3EI3?q1l324EI?Ml?l? lq?1?180EI?26EI??37l2ql?1q1l1713? =1?? ??????EI?18243606?120?80EI2.4 题
图2.2
Nx ? 图2.5?v(x)?v0??0x?036EI,
v0?A?p?N0?
?x3??v(x)?Ap??0x???A?N0
?6EI?如图2.4, 由v?l??v??l??0得
图2.3
2.3题
4
5
??l3?Ap??0l???A?N0?0?6EI????2l??0?N0?0?2EI??pl?Ap?????0l6EI??N?p3?022.5题
解出 图2.5:(剪力弯矩图如2.5)
?
?R1?pl?Mll3?p??2p32p3??pl322p39EI33v0?AR?6EI33pl?3xx?3 ?v(x)??1?9EI?2l2lMlplpl5pl?l?vv???0????216EI18EI48EI144EI?2??? 图2.4 ?v??0???0??v0l?Ml6EI??pl29EI?pl218EI??pl26EI 图2.6
v?x???1x?由v?l??0,Mx2? M?pa?bb?A?1?l?KA?6l???? ,
02EI?N0x6EI3图2.5
将a?l,b?0A?l6,KA?16?13?12代入得v??l???2?N0l3得:
4EI2EI?M?????2M?pl1?pl 01??ll6312解得??N?6EI?????122?0?l? 2.7图:(剪力弯矩图如2.6)
23?2?1??2?x??1??2?x?v?x???1x??2ll??0??2EI6EI?2M0lN0l?1????2??EI2EI??1l?M0l2??
5
v0.05l31?A1R1?EI?ql2?ql440EIM?Qa24?1?K?12A??b2?1?????A???l???vl3ql42?A2R2?50EI?ql2?100EI由Q?qa,a?l,b?0,44
v?l5qlql??1??8,A?124?2????11??384EI2EI???40100?? K44A?18?124?13?12,代入得
?ql?57?2932EI???384400??ql?9600EIM?ql?1ql2 图
24?2?12?24?1??8
R1?ql2?ql3ql,3v338?8??0??ql2ql4v
24EI?v1?l?ql?1EI??24?140?1?2ql100???75EI0?AR1?64EIql333
??l????v1?v2ql? 图2.724EIl?EI???111??17ql24?40?100???300EI4424?v?l图2.8?(剪力弯矩图如2.7)
??5qlqlMl5ql??EI?128EI?16EI??2?384384EI?(0)?ql3?v0Mlql3?111?
24EIl?6EI?EI????246448??3?ql192EI?M??l2?(l)??8EI?ql8??ql364EI
2.6题
6
6
2.6
7
.
7
8
dv2??max.dx??maxGdx??NGAsEIdx
2.7.题
,?,情形:先推广到两端有位移?,??NN?EIv???v2????GAdx????1??C1sGAv1sv?v1?v2???ax3bx2EI?f(x)?6?2?cx?d????GA?f??(x)?ax?b??C1s?f(x)?EI32GAf??(x)?axs6?bx2???c?EIa??GA?x?d1s?中f(x)?qx4qx2式24EIf??(x)?2EI于v(0)?v1??(0)?0可得出d1?b?0v(l)?v1??(l)?0得方程组:?4?qlEIql2al3?EI?????24EIGAs2EI6??c??GAa?l?0s??ql2??2EI?al?0解出:a=ql2EI,c?ql324EIv(x)?qx424EI?qlx312EI?qx22GA???qx3?ql??xs?24EI2GAs?v(l5ql4ql22)?384EI?8GAs8
iijj??令???12EI??i??j,??GAsl2? ??v?ax36?bx22?cx?d1?EIGAaxs而v0??i?d1?v(0)??i??
由v?1?(0)??i?c??i??2由v(l)??j?al3EI6?bl2??il??i?GAal???j?s?2?由v?(l)???1j?al2?bl??j?????a??l21???i??j?2?l??解出????????
?i31?b?j??i??j?2??ll?1????l??由由?? 9
球扁钢NO24a ??????M(0)?EIv1(0)?EIb?6????2??j????4??i?l?1?????l?EI6?6?????????4?????2?????ijij?l?1????l?l?EI38.75 119.8 A e?BA?5.04cmI?C?B2 15.6 A 604.5 B ?11662?604.529430.2 9430.2 C=11662 119.8?8610cm 2422? 225 ?6EI2????N(0)?EIv(0)?EIa??????????1ijji??2l?1????l?????N(l)?N(0)?EI????M(l)?EIv1??(l)?EI?b?al????4??2????6????ji??l1??l??????令上述结果中?i?0,即???j同书中特例计算外力时面积A?75?1.8?38.75?174cm?l?l计算I时,带板be?min?,s???45cm?5?5 1).计算组合剖面要素:
2.8
l?3??题
cm7t?形心至球心表面y1?h?t?e?24?0.9?5.04?19.86cm形心
cm5s?已cm知:52?20?kg76.87 5cmkg22 cm至最外板纤维
,y2?e?t21?5.94cm?w1?Iy1.?861019.8683?433.5cm
,7 q??hs?102?5面积 外板1.8?45 cm21?00?.75
惯性矩 cm 4 81 距参考轴 cm 0 面积距 cm 33w2?I自惯?8610?1449.4cmy25.94性矩 l?0A42251050?174u??0.366 cm? 62EI22?10?86100 0 x?u??0.988,?1(u)?0.980(21.87) 略 9
10
M?Mql212??x?u??ql276.87512?225?0.988?320424?kg.cm?2?EIvIV?Tv???0,EIv????N?Tv?TEI2
?vIV中24?1?u???M中124?76.875?225?0.980??158915(kgcm)158915kg2?V???0,vIV?KV???0式中k?r??4k2T EI?中球头?固端?端球头板???0??1050??14162?cm?w1433.5?M320424?kgkg??0??1050??1271???max?141622cmcmw21450??M320424kg??0??1050??378?2cmw1433.5??特征根:r1,?0,2r?3k?v?A1?Akx?Achkx?Ashkx234 ?v(0)?0??v?(0)?0??A1?A3?0??A2?A4?0?
?v??(l)?0???EIv???(l)?N(l)?Tv?(l)??A3chkl?A4shkl?0 ?? 3EIkAshkl?Achkl??p?TkA?Ashkl?Achkl?3??2??434?
若不计轴向力影响,则令u=0重复上述计算:
ql2?max??中球头??0?24w1?1050?76.875?22524?433.52?1424kgcm2
解得:
A1??pkTthkl,A2?pkTpEIk31424?1416相对误差:?0.5624结论:轴向力对弯曲应力的影响可忽略不及计。结果是偏安全的。pkT,A?3pkTthklA,?4?pkT ?v(x)?????thkl?kx?thklchkx?shkx???thkl?1?chkx???shkx?kx???
2.9.题
2.10题
10
11
EIvvIVIV由v?(0)?0?Tv???0?2?协调条件查附录图:l24kEI?l2464EI4EIl?1?EIv?22IV?N?Tv???令 A=0 ?B=0 u=?kv???0式中k?4T?EI?
ql3特征方程:r?kr?0特征根:r1,?0,2?24EI??2?u??Ml3EI??0?u??0ql2
r?3ikr??4ik?v?A1?Akx?Asinkx?Acoskx234???EIv??(0)?m?v(0)?0?A1?A4?0?A4k?2??M?2ql?2?u?.6098?0?u?80.752?0.101ql2????mEI??
??l??l??v(2u)v??v(2u)v????1??133??u??M?l?q0???2??2??? v????1???2221?B?2?EI?v1(2u)?v3(2u)?2?k??????
?v??(l)?0????EIv???(l)??Tv?(l)???Asinkl?Acoskl?034????3???3???k?A3coskl?A4sinkl???k?A2?A3coskl?A4sinkl? ??
?1.91150.66354.93011.9335???44?ql0.101ql??22222l?u???????1?0.448??22?1B?01.911564EI8EI??4.930122???0.0049ql4解得:A3??mT?ctgkl,A2?0???????EIm????????v?(0)??Ak?Akcosk?Aksink?Ak?343???2?x?0kEItgkl
2.13图
?2.11题
图2.120
11
??0??pl216EIx0?u??Ml3EI?0?u???Mpl2M??? 16EIx0?u?l???0?u???3EI??
将u?1,??l12EI代入得:M?pl16?0.591??1?12?0.72?3???0.111pl
?v(2u)v??l??v(2u)?l??v?lpl3?1?3?3v??1????M?2????2??2???48EI?2?u??2?2EI??v21(2u)?v3(22u)?????????23?lu?1??pl?0.6090.1110.9115?0.6635?4.8301?1.9335EI?????4881.91152?4.93012???0.0086Pl3EI2.12题
1)先计算剖面参数:
12
W?bh26?2?10236?1003?cm?Wp??Aiyii?2?Ah???2?24??bh3?4?50?cm??形状系数?f?WpWbh2?4bh2?362
图2.8a
2)求弹性阶段最大承载能力Pma如x(图2.8a) 令M4ma?xW?y?1003?2400?8?10kgcm2
即516P16W?16?8?104malx?W?y解出P?yma5xl5?500?512?kg? 12
13
3)求Pu?极限载荷?则边界条件:v0?0得N0?3ml2l?6EI2?0?0v(l)?0EIv??(l)?m3ml2?用机动法?此结构
达到极限状态时将出现三个塑性铰,其上作用有塑性力矩Mp?Wp?y如图由虚功原理:??Pu????? Pu???2??4Mp2????l?2?? 图2.8??M0?m?GAs
22l?6EIGAs23?m??3?lx6??llx2?v(x)??x??2?22EI?2l?6?2l?6?2(2l?6?)???EIGAs
2.14. 补充题
试用静力法及破坏机构法求右图示机构的极限载荷 p,已知梁的极限弯矩为Mp(20分) (1983年华中研究生入学试题) 解: 1)用静力法:(如图2.9)
由对称性知首先固端和中间支座达到塑性铰,再加力
p?pub
?Pu?4Mpl?4Wp?yl00?4?24?5?0960?kg?
5002.13补充题
剪切对弯曲影响补充题,求图示结构剪切影响下的v(x)
解:可直接利用
v(x)?v0??0x?
M0x2EI2,当p
?N0?36EI?x? ?x?6EI?GAs? 作用点处也形成塑性铰时结构达到极限
状态。即:
pul4?Mp?Mp?pu?l8Mpl8Mp
2)用机动法: 2p??8Mp?2??pu?l2.15.补充题
求右图所示结构的极限载荷其中??l3EI,船工研究生入学试题)
p?ql(1985
年哈
13
14
解:由对称性只需考虑一半,用机动法。当此连续梁中任意一个跨度的两
端及中间发生三个塑性铰时,梁将达到极限状态。考虑a) 、b)两种可能:
对a)解得?2??2?qu???xdx?4M0l??2l
图2.9 图2.10
2?pl?0
对b)?qu?qu?16Mplp2pu???4M16Mp2?l
?0l2(如图2.10)取小者为极限载荷为qu?荷p的跨度是破坏。
8Mpl2即承受集中载
14
15
对于a)示闭室其扭转惯性矩为J0?4A2??dst?4?a?t?4t4?t?a?t?
3?a?t?第3章 杆件的扭转理论
3.1题
a) 由狭长矩形组合断面扭转惯性矩公式:
J?13 对于b)开口断面有J?
1ht?33ii?t33??4?a?t???
?hti3ii?1?650?10?200?8?80?8??26.4cm ?3?3334?两者扭转之比为?b??a??MtGJMtGJ0dst?J0 b) J??13?a?t?J??()??271倍4?t?2?70?1.23?35?13?15?1.23??60.6cm4 ?3? c) 由环流方程
本题易将??的积分路径取为截面外缘使答案为300倍,误差为10%,可用但概念不对。若采用s为外缘的话,J大,?小偏于危险。??????ds2AG??M????tf?2ABredt公式Mt4AG22??dst?????材力MtGJ0?J0?4A2
ds ??t题 3.3
8本题A?40?41.6???20?0.8??3023.2?cm2???
dst?11.6Mt??n?1pb2?8?b2?p?4pb?2?40?41.6???131.682 A?131.68?2.775?10cm54?J0?4??3023.2?8????1???2b?tsinb?tcos?b?tsin???????2?8?8?4???2?Mt2A?4bp2?b?t?sin2
3.2题
?f??4?2?100?302(300?0.2)2?9.555kg/cm 15
?09?.5?b6?t?8????l??flf?108sin2AGtds??2AGt?8??b?t?sin????82?b?t?2?2s??8icn8os?100?9.56?8?4?10?4(弪)4?29.8?cos?58?8?10?0.2
3.4题
.将剪流对内部任一点取矩
?f1rds??(f1?f2)rds??f2rds21566232??f2rds??(f2?f3)rds??f3rds67737843 ???f1rds?f2??rds?f3??rds
215623267378437?f1??rds?f2??rds?f3??rdsIIIIII?2A1f1?2A2f2?2A3f3?Mt.........(1) 由于I区与II区,II区与III区扭率相等可得两补充方程
16
16
1?ff32GA???1ds???f2ds?1?f??21?t?t2GAds??????f12?IIt26tds??tds??73??1?f?f22GA????3ds?ds??3IIIt?37t?即:3f1?f22f2?f1?f3f?f2A??3A.....(2)1A23(1)(2)联立(注意到A21?A3,2A1?A2?a)??2A?1?f1?2f2?f3??Mt??f?3Mt?3f1?f2?3f3?f2解得?1f3?14a2????f?2Ma22t7?3ff11?2?2(?f1?4f2?f3)????1?f11??2GA???ds??f21?ttds???a?9Mt2Mt?5Mt62?2Ga2??14a2?7a2???14a3tG2t???Mt知J143J0?0G5at??17
第4章 力法
4.1题
令l?l0?2.75cm由对称性考虑一半2.5??q??1???0.8?1.025?1.845吨/米2??对0,1节点列力法方程I?I0I2?26I0将第一跨载荷向c支座简化M1?Q1l12,p?Q1由2节点转轴连续条件:?Q1l12?l6EI2解得?2M2l23EI2?Q2l2224EI2??M2l33EI3?I2l3?1???I3l2???Ql?8?2?Ql16M2??Q1l1?Q2l2?2??8?Q1l1?
3?M0l0M1l0ql0???0???3EI06EI024EI0?33?M0l0?M1l0?ql0??M1(0.8)l0?M2(0.8)l0?q0(0.8l0)?6EI3EI024EI03E(26I0)6E(26I0)24E(26I0)0?2??M0?M1/2?ql8即:?2??M0?2.09M1?0.2549ql2??M1?0.0817ql?1.139?t?m???2M?0.0842ql?1.175?t?m??0?若不计各跨载荷与尺度的区别则简化为M2??RA??M2l?Q16???QM2?M1?MR????B?2?ll???2??Q8
4.3题
由于折曲连续梁足够长且多跨在a, b周期重复。可知各支座断面弯矩且为M
对2节点列角变形连续方程
Ma3EI?Ma6EI?qa34.2.题
24EI??Mb3EI?Mb6EI?qb324EI解得
17
M?q?a3?b3?q12?a22qb?2a?a?2??a?b???12??ab?b??12??1??b???b?????
图4.?4,对2,1节点角连续方程:
??M21?l?0?M?l2?0?7Q?l?0?M?l/1?20?6E??4I0?E3?I4?0E1?8I0?04EI03?M?1?l?0M?22l?08Q?l?0 ????0?3E?4I? 0?E6?I40E1?8I0?04?41解得:??M1?330Ql?0.1242Ql??M?Ql/55?0.0182Ql18
?
4.5图令I12?I34?4I0,I23?3I0l12?l23?l34?l0,由对称考虑一半
4.4题
18
???M1?l?0M?l2?02Q?l?2?3E?4I???E6?I4??00E4?5I??0004?M1?l?0M?7Q?l?22l?00M ?2l0Ml2?6E?4I?4??0E1?8I0????0?E3?I04E(I)30E(3I)?41解出:??M1?330Ql?0.1242Ql??M2?Ql/55?0.0182Ql
4.5题
对图4.4?刚架?1??l02?2?3EI?l006EI0对图4.5?所示刚架考虑2,杆3,由对称性?M2l0M2l0M2l02?3E(3I?E(3I?0)60)6EI0 ??2?l06EI0?均可按右图示单跨梁计算。由附录表A-6(5)?l0E(4I0)21?0?2?6EI?0l?03K??1?0???3??21????1?11??33?063?3636??M2Ql0?1??1?45?1136??2?3?9?41Ql016???0.1242Ql0?????330??M7Ql0?1??1?Ql02??180?0??0.0182Ql?1136????7???550
4.6题
??2为刚节点,转角唯一(不考虑23杆) ?M2l1??M243EI2?l3EI
?M2节点平衡21?M2?4?????M2219
19
0 20
证:梁端转角?Mlli??M??3EI?M6EI???Q??M???Q????l???2EI??.............................?1?令??0则相应M?M?固端弯矩?即M???Q?l2EI........................................?2??1??
2?得??Ml2EI1???EI??l1
或:M???l2EI???1?2??1?2?EIM22?l?l??26EI2?3EI?M2l6EI,??2?M?l26EIK?l
1 若21杆单独作用,K?3EI121??l,若24杆单独作用,K24?? 3EI 讨论:
1)只要载荷与支撑对称,上述结论总成立 21?24 l 2)当载荷与支撑不对称时,重复上述推导可得 ?两杆同时作用,K?KK6EI21?24?
l
4.7.题
已知:受有对称载荷Q的对称弹性固定端单跨梁(EIl), 证明:相应固
定系数?与?关 系为:??1??2?EI??1?l? ?
20
?1?12??1??????
21
?i??2?ij?1??ij?ijor2?ij?ij?1?3?i??1j?i?6?1????3j1?i?13A1??2l?348EI?l36EI列出1节点的角变形连续方程:2?Mlvp2l??M(2l)v11?1????1??3EIl3EI2l16EI??v?AR?A??M1?2p???M1?p??
111???????12????2l??l?式中?ij?MiM??外荷不对称系数 ?ij??i?j??支撑不对称系数仅当?ij??ij?1即外荷与支撑都对称时有?i?11?2?i联立解出否则会出现同一个固定程度为?i的梁端会由载荷不对称或支撑不对称而3323pl影响该端的柔度?i,这与?i对梁端的约束一定时为唯一的前提矛盾,M所1??11pl,v1?36EI以适合?i??Mi定义的?i~?i普遍关系式是不存在的。画弯矩图见右图
4.9题
1)如图所示刚架提供的
支撑柔度为A1?A2?V而由5节点?5?0得p?14.8 题
??pl?l3E?7I?6E?7I?M5l???pl???pl2?l?0
?M5?pl2,F???3p2 21
由卡瓦定理:
A?VM?M1p??1?EI?Pdsp?1
?1?ll?3p??3E?7I????0?ps1?sds1?1?0?pl??2s????2l?2s??ds??2??p?2
?1??l?E?7I??l3?0?l?3?2?1?l3l3?l3??3?2s2?ds2????7EI???3???4?12EI 2)由对称性只需对0,1节点列出方程组求解
???M30l?M1l?v1?ql?0?3EI6EIl24EI33 ??M0lM1lv1qlM1lM1lql?6EI?3EI?l?24EI??3EI?6EI?24EI ?3?v1?Al??M1?M0ql?ql?1R1??12EI?????l2???2?? 联立解得:M20?11ql36,M1??ql236,v1?2v2?ql418EI4.10题
22
a)? =13?8?4,Q1?qal192,q??Q?a?ql2k?192Eial3
b)Q?Q1?Qqal3qal2?qal?2?2?Q21?3Q,Q2?13Q5Q3?v1l7中??Q2l3?310?384Ei180Ei???225?8??5Q31l5Q3?2lQl35?25??i??3384Ei?Ei??3?384E?384384???5Ql3384Ei???5384,??148q??Q?5?48?a384?3qal2a?1516qlk?Ei?al3?48Eial3
22
1
23
c)??148,??148,p?p,Q?p
pl3?1?m????1???1??????48Ei?k?Ei768Ei2?23?3?????2?alal
768?131m3m24768Ei??p=-???????k?37al7?122?222?l7lf)令???1???34?1???4?11p?,k87pl31?1???1?????m?26Ei2?2???l2pl?2l1?4d)令48Ei48p4?3?1??p=??26Ei?44?6g)p同348?Ei(同ac图l)a)即p???Q?qal2?q?pa?ql2
?192Eil3?k0?x?6a?1? k???192EiA?192E(2i)l3?2??2k03l??k?k0a?192Eial3?x?6a?
e)??5pl33843,??1,Q?qal2?481?4??1????9?p=?q?Q?a?5?48qal??384a2123???36p6?51623qlpl?11?令???1??48Ei6Ei?32?4?8p??6?
27
4.11题
?支柱处v???0,可简化为刚性固定约束?仅考虑右半边板架
23
??148??1?11?116??21????11?4??164?????48?16p=??p?1116p
k?48Eial3?48EI30l0?6l?0?2EI09l40???2EI0u??6l0??9l4?40?2?4E9I02??111?M?p?6l0???6l0?8?1?1??16p8?0.874?0.4507pl0
N??p?p1121?1???2?0.852?32P?0.852??0.2929pvma??l?xv???v??3l?4?0p?6l311?63?0.889?0??pl3301?1??16192E??9?96?9?EI?0.1528pl00EI0?2I0??24
4.12题
设a?l540?1mi?I0?5.833?10cmL1?l?10l0b?2.5l0I?1.857I0,Q?q0al,q2620?1kgcmE?2?10kgcm '求:中纵桁跨中及端部弯曲应力及v中
解:因主向梁两端简支受均布载荷Q故其形状可设为sin?ylc1?c3?sin?y1l?sin?4?0.707c2?sin?2?1
24
25
?11??12????11?1?6?411???3?????0.02083?44????按对称跨中求??端?M?h?I??t??2?q2L242?q2L122??2?1.?2I51?3.q1l0?608l1220?20?100.8?1310.833?10551?1010kgcm1?11??6?24211???1??????0.01432164???10.707???i?1?11iciIic1I1??1?0.02083?0.707?0.01432?1??0.0411?2?45?中?
??1?u?I51?3.168ql0?10l024??0.774?5110.833?105?481kgcm?2??I1I2???23?0.0411,6384?0.0130223k2?Ei?q2??2al?2?10?5.833?10?i0.01302?10q0l00.0411l0?20.0411?10??10?34.13?283kgcm补充题 写出下列构件的边界条件:(15分)
?2Q?L24l0?3.168q0l03u?4alI1?13?10l024I04l0?10l0?1.857I0?0.0411?1.2?1?1.2??0.728,v中?q2k21?2?u??0.813,3.168?1?102832?1?u??0.774(1?0.728)?0.304?cm??1???u???
1)
25
31
???M??M'25'32'23?M?M'34'21??(M32?M34)???M23?M21?M25??M
M2334EI0??12q0l0?2EI0????l0?1045EI0?l03?16q0l0?11222??ql??0.0357ql??00003135?3?1045EI0?则有
2EI04EI0EI?0??????0233?ll2l?000?28EIEI4EI2EI2ql0000??2?????2???32?l2l0ll1500?0
,得
00M3232EI0??12q0l0?4EI0????l0?1045EI0?l03?16q0l0?822??q0l0??0.0026q0l0??3135?3?1045EI0?
其余由对称性可知(各差一负号):M65??M12,M56??M21,
M52??M253??12q0l0??2?1045EI0? ?3q0l016????33?1045EI0?,M54??M23,M45??M32,M43??M34?M32;
4)
M12?M'12弯矩图如图5.1 5.3 题
3(4EI0??12q0l0?1257222M14?M25?0)M12??pl8,M21?pl8,其余固端弯矩??(?ql)??ql??0.246ql??000000l0?1045EI0?51045都为0
'? M41?M12
M2138EI0??12q0l0?226222??ql?q0l0?0.0415q0l0 ??00l0?1045EI0?156273EI0??12q0l0?622???ql??0.0057ql??0000 2l0?1045EI0?10452EIM63?M12?M'23''l2EIl4EI?1,M14?''4EI?3,M36??1?2EIl2EIll4EIl?1,M52?'2EIl?2,M25?'4EIl?2
?3
'M25?l4EIl?2, M21?2EIl2EIl?1??2?4EI?2??3, M32?'l4EIl?2 ?3
由1、2、3节点的平衡条件
31
32
M14?M12?0???M21?M25?M23?0 即
M3624EI?5pl?5??pl?0.0142pl??M32 ??l?22?64EI?352??M32?M36?0??M'M'14?12???M14?M12???M''25?M23?M'21???M23?M21?M25?
???M'M'32?36???M32?M36??4EI4EI2EIpl??l?1?l?1?l?2?8??2EI?4EI4EI4EI1??2???2EIpl?lll2?l2?l?3??8
?2EI???4EI4EI0?l2l?3?l?3?22解得:?27pl1?22?64EI,?2??5pl22?16EI,?3?5pl222?64EIM?4EI?27pl2?14??M12l?64EI?27pl?0.0767?22??pl ?3522M41?2EI?27pl?27l??22?64EI??pl?0.0383pl ?704M63?2EI?5pl2?5l?22?64EI?pl?0.007pl ???704M25?4EI?2l??5pl?22?16EI??5pl??0.0568pl ???88M23?4EI?22l??5pl??2EI?5pl???35pl??0.0497?22?16EI??l??22?64EI?704pl?
M21??M25?M23?75704pl?0.1065pl
2M52?2EI?l??5pl??5?22?16EI??pl??0.0284pl ?176弯矩图如图5.2
32
33
Q0?12q2l12?12q0l0,q4?4q0,
12(3q0)3l0?6Q0?9Q0 Q24?Q矩24?Q三角24?q(3l0)?01)求固端弯矩
M21?Q0l010
,M12??Q0l015,M32?M23?0
??(6Q0)(3l0)12(6Q)(3l)0012???33Q0l010 M24?? M42?(9Q0)(3l0)15(9Q0)(3l0)10
21Q0l05
2)转角弯矩
M12?'4E(2I0)l0'
5.4题
图5.2(单位:ql) ?1?2E?2I0?l0?2,
M21?2E(2I0)l0?1?4E?2I0?l0?2
'? M234E(3I0)2?(2l0)已知l12?l0?3m,l23?2.2l0?6.6m,l24?3l0?9m I0?0.3?104cm4,I12?2I0,I23?3I0,I24?8I0
?2?2E(3I0)2?(2l0)?3,
M32?'2E(3I0)2?(2l0)?2?4E(3I0)2?(2l0)?3
33
34
M'24?4E(8I0)(3l0)??2,
?3??209Q0l02740EI02??0.03814q0l02EI0
M'422E(8I0)(3l0)?2
图5.3(单位:Q0l0) 4)求出节点弯矩 M21?????4?223432880?8?2091370?1??Q0l0?1.0487Q0l0 10???Q0l0?0.6241Q0l0?3)对1、2、3节点列平衡方程
M12?0?? ?M21?M24?M23?0?M32?0?即:
2096209?12M23??????1.213702.22740
8EI04EI0????2?Q0l0151?l0l0??796EI030EI0?4EI0?16??1??2??3????Q0l0??33l011l0?5??l0?30EI060EI0?2??3?0?11l11l?00?33??32209M24?????Q0l0??1.6727Q0l03137010??
21??14209M24?????Q0l0?5.0136Q0l05??31370
解得:
?1??22234Q0l032880EI02??0.03397q0l02弯矩图如图5.3。
5.5 题
由对称性只考虑一半; ,
节点号 杆件号ij 1 12 —— —— —— 21 4 1 4 2 23 3 1 3 EI0?2?209Q0l01370EI02?0.07628q0l0EI0,
Iij/I0 lij/l0 kij 34
35
Cij Cijkij —— —— —— —— —— -1/10 -4/165 -41/330 1 4 (1/2)对称 3/2 11/2 Iij/I0 lij/l0 kij —— —— —— —— —— —— —— —— -1/10 -1/45 -11/90 1 1 1 1 1 3/2 2/3 1/2 1/15 -2/45 1/45 1 1.5 2/3 3/4 1/2 —— —— —— —— —— ?Cijkij ?ij nij 8/11 1/2 1/15 -8/165 1/55 3/11 —— 0 -1/55 -1/55 Cij Cijkij Mij/Ql0 ?Cijkij mij/Ql0m'ij ?ij nij 1/3 0 0 -1/45 -1/45 —— —— 0 —— 0 /Ql0Mij/Ql0 Mij/Ql0 所以:
M12??MM??M32??Ql05543mij/Ql041Ql0330??,
M21??M34?Ql055m'ij /Ql0,
Mij/Ql0 23
由表格解出 M01??0.1222QlM10?0.0222Ql5.6题
1.图5.40:令I10?I0?I12,l10?l0,l12?1.5l0
节点号 杆件号ij 0 01 10 1 12 2 21
M12??0.0222Ql 35
36
M21?0
mij/qlm'ij2/ql2 -5/512 -0.0931 -5/256 0.0638 -5/768 -0.0638 -5/1536 0.0228 2.图5.50
令I10?3I0,I0?I12,
l10?l0,l12?l0
Mij/ql 2由表格解出: M01??0.0931ql2,M10??M12?0.0638ql2,M21?0.0228ql2
q?q0,Q10?q0l0,Q12?节点号 杆件号ij Iij/I0 lij/l0 kij Cij Cijkij q0l0若将图5.5中的中间支座去掉,用位移法解之,可有:
2
1 2 12 1 1 1 1 1 4 21 —— —— —— —— —— 1/4 1/2 -11/192 —— —— 5/192 0 01 —— —— —— —— —— —— —— —— 3/4 1/2 1/12 10 3 1 3 1 3 4?5ql?16l?2?12?2???192EI ?4??12l??48??29ql22?32EI?解得:
?2?77ql396?52EI227ql4?0.0514ql3EIql,
4?2?256?39EI2?0.0227EI
?Cijkij M12??0.140ql,
?ij nij M23?0.14ql2 ,
Mij/ql 2-1/12 N21?0.040ql 36
37
N23??0.040ql
1)不计45杆的轴向变形,由对称性知,4、5节点可视为刚5.7题
性固定端
计算如表所示 2) Q??3节点号 1 2 3 4 23?12q0?3l02q0l0,Q34?0.6q0?3l0??1.8q0l0 杆件号ij 12 21 23 24 32 42 MQ323?23(3l0)/15?10q20l0I—— 2 3 8 ——— ij/I0 M?Q9232?23(3l0)/10??20q0l0
l/l—— 1 2.2 3 —— —— ij0 — M34?Q34(3l0)/12?9k20q0l20
ij —— 2 15/11 8/3 — —— —3) 计算由下表进行: C—— 3/4 3/4 1 — —— ij — M2C—— 3/2 45/44 8/3 — —— 18??M12?0.0039q0l0,
ijkij ?—— 198/685 297/1507 1056/2055 —— —— M2ij —21??0.0786q0l0
nij —— 0 0 1/2 — —— — M?0.518q232??M34?0l0,
Mij/Ql0 0 2/15 0 -3.3 0 21/5 Mm25??0.0341q20l0
ij/Ql0 0 0.9153 0.6241 1.6273 0 0.8136 m'ij/Ql0 M43??0.4159q0l20,M23?0.1127q20l0
Mij/Ql0 0 1.0487 0.6241 -1.6273 0 5.0136 M52??0.0170q20l0, 其它均可由对称条件得出。 5.8题
37
,
38
节点号 杆件号ij Iij/I0 lij/l0 kij Cij Cijkij 1 18 1 6 1/6 1/2 1/12 13/12 1/13 —— 12/13 1/2 0 -.045 .04154 -.00537 0.3 1/2 0 -.009 .02077 -.01073 12 1 1 1 1 1 21 1 1 1 1 1 2 25 1 3 1/3 1 1/3 10/3 0.1 1/2 0 -.003 -.00358 0.6 1/2 0.3 -.018 .015 -.02146 1/3 1/2 -0.45 -.009 .003 -.01073 23 6 3 2 1 2 32 6 3 2 1 2 3 34 12 3 4 1 4 2/3 1/2 0.45 .06 4 43 -0.45 .03 5 52 0 -.015 -.00179 ?Cijkij ?ij nij Mij/ql 20 mij/qlm'ij20.00346 /ql2 .00041 .00496 -.00064 .00248 -.00128 -.00043 .00179 -.00256 .00358 -.00128 .00715 .00358 .00022 38
39
Mij/q0l0 2.00005 -0.0039 .00059 -.00008 0.0039 .00030 -.00016 -.00001 -0.0786 -.00005 -.00000 -0.0341 .00022 -.00031 .00003 -.00002 0.1127 .00043 -.00016 .00005 -.00001 -0.5181 .00085 .00011 0.5181 .00043 .00006 -0.4159 -.00003 -0.0170
图5.4a 图5.4b
39
40
5.9 题
任一点i的不平衡力矩为
Mi??sMis?ql12?ql12?0(i=1,2,…,h,i,j,…n-1. s=i-1,i+1)
所以任一中间节点的分配弯矩mij与传导弯矩m'ij?njimji均为0。 任一杆端力矩:Mij?Mij?mij?m'ij
?Mij??ij?Mis?nji???ji?Mjs??Mij?0?i?n?
s????s对两端i?0,n,由于只吸收传导弯矩m'ij?0 Mij?Mij?m'ij?Mij
两端所以对于每个节都有杆端力矩Mij?Mij
说明:对图5.4b所示载荷由于也能使?Mi?0,也可以看作两端刚固的单
跨梁。
40
41
第6章 能量法
6.1题
1)方法一 虚位移法
考虑b),c)所示单位载荷平衡系统, 分别给予a)示的虚变形 :
M(x)EIdx??d?
外力虚功为 ?W??虚应变能为
?V=?1??i?? ?1??j??M(x)MEI01l0(x)dx
?1?? =?EI?1??EI?0?Ril0ilx?Mi??0R?x1?idx
??Rx?M??Rx?dx0ii
?l???EI??=??l??EI???Mi3Mj3?Mj?l?1??M?M..........b)?j??i6?3EI?2?Mi?l?1?M?M...........c)??i??j6?3EI?2?
?由虚功原理:?W=?V 得:
?1??i?l? ?????3EIj??1????2?1?2??Mi???? Mj?1????2)方法二 虚力法(单位虚力法) ? 梁弯曲应力:???=M?x?Iy
??=?E=M?x?EIy
Mx??Mi??Mi?Mlj?x
41
42
?M?x??1?(1?0)
lx给Mi以虚变化?Mi?1 虚应力为 ????=虚余功:?W?=?i?1
?M?x?Iy
虚余能:?V*=?(真实应变)?(虚应力)d?
?????1EI1EIM?x??M?x?yydxdydz EII??2?l0l0M?x??M?x?dx?Ay2dA
j??Mi??Mi?M?1?x/l?dx ?x/l????
Qi?1??M?Mj??i3EI?2?l
同理:给Mj以虚变化?Mj?1,??Mi?0?可得(将i换为j)
?j??Mi???Mj??3EI?2?l
3)方法三 矩阵法(柔度法) ??i??Mi???Mi?设??????,?p????,虚力??p????,?????p????
?M?Mj??j??j?? ??????M?x?Iy??Mi??Mi?MI?yy?x/l??j?Ix?1??l??x??Mi?????c??p? ?l??Mj?式中?c??y??x??x??1??,??????I??l??l??(不妨称为物理矩阵以便与刚度法中几何矩阵
?B?对应)
??Mi?? ?Mj???1虚应力??????c???p???c???1实应变?????D??????D??C??p?
虚余功 ?W*??????p????p???????i?Mi??j?MTTj?
42
43
虚余能 ?V*?????????d??????????d?
??TT
????p??C??D??C??P?d????p??TT?1T??T?1???C??D??C?d???p? ???于虚力原理:?W*??V*考虑到虚力??p?的任意性。得: ?????p???C??D???A??? p??C?d?T?1式中 ?A????C??D??C?d?——柔度矩阵(以上推导具有普遍意义)
?T?1对本题:
x??1??y??y?x??l?1??????I?x?EI??l???l???2??x???1??ll?x?1????d???l?EI0?x?x???1???l??l???A????x?x????1???l?l??dx2??x??????l??
?由
1?l/3?l/?6l???EI??l/6l/3?3EI????1?1/21?/2? ?1????A??p?展开得: ??i?l ?????j?3EI?1/?2?Mi??1???M? ?1/21???j?6.2题
方法一 单位位移法
???uj?ui?/l , ??E??E?uj?ui?/l
ui/l??1/l设 ?ui?1,则 ?????
Ti?1???l?uEj?ui???1/l?d???EAl2??u0lj?ui?dx?EAl?ui?uj?
同理,令?uj? 可得
Tj?1???l?uEj?ui??1/l?d??EAl?uj?ui?
?Ti?EA?1即:????Tlj??1???1??ui???? 可记为 1??uj??p???K????
ijij?K?为刚度矩阵。
43
44
方法二 矩阵虚位移法 设?pij????TiTj??T ??i???j?u1iu??jT
? {?}??uj?ui?1l?ui?/l???1??1???l?uj??B??????j i?式中 ?B????11?——几何矩阵
? ?????D??????D??B???ij?
设虚位移
??ij?????uiT?uj??T , 虚应变 ??????B????ij?
T外力虚功 ?W??pij?????ij?????ij???p?
ij虚应变能 ?V?????????d??????????d? ?TT????i???????B??D??BjTTij d?d??? ????i??????B??D??Bj???T?T??
ij ????i?K???j??
ij由 ?W??V 得: ?pi???K???jT?
ijd——刚度矩阵 式中 ?K????B??D???B??1??1?1EA?1对拉压杆元 ?K??EA?????11?dx??l?1?ll??1l?1?? 详细见方法一。 1?方法三 矩阵虚力法 设 ?pij??Ti??ui???? , ??ij???? , ?????D???? ?Tj??uj?Tj?TiA1A?1? ?????Ti????11?????C??pij? A?Tj?11?——物理矩阵(指联系杆端力与应力的系数矩阵)
?1 式中 ?C???
??1 ?????D??????D??C??pij? 虚应力 ??????C???pij?
??Ti??1??? , 则 ??????D??C???pij? ??Tj? 设虚力 ??pij? 44
45
虚余功 ?W*???ij?T??pij????pij??TT?1T???
ij 虚余能 ?V*?????????d??????????d?
?TT ?
p??C??????p??C??Dij?ij?d
?T???pi?C??j?????D???1?Cd??????p
ij ???pij??A??pij? 式中
A????C???C??D?T?1?d ——柔度矩阵
?1?? 1?对拉压杆: ?K???
AE?l1??1?1l?1?11dx??????A?1?AEA??1 ??i???A??pj?
ij?ui?l?1 即 ????uEAj??1???1??Ti???? 1??Tj?讨论: 比较方法二、三。
结论: ?pij???K???ij?, ??i???A??pj?
ij?1若 ?K?与?A?的逆矩阵存在(遗憾的是并非总是存在),则,?K?实际上是一个柔度矩阵,?A?实际上是一个刚度矩阵
6.3题
1)6.30如图所示 设vx??2n?x??a1?cos?n??
l??n?1??1
显然满足x?0,x?l处的
变形约束条件
v?0??v?l??0v?0??v?l??0''
EI?2n?x??2n??acos??n??dx ??02l???n?1?l??l?22变形能 V?EI2?l0(v)dx?''2 45
46
?2n??l ? a???2n?1?l?2EI2n?4力函数 ??pv?c??pv?l?c??2pv?c?(对称) ?2p?an??1?cosn?1??2n?c??l?
EIl22n?l2n?c??4)?2p?1?cos?
l??由
??V????an?0 ,所以
?V?an????an 。即
an(所以, an?pl43pl344EI??2n?c???1?cos?l???4n
v?x??4?EI?n?11?2n?c??2n?x?1?cos1?cos??? 4?n?l??l? 2)6.40如图所示
?设v?x??a0x??ansinn?1n?xl
2?EI??n?x?EI?n???v?l???V??asindx????n????20?ll?2A2??n?1??l?22l?a0l?2?n???an?l?2?2A
??n?1?42 ??pU?c??p?ansinn?1n?cl?a0pc
由
??V????a0?0
得 a0l2/A?pc , 所以,a0?Apc/l2 由
??V????an4?0, 得
32plEIl?n??n?ca? 所以,a?psinn??n2?l?lEI?n??4sinn?cl
46
47
? v?x??Apcl2x?2plEI?34??n?11n4sinn?clsinn?xl
3)6.50如图所示 令v?x??ax2?l?x? 所以, V??EI2?l0vdx''2
2EI22?0?2al?6ax?3ldx
5192?2aEIl ??由
?
?l/20qU?x?dx??l0/2qax52?l?x?dxql4?qal4
??V????a?0 得 4aEIl?3192 所以,a?5ql768EI v?x??5ql768EIx2?l?x?
4)6.60所示如图, 设v?x??a1x2?a2x3,v?x??2?a1?3a2x?
V?EI2''?l0vdx?''2EI2?l04?a1?3a2x?dx222
2 ?2EI?l1a?31a2a?l3?a
2l3???ll/2qv?x?dx?q?ll/2?ax12?a2x?dx
ql?7a115a2l?? ???
8?38?3由
??V????a1??V????a2?0 得 2EIl?2a1?3a2l??7ql3/24
由
?0 得 6EIl?a1l?2a2l2??15ql4/64
2?67qla???1384EI解上述两式得 ?
?13ql?a???2192EI 47
48
? v?x??0.1745ql2EIx?0.06772qlEI3x
6.4题
如图所示
设 v?x??a1sin?xl
?EIV?2??2?l/40vdx?''2E?2I?2?l/2l/4?''2vdx?
? ?EI?
l/40l/2?????x??x?????2a???sindx?2EIasin1?????dx ?l/4l?l??l???l??2144242l?31?2????EIa1?????l4???2??
?xldx?2qla1/?4???l0qv?x?dx?q?a1sin0l
由
??V????a1???l?31?2ql?0 得 EIa1?? ????l22??????4ql4所以, a1?1?EI5?3?????2???0.00718ql4EI
ql U?x??0.00718EI4?xsi nl6.5题
如图所示
?设 v?x???an?1nsin?2n?1??x2l
2V?EI2?2l0?v?l????v?x?''?dx??
??2A224??????2n?1???2?EI??2n?1????3????? ?an???ansin?2l?n?1?22?????n?1??? 48
49
其中,A??Vl3EI
4EI?2n?1?EI???2n?1?3???an?3??ansin???anl?2l?n?1??2????2n?1??????sin?? ??2??????2l0qv?x?dx?q?2l0??n?1ansin?2n?1??x2ldx
?2l?q?an???2n?1??n?1??4ql1?cos2n?1??????????????n?1an2n?1
所以,
???an?4ql?2n?1??
44?VEI?3??EIEI???EI取前两项得 ?3?a??3??a1?3?a1?a2?,?a1?a2? ?23?a2l?2?l?a1l?2?l?V 由
??V????a1??V????a2?0 得
??EI?3?l?????4??EI4ql?????1??a1?3a2?l?????2????
由
?0 得
??EI?3l????3??4??EI4ql??1a?a?????21?32l3?????????
4?4ql?7.088a1?a2???EI即: ? 4?a?494.133a??4ql12?3?EI?4?ql?a1?0.1798?EI解得 ? 4?a?0.001ql182??EI?x3?x?ql??0.0012sin ?v?x???0.180sin?2l2lEI??ql?l? ?中点挠度v???0.1786EI?2?44
49
50
6.6题 取v1(x)?V?EI2?ansinn?xl,v2(x)?'2?bnsinn?xl
?l0v12dx?1GAs2?l0v2dx22GAsEIl?n?n?x??? ??asindx??????n?20?ll2??????n?x??n??bcos?n?l??dx?0?l????l2 ?EI2EIl4???lGAs2?n??an???2?l?2GAsl?n??2a???n4?l?44??l2?n??bn???l?222
??V?an?n??2??bn?l?GAsln?2EIln?4?V()an,?()bn 2l?bn2ll???0qv1dx?l0?l0qv2dxn?xl?1 ?q??ansindx?q?l0?bnsinn?xldx?1
(1?cosn?) ?q??n??an???l?(1?cosn?)?q??n??bn???l?∴???an?q??(V??)?an?(V??)?an?l??l?(1?cosn?),???b?qn???(1?cosn?) ?n???n??2ql(1?cosn?)(n?)EI2ql(1?cosn?)(n?)GAs3254n为奇数由
?0得an??n为奇数4ql54(n?)EI4ql32
由
?0得bn??(n?)GAs
∴U?x??U1?x??U2(x)
?4ql54?EI?nn15sinn?xl?4ql32?GAS?nn13sinn?xl
(N?1,3,5,? ? ? ? ? )6.7题
1)图6.9 对于等断面轴向力沿梁长不变时,复杂弯曲方程为:
EIVIV?TV?q?0''
能满足梁段全部边界条件
取v(x)??nansinn?xl 50
正在阅读:
船舶结构力学课程习题集答案03-14
我学会了骑单车的作文07-03
齿轮油泵厂家价格及型号说明08-19
中山宝力——2022年事业计划发布04-14
班主任家访记录表02-13
雍也阅读练习题03-07
2017年初中数学中考模拟试题(五)03-08
党建与思政研究课题项目申报表(大学和谐校园文化建设研究) - 图文11-06
2005 - 2006学年度德育工作总结01-08
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 结构力学
- 习题集
- 船舶
- 答案
- 课程
- 电动三轮车企业标准
- 二年级上册法制教育教学计划和教案
- 湖南省《会计基础》模拟试卷
- 高级java实验指导书(1)
- 2018-2024年中国甾体原料药市场深度评估与发展策略研究报告(目
- 在职研究生一月联考考试科目包括哪些
- 2013年1季度汽车经销商行业调研报告
- 传感器原理及工程应用 - 第三版 - 郁有文
- 设计史试题 - 图文
- 小学三年级综合实践课教案
- 法理学试卷A卷
- Java实训项目
- 城市公共汽车客运企业安全生产达标考评细则 - 图文
- 三类人员考试习题
- 八法工作制
- 五年级语文下册第4单元第16课《桥》同步练习(2)新人教版
- 上财浙院统计学 第八章课后习题
- 年生产xxx万吨鱼饲料项目可行性研究报告模板参考
- 中国产品遭反倾销案例研究
- jing