过程控制工程

更新时间:2023-10-27 22:18:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

过程控制理论在现代工业中的应用

孙威

(专业:机电一体化 学号:20911P29)

摘要:本文介绍了过程控制理论的基本定义,阐述了过程控制理论的重要实用意义及发展的方向与趋势;同时概括性的说明了现代工业发展的环境与挑战,以及把过程控制理论应用在现代工业生产中的重大意义。 关键词:过程控制工程、现代控制理论、工业生产、智能控制

Abstract: this paper introduces the basic definition process control theory, this paper expounds the important practical process control theory of meaning and the development direction and trend; Meanwhile synoptically illustrates the modern industrial development environment and challenges, as well as the process control theory applied in the significance of modern industrial production. Key words: process control engineering, modern control theory, industrial production and intelligent control

引言

工业的范围扳广,过程控制是其中一个重要分支,主要针对六大参数,即温度、压力、流量、液位(或物位)、成分和物性等参数的控制问题,它能覆盖许多工业部门,如石艟、化工、电力、蒲金、轻工、纺织等,因而过程控制在国民经济中占相当重要的地位。特别是随着生产过程向着大型化、连续化的方向发展,大中型过程控制工程越来越受到国家和企业的重视。随着现代控制技术、 计算机技术等的不断发展.过程控制E程已被赋予了新的内涵,概括地讲,过程控制工程是一个为满足大中型工业生产和日益复杂的过程拄制要求,从综合自动化的角度出发,按功能分散、集中管理的原则构思,具有高度可靠性指标,以计算机

相关技术为核心的,与数据通汛技术、CRT显示、人机接口技术、输入输出接口技术等相结合的,用于生产管理、数据采集和各种过程控制的处于新技术前沿的新型过程控制工程。

1、现代控制理论

建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。

现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。

现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。

2、现代控制理论发展过程

现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。

在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能

控性和能观测性尤为重要,成为控制理论两个最基本的概念。

到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。

3、现代控制理论的发展趋势

1)智能控制(Intelligent Control)

智能控制是人工智能和自动控制的结合物,是一类无需人的干预就能够独立

地驱动智能机器,实现其目标的自动控制。智能控制的注意力并不放在对数学公式的表达、计算和处理上,而放在对任务和模型的描述,符号和环境的识别以及知识库和推理机的设计开发上。智能控制用于生产过程,让计算机系统模仿专家或熟练操作人员的经验,建立起以知识为基础的广义模型,采用符号信息处理、启发式程序设计、知识表示和自学习、推理与决策等智能化技术,对外界环境和系统过程进行理解、判断、预测和规划,使被控对象按一定要求达到预定的目的。2)未来的发展方向——智能控制

智能控制(Intelligent Control,IC)是传统控制发展的高级阶段,是控制技

术高度分化且综合的重要产物。由于一些被控对象呈现高度的时变性、非线性、时滞性和不确定性,简单的控制策略已不能满足现代控制的要求,综合的、集成的智能控制技术成为研究和应用的热点。

智能控制作为一门新的学科分支,得到了普遍的承认,并且已经被广泛的应用于工业、农业、服务业、军事航空等各个领域。近年来,随着人工智能技术和其他信息处理技术,尤其是信息论、系统论和控制论的发展,智能控制在机理和应用实践方面取得了突破性的进展。遗传算法与模糊逻辑、神经网络相互融合,通过模拟人类的思维方式和结构来设计用于解决复杂的各种非线性问题的控制策略,并已在各种实际工程项目中得到应用,取得了良好的效果。分歩式人工智能中的Agent和Multi Agent Sys-tem已成为研究的热点,构建基于Agent的集散递阶结构的智能控制系统为智能控制注入了新的活力。 3)工业过程中的智能控制

许多工业连续生产线上,例如:化工、冶炼、材料加工、轧钢等,由于反应机

理复杂,关联耦合严重,环境干扰不确定,要求与约束多样等原因,对其系统运行情况和过程的信息了解较少,自动化集成控制应用存在一定的难度,需要运用智能控制模式。生产过程的智能控制主要包括两个方面:局部级和全局级。局部级的智能控制是将智能引入工艺过程的某一单元进行控制器的设计,例如专家控制器、智能PID控制器、神经元网络控制器等。全局级的智能控制,主要针对整个生产的自动化,包括整个操作工艺的控制,过程的故障诊断,规划过程操作处理异常等。

针对局部智能控制设计,目前研究的热点是智能PID控制器的设计。因为PID控制至今仍是工业控制中最广泛的控制规律,但常规的PID控制已不能满足现在复杂的工业生产,所以就有必要将人工智能技术与传统的PID控制规律结合为智能PID控制。通过智能技术的加盟,智能PID控制器相比传统的PID控制器,在参数的整定和在线自适应调整方面有其显著的优越性,并可用于控制一些非线性的复杂对象。

4)自适应控制(Adaptive Control)

自适应控制系统通过不断地测量系统的输入、状态、输出或性能参数,逐渐了解和掌握对象,然后根据所得的信息按一定的设计方法,作出决策去更新控制器的结构和参数以适应环境的变化,达到所要求的控制性能指标。 自适应控制系统应具有三个基本功能:

(1)辨识对象的结构和参数,以便精确地建立被控对象的数学模型; (2)给出一种控制律以使被控系统达到期望的性能指标;

(3)自动修正控制器的参数。因此自适应控制系统主要用于过程模型未知或过程模型结构已知但参数未知且随机的系统。

自适应控制系统的类型主要有自校正控制系统,模型参考自适应控制系统,自寻最优控制系统,学习控制系统等。最近,非线性系统的自适应控制,基于神经网络的自适应控制又得到重视,提出一些新的方法。 5)预测控制(Predictive Control)

预测控制是在工业实践过程中独立发展起来的一种新型控制方法,它不仅适

用于工业过程这种“慢过程”的控制,也能适用于快速跟踪的伺服系统这种“快过程”控制[8]。目前实用的预测控制方法有动态矩阵控制(DMC),模型算法控制(MAC),广义预测控制(GPC),模型预测启发控制(MPHC)以及预测函数控制(PFC)等。这些方法具有以下特征:

(1)以计算机为实现手段,采取在线实现方式;

(2)建模方便,不需深入了解过程的内部机理,对模型精度要求不高; (3)采用滚动优化策略,在线反复进行优化计算,使模型失配、外界环境的变化引起的不确定性及时得到弥补,提高控制质量。

最近有人提出一种新的基于主导内模概念的预测控制方法:结构对外来激励的响应主要由其本身的模态所决定,即结构只对激励信息中与其起主导作用的几个主要自振频率相接近的频率成分有较大的响应。目前利用神经网络对被控对象进行在线辨识,然后用广义预测控制规律进行控制得到较多重视。

预测控制目前存在的问题是预测精度不高;反馈校正方法单调;滚动优化策略少;对任意的一般系统,其稳定性和鲁棒性分析较难进行;参数调整的总体规则虽然比较明确,但对不同类型的系统的具体调整方法仍有待进一步总结。

结语

本文重点阐述了现代过程控制工程的定义、发展过程及发展的未来方向与

趋势。讨论了工业中应用现代过程控制工程的重要意义与价值,最终展望了未来

工业发展的走向与成就。

参考文献

《大中型过程控制工程结构体系》,刘杰、陈庄,重庆工学院学报2009年第二期 《可编程控制器在过程控制工程实验中的应用》,刘恩国,电子科技报第24期 《现代控制理论在过程工业中的应用和发展》,张慧平,北京石油化工学院学报

本文来源:https://www.bwwdw.com/article/dqq2.html

Top