Optical Resonators With Whispering-Gallery applications
更新时间:2023-07-27 15:34:01 阅读量: 实用文档 文档下载
- optical推荐度:
- 相关推荐
WGM谐振腔综述
OpticalResonatorsWithWhispering-Gallery
Modes—PartII:Applications
VladimirS.IlchenkoandAndreyB.Matsko
(InvitedPaper)
Abstract—Wereviewphotonicapplicationsofdielectricwhispering-gallerymode(WGM)resonators—tracingthegrowthofthetechnologyfromexperimentswithlevitatingdropletsofaerosolstoultrahigh-Qsolidstatecrystallineandintegratedon-chipmicroresonators.
IndexTerms—Four-wavemixing(FWM),high-orderoptical lters,lasers,laserresonators,monolithicopticaltotalinternalre ectionresonators,morphologydependentresonances,nonlin-earoptics,optical lters,opticalresonators,parametricoptics,Q-factor,solidstatelasers,spectroscopy,tunable lters,wavemix-ing,whispering-gallerymode(WGM)resonators.
I.INTRODUCTION
I
NTHISpaper,weaddressapplicationsofopendielectricres-onatorsandleavethedetaileddescriptionsoftheirpropertiestotextbooks[1],[2]andreviews[3]–[8].Thebasicpropertiesofresonatorsthatareimportanttotheirpracticalapplicationsarealsosummarizedinthepreviouspaperofthisissue[9].
Antalkingabout“photonicapplications,”weuseabroadmeaningofphotonics,whichincludeslinear,nonlinear,andquantumoptics,opticalengineering,andotherrelatedbranchesofscienceandtechnology.Specialattentionisgiventomi-crowavephotonics,wheredielectricresonatorsareusedtopro-cessmicrowavesignalsbyopticalmeans.
Wediscusstheresonatorsthataremadeoftransparentopti-caldielectricsandhavemonolithicringresonatordesign(wedonotconsidermacroscopic berringresonatorsbasedondirectionalcouplers).Theopticalmodesinsuchresonators;e.g.,morphology-dependentresonancesorwhisperinggallerymodes(WGMs),canbeunderstoodasclosedcircularbeamssupportedbytotalinternalre ectionsfromboundariesoftheresonators.
Modernopendielectricopticalresonatorshavecylindrical,spherical,spheroidal/toroidal,ring,andothershapesandtopolo-gieswithvariouscon ningprinciples.Forthesakeofuni ca-tion,weusethroughoutthisreviewthetermswhisperinggalleryresonators(WGRs)andwhisperinggallerymodestodescribethoseresonatorsandtheirmodes.
Itisusefultonotethat,strictlyspeaking,thetermWGMcannotbeappliedtoquasi-one-dimensionalobjectssuchasmi-
crorings.Insuchcases,thecurvatureoftheresonatordoesnotplayasigni cantroleintheformationofthespatialmodestruc-tures,andtheseobjectscouldsimplybedescribedasloopsmadeoutofanopticalwaveguide.
OriginalWGMsdonothavealotincommonwithsuchawaveguidepropagation.OriginallystudiedassoundwavespropagatingveryclosetothecylindricalwallofthegalleryinSt.Paul’scathedral,London[10],theWGMs(LordRayleighs’sterm)werefoundtobepartiallycon nedduetothesuppressionofthewavediffractionbythesoundre ectionfromthecurveddomewalls.Theeffectivevolumesand elddistributionsofthosemodesdependontheradiusofthe“resonator”[11].
Toavoidthisdiscrepancy,inourreview,werede neanopticalWGRasamonolithicringresonatorbasedontotalinternalre ectionoflight.
II.DEVICESWITHPASSIVEWGMRESONATORS
UniquespectralpropertiesofWGMs,includingnarrowlinewidth,tunability,andhighstabilityunderenvironmentalconditions,makeWGRsattractivefornumerouspracticalappli-cations.Inthissection,wereviewapplicationsofpassiveWGRsfor ltering,frequencystabilization,andsensing.
Photonic ltersbasedonopticalWGRsarecurrentlyamongthemostdevelopeddevicesthatinvolveWGMs.Foropticaltelecommunicationpurposes,themaintaskofthe ltersistoselectchannelsinwavelengthdivisionmultiplexing(WDM)schemes.Inthisdomain,wherechannelspacingisusuallynolessthan10GHz,planarringresonatorswithWGMandsimilardeviceswithQ<1×105areadequate.
Ultra-high-QWGRswithMHzrangeresonancebandwidthsofferauniqueopportunityforcreationofphotonicmicrowave ltersinwhichopticaldomainselectionisusedforseparatingtheRFchannelsimprintedassidebandsonastableopticalcar-rier.ImportantapplicationsofWGRsoccurinmetrologyforopticalandmicrowavefrequencystabilization,wherealongphotonstoragetimehelpstosuppressphaseandfrequencyde-viationofoscillators.
High-QandlongrecirculationoflightincompactWGRsofferinterestingnewcapabilitiesinspectroscopyandsensing,wherethechangeinQorresonancefrequencyofWGMscanserveasameasureofabsorptioninthesurroundingmedium,orinasmall(downtosinglemolecule)quantityofdepositedsubstanceonaresonatorsurface.Theresonatorcanalsobeusedformeasurementofchangeinambientparameters,suchastemperature,pressure,motion,etc.
ManuscriptreceivedApril10,2005;revisedOctober31,2005.ThisworkwassupportedinpartbytheNationalAeronauticsandSpaceAdministrationandinpartbyDefenseAdvancedResearchProjectsAgency(DARPA).
TheauthorsarewiththeJetPropulsionLaboratory,CaliforniaInstituteofTechnology,Pasadena,CA91109-8099USA(e-mail:vladimir@jpl.nasa.gov;andery.matsko@jpl.nasa.gov).
DigitalObjectIdenti er10.1109/JSTQE.2005.862943
1077-260X/$20.00©2006IEEE
WGM谐振腔综述
A.OpticalandPhotonicSingleResonatorFilters
Thesimplestresonator-based lterincludesaWGRandanopticalcoupler;e.g.,aprismcoupler.TransmissionofamonochromaticelectromagneticwaveoffrequencyωbyanopticalWGRinasingleprismcon gurationmaybecharacterizedbythecoef cient
T=
γc γ i(ω ω0)
γγ+i(ω ω(1)c+0)
whereTdescribestheamplitudetransmission,γ,γc,andω0aretheabsorptionandcouplinglinewidth,andresonancefrequencyofamodeoftheresonator,respectively[weassumethat|ω ω0|ismuchlessthanthecavityfreespectralrange(FSR)].Thepowertransmission|T|2throughtheresonatorisLorentzian.Conditionγ=γccorrespondstocriticalcouplingoftheresonator[12],[13].
The lterdescribedby(1)isastop-band lterbecauseitischaracterizedbytheabsorptionresonance.AWGRwithtwoinputandoutputcouplersischaracterizedbyatransmissionres-onance.Thisisanexampleofapassband lter.Thetransmissionandre ectioncoef cientsthroughtheresonatorare
T=
γc
γω ω,R=i(ω ω0)i(ω ω(2)c+i(0)γc+0)
whereTandRdescribetheamplitudetransmission(lightgoesintoonecouplerandexitstheothercoupler)andre ection(lightgoesandexitsthesamecoupler),respectively,andγc γisassumedforsimplicity.
Singlering-shapedWGR-based lterswerestudiedin[14]–[19],seealso[8],[20]forareview.Anall-opticalpassivefour-portsystemincludingafusedsilicamicrosphereandtwota-pered berswasusedasachanneladding–droppingdevice[21].The lterresponseofsingle-ringresonatorswithintegratedsemiconductoropticalampli ersbasedonGaInAsP–InPispre-sentedin[22].Achanneldropping lterbasedonadielectricmi-crosphereintegratedtoasiliconphotodiodewasstudiedin[23].Twodielectricwaveguidesthatareevanescentlycoupledtoafewmicronsizedsquareorrectangularregionofincreasedrefractiveindexcanserveasaverycompactintegratedopticalmicroresonator,similartoaringWGR.Applicationsofthedevicefor lteringarediscussedin[24].
Unfortunately,theLorentzianlineshapeofthe lterfunctionassociatedwithasinglemicroresonatorrepresentsalimitationforitsapplicationinmanysystemsthatrequirelargesidemoderejection,inadditiontoanarrowbandpassandalargetuningrange.
B.High-OrderFilters
Cascadedresonators,suchascoupledoptical berresonators,arewidelyusedasopticalandphotonic lters[25],[26].WGRsoffernewpossibilitiesformultipole lteringbecauseoftheirsmallsize,lowlosses,andintegrabilityintoopticalnetworks.Multipole ltersbasedoncascadedintegratedmicroringresonatorsfabricatedwithsilicahavebeendemonstratedincompactandrobustpackages.The ltershave10–100GHzbandwidthsandcorrespondingopticalQsontheorderof105–104[15],[27]–[31],andare,infact,commerciallyavailable.These ltersprovidepassbandswith attopsandsharpskirts,suitableforhighperformanceapplications,especiallyinopticalWDM.Asecond-orderoptical lterwithaMHzbandwidthwasrealizedwithtwocoupledhigh-Q(108)microsphereresonators,oneofwhichwastunable.ThetunableWGRwasmadeofgermanateglass[32].
Atunablethree-resonator ltermadeofLiNbO3WGRswasdemonstratedin[33].The lterhasthefollowingdistinctivefeatures/advantagesoverotherWGM lters:1)agiletunabilityaccompaniedbyahigh-order lterfunction;2)narrowlinewidth(≤20MHz);and3)low ber-to- berloss.Acombinationofthethreefeaturesmakesthis lterauniquedeviceforawiderangeofapplicationsinoptics.Sincethemicrowavesignalsinphotonicsystemsaresidebandsofanopticalcarrier,these lters,inprinciple,canbeusedatanymicrowavefrequency,providingthesamecharacteristicsthroughouttheband,from1to100GHzandhigher.
Multiresonator ltershavesigni cantlymoresparsespec-tracomparedwithastandaloneWGMresonator.ThisfeatureisduetothesocalledVerniereffect[34],andissimilartothefeatureobservedincoupled ber-ringresonators[25],[26]whicharenotedforararespectrum.Anef cient nesseofsuchmultiresonatorsystems,introducedasaratiooffrequencydif-ferencebetweenthetransmissionbandsofthe lterdividedoverthefrequencywidthofaband,isverylarge;e.g.,theFSRofthe lterreportedin[33]exceedsoneterahertz.Polymerdoublemicroring lterswiththermoopticaswellaselectrooptictuningweredemonstratedandreportedin[35].
Itwasnotedthatoneofseveraladvantagesofusingcou-pledmicroringsfor lteringisthepossibilityofahightuningenhancementfactorMgivenby
M=
1
1 a(3)2/a1
wherea1anda2aretheradiiofthetworings.Thetuningrangeofthedoublemicroring lterisMtimesthetuningrangeofasinglering[36].SinceMcanbeverylargeindouble-WGRstructures,thefasterbutmuchsmallerelectro-opticeffectcanbeusedfortuning.Itisimportanttonotethatthethederivationoftheparameterisvalidfortheresonatorswithsucharadiusratio,andthatMstayslessthanthe nesseoftheresonators.EachringresonatorhasasetoftransmissionspectraandthewavelengthperioddeterminedbyitsFSRfFSR.Thetworingshaveslightlydifferentradii(oreffectiveindices).Therefore,thetwosetsoftransmissionpeakcombshavesmalldifferentpeakspacing.Wavelengthtuningisachievedbyaligningthepeaksinthetwosetsofcombswiththeadjustmentofindexinoneorbothringresonators.The ltertransmissiondiscreetlyjumpsfromtransmissionatwavelengthf0tof0+fFSR,withMtimeslessvoltageappliedtooneoftheringscomparedwithvoltagenecessarytocontinuouslyshiftthespectrumoftheringbyfFSR.AtuningenhancementfactorofM=40inadouble-ring lterwasachievedatwavelengthsnear1.55µm[35].Thetuningrateforthethermoopticdeviceis120GHz/mW,andfortheelectroopticdeviceis120GHz/12V.Atunablelaserwithaside-modesuppressionratiogreaterthan30dBwasdemonstratedusingthis lteranderbium-doped berampli ergain.Thermaltuningover35nmwasachieved[35].
WGM谐振腔综述
ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS17
Oneofapparentapplicationsoftheoptical ltersisinopticaldelaylines.OpticaldelaydevicesbasedonchainsofcoupledWGRshavebeenstudiedin[37],[38].ItwasshownthattheQ-factorofthecoupling-splitmodesforasystemofNidenticalcoupledresonatorsisgreaterthanthatofasingleresonatorinthechainbyafactorofN,andevenmoreinthecaseofoptimumcoupling[39].Stoppinglightallopticallywithachainofinteractingtunableopticalresonatorswasdiscussedin[40].Anotherconceptofcoupledresonatoropticalwaveguideswasdevelopedin[41],[42].Inparticular,suchwaveguidescanberealizedinchainsofcoupledWGRs[44].Anumericalsimu-lationoflightpropagationinmicrocylindercoupledresonatorwaveguideswasreportedin[43].ThesimulationsshowthatlightpropagatesslowerintheWGMchainsformedbycouplingofthemodeshavingbiggerazimuthalnumbers.Thelightprop-agationbyWGMsofthesameazimuthalnumberhavethesamespeedregardlessofthesizeandthematerialoftheresonators.Generally,WGRtunable ltersallowshiftingthespectrumoftheresonators;however,theydonotprovidelinewidthtuningcapabilities.Cascadedresonatorswereproposedtobeusedforreal-timeshapingoftheirmodalstructures[45],[46].Akeyfeatureoftheapproachisthatitpointstoasimpletuningofthefrequencyandthewidthofthe ltertransmissionwindow,resultinginthetuningofthegroupdelayofopticalsignals—ahighlydesirablefeatureforsignalprocessingapplications.Thetransmissionspectralwindowofthe ltercouldbecuri-ouslynarrow.Theoretically,inthecaseofresonatorswithoutab-sorption,thewidthofthewindowcanbearbitrarilynarrow[45];however,inreality,theminimumwidthoftheresonanceisde-terminedbythematerialabsorption.Thephysicalprincipleofthe lteroperationthatresultsinthenarrowspectralwindowhasbeenrecognizedin[15],[25],[26].Theexistenceofthewindowhasalsobeendemonstratedexperimentally[47].C.TunableFilters
Tunabilityisahighlydesirablepropertyofanyapplicationofresonators.ThoughWGRsaresolidstatedevicesandtheirtun-abilityisnotreadilyconceivable,tunabilitycan,infact,achievedbyseveralmethods.MechanicaltrimmingofWGMswithap-pliedstrain[48]–[50]andtemperaturetuning[51],[52]havebeenpreviouslyused.Thoughthemechanicalaswellastem-peraturetuningrangesarerelativelylarge;e.g.,ontheorderofafewtoseveraltensofnanometersforthermaltuning,thesemethodsarenotveryconvenientformanyapplicationsbecauseofsmalltuningspeedsandlowtuningaccuracy.Thetuningaccuracyisespeciallyimportantforhigh-Qresonatorswithnar-row lterbandwidth.Anall-opticaltunable lterdesignbasedon“discontinuity-assistedringresonators”thatdoesnothavethepreviouslymentioneddisadvantageshasalsobeenproposedtheoretically[53],but,toourknowledge,noexperimentalim-plementationofthecon gurationhasbeenreported.
AtechniqueforWGMresonancetuningwasdemonstratedusingmicroringresonatorswithaphotosensitivecoating.Inthatstudy,glassmicroringsweredippedinapolymercoatingmaterialandwereexposedtoUVlight.ThismethodproducedresonatorswithrelativelysmallQ(about800)becauseofthe
polymer-inducedabsorption;yetitstillallowedlargetunabilityoftheopticalresonanceofthemicroring,enoughforwavelengthselectiveapplications[47].
Amethodforthetrimmingofpolymeropticalmicrores-onatorswasproposedin[54].Themethodisbasedonphoto-bleachingCLD-1chromophores.Amaximumwavelengthshiftof8.73nmwasobservedat1.55µm.Theresonatorshada3dBbandwidthof0.12nm,anFSRof1.11nm,anintrinsicQvalueof~2×104,anda nesseof~10.
Anotherapproachfortrimmingthefrequencyofmicrores-onatorsexploitsthephotosensitivityofthegermanatesilicaglass.WhenexposedtoUVlight,thismaterialundergoesasmallpermanentchangeinstructurethataltersitsindexofre-fraction.InthecaseofaWGR,thespatiallyuniformchangeintheindexofrefractionresultsinauniformtranslationoftheresonantfrequencies.Suchatunableresonator,aswellasasecond-orderoptical lterbasedontwocoupledresonators,oneofwhichwastunable,wasexperimentallyrealizedforopticalhigh-Q(108)WGMs[32],[55],[56].
Recently,fabricationofopticalWGMresonatorswithlithiumniobate[57]hasledtothedemonstrationofahigh-Qmicrowave lterwithalinewidthofabout10MHzandfastelectrooptictuningwithatuningrangeinexcessof10GHz[58].ThebesttunabilityforaLiNbO3singleresonator lterwas±20GHzbyapplyingdcvoltageof±50Vtoanelectrodeplacedovertheresonator.
ThefrequencyshiftoftheTEandTMmodesinaWGRmaybefoundfromthetheoryoftheelectroopticeffect[59].FortheLiNbO3WGR lterdiscussedin[58],we nd
ωTE
=ωn2
0e2
r33EZ,
ωTωn2
M
=0o2
r13EZ
(4)
whereω0=2π×2×1014Hzisthecarrierfrequencyofthelaser;r33=31pm/Vandr13=10pm/Varetheelectroopticconstants;ne=2.28andno=2.2aretherefractiveindicesofLiNbO3;andEZistheamplitudeoftheelectric eldappliedalongthecavityaxis.TMmodeswereusedintheexperimentreportedin[58]becausetheyhavelargerqualityfactorsthantheTEmodes.Ifthequalityfactorisnotveryimportant,itisbettertousetheTEmodes,becausetheirelectroopticshiftsarethreetimesaslargeasthoseofTMmodesforthesamevaluesoftheappliedvoltage.
Theoretically, ωTEand ωTMdonotdependontheres-onatorproperties,andarerelatedtothefundamentallimita-tionsofopticalresonator-basedhighspeedelectroopticmod-ulators[60].Forexample,thedomainreversalinacongruentLiNbO3crystaloccursatEZ 20kV/mm,whichcorrespondstoarelativeWGRfrequencyshiftof ωTE/ω0 1.6×10 3and ωTM 5×10 4,whichiswellabovetheobservedshifts.Lithiumniobate ltersareconvenient;however,theirlinewidthisrestrictedbyafewMHzbecauseoftheresidualabsorptionofthematerial.CrystallineWGRscouldpossessmanyordersofmagnitudenarrowerlines.Forinstance,opti-cal lterswithbandwidthsofabout10kHzusingCaF2WGMresonatorswasdemonstratedin[61].TheCaF2resonatorshavestableultrahighQ-factorscomparedwithfusedsilicaresonators,whereQdegradeswithtime.LimitedtuningoftheCaF2 lters
WGM谐振腔综述
18IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006
canberealizedwithtemperature.Theinsertionlossofthe lterwasatthe5dBlevel.
Tocharacterizetheabsolutetunabilityofanopticalresonator-basedphotonic lter,itisusefultointroducetheratiooftheresonatorFSRandlineartunabilityrangegivenbythehostma-terial.Tuningthe ltersdoesnotchangetheFSRinthe rstapproximation,butonlyshiftsthecomboftheopticalmodes,makingitoverlapwithitselfforeachfrequencyshiftpropor-tionaltotheFSR.Hence,the ltercanbetunedatanyprescribedsinglefrequencyifthelineartunabilityexceedstheFSR.Thelackofselectivityinasingle-resonator ltercanbecompen-satedwiththeapplicationofcoupled-resonator lters.Ifeachresonatorinthe ltercanbetunedbyitsFSR,thewhole l-tercanbetunedatanyfrequency,whereasthespectrumofthemultiresonator ltercanbeveryrareduetotheVerniereffect.Somephotonicapplicationscallfornarrowband lterssimul-taneouslypassingboththecarrierandsidebands.Forexample,thisisimportantforthegenerationofspectrallypuremicrowavesignalsinoptoelectronicoscillators[62],wherebeatingoftheopticalsidebandsandthecarrieronafastphotodiodegeneratesmicrowaves.Tunabilityofthemicrowavefrequencyoftheos-cillatorrequiresthatthefrequencydifferencebetweenthe lterpassbandschangecontrollably.Thispropertyislackinginex-istingtunable lters,wheretheentire lterspectrumshiftsasawholeasthetuningvoltageisapplied.Acriticalcomponentofanovelminiature lterwithelectro-opticallyrecon gurablespectrumwasrecentlyreported.The lterisbasedonaWGRfabricatedfromacommerciallyavailablelithiumniobatewaferhavingaspeciallyengineereddomainstructure[63].D.WGMFiltersinOptoelectronicOscillatorsandLasersforStabilization
1)WGMFiltersforOEO:Generationofspectrallypuresig-nalsat1to100GHzisrequiredincommunications,radar,andnavigation.Theadventofhighthroughputopticalcommunica-tionlinkspointstotheprospectsfornetworksoperatingatdataratesashighas160Gb/sandconsistingofmultiplesofchannelsseparatedbyafewGHz.Schemesforrealizingthistypeofcapa-bilityrelyonsourcescapableofprovidinghighfrequency,lowphasenoisesignals,withoutwhicherror-freehighdataratesys-temswouldnotbepossible.Similarly,highperformanceradarsystemsrequirelowphasenoiseoscillatorstoallowdetectionoffeeblesignalsfromadensebackgroundclutter.
Theoptoelectronicoscillator(OEO)isadevicethatproducesspectrallypuresignalsatmanytensofgigaltertgbasedonpho-tonictechniques,andthusovercomessomeoftheinherentlim-itationsoftheconventionalelectronicdevices[62],[64]–[69].TheOEOisagenericarchitectureconsistingofalaserasthesourceoflightenergy.Thelaserradiationpropagatesthroughamodulatorandanopticalenergystorageelement,suchasanoptical ber,beforeitisconvertedtotheelectricalenergywithafastphotodiode.TheRFelectricalsignalattheoutputofthephotodiodeisampli edand ltered,andthenfedbackintothemodulator,closingtheloop.Ifthetotalgainexceedslinearlosesoftheloop,thesystemoscillatesatthefrequencydeterminedbythe lter.TheuseofopticalstorageelementsallowsfortherealizationofextremelyhighQsandthusspectrallypuresignalsinopti-caloscillators,sincethenoiseperformanceofanoscillatorisdeterminedbytheenergystoragetime,orqualityfactorQ.Inparticular,along berdelayleadstorealizationofmicrosec-ondstoragetimes,correspondingtoQsofaboutamillionata10GHzoscillationfrequency.Thisisahighvaluecomparedtoconventionaldielectricmicrowavecavitiesusedinoscilla-tors[70],[71].The berdelaylinealsoprovidesforwidebandfrequencyoperationunhinderedbytheusualdegradationoftheoscillatorQwithincreasingfrequency.Thus,spectrallypuresignalsatfrequenciesashighas43GHz,limitedonlybythemodulatoranddetectorbandwidth,havebeendemonstrated.InagenericOEO[62],thelong berdelaylinesupportsmanymicrowavemodesimposedonanopticalwave.Anarrowbandelectrical ltershouldbeinsertedintotheelectronicseg-mentoftheOEOfeedbacklooptoachieveastablesinglemodeoperation.Thecenterfrequencyofthis lterdeterminestheop-erationalfrequencyoftheOEO.Whilethisapproachyieldsthedesiredspectrallypurehighfrequencysignals,thephysicalsizeoftheOEOisratherbulkybecauseofthekilometersof berdelayneeded.Moreover,thelong berdelayisverysensitivetothesurroundingenvironmentsotheOEOdoesnotproduceanoutputwithhighlongtermfrequencyaccuracyandstability.TheOEOistypicallyphaselockedtoastablereferenceforlongtermstability.
ThepropertiesoftheOEOwithahigh-QWGRinplaceoftheelectronic lter,aswellasthe berdelay,wasstudiedin[72].Itwasshownthatthemethodallowsonetochoosevirtuallyanarbitraryfrequencyofoscillationbytuningtheresonator.
2)WGMFiltersfortheLaserStabilization:InadditiontothestabilizationoftheOEO,WGRscanbeusedforlaserstabi-lization.Opticalfeedbackfromahigh-Qmicrosphereresonatorwasusedtonarrowthespectrumofaminiaturehigh-coherentdiodelaser,andanearlyhalf-pitchgradient-indexlensservedasacouplingelement[73].Aswasestimatedfromthevariationinfrequency-tuningrange(chirp-reductionfactor),thefastlinewidthofthelaserwasreducedbymorethanthreeordersofmagnitude.
Amodi cationofexternalopticalfeedbackthatincludesaWGRwasusedtonarrowthelineofadiodelaser[74].AWGMofahigh-Qmicrospherewasexcitedbymeansoffrustratedtotalinternalre ection,whilethefeedbackforopticallockingofthelaserwasprovidedbyintracavityRayleighbackscattering.Abeatnoteofthetwolaserdiodesopticallylockedtoapairoforthogonallypolarizedmodesofthesamemicroresonatorhadtheindicated 6aspectralwidthof20kHz,andthestabilityof2×10overaveragingtimesof10s.AtheoreticalmodelforthelaserstabilizationwithaWGRwaspresentedin[75].
Finally,insteadoflockingalasertoaWGM,theoppositewasrealizedin[76].AWGMofafused-silicamicrospherewaslockedtoafrequency-scanninglaser.Theresonancefrequencywasmodulatedbyaxialcompressionofthemicrosphere,andphase-sensitivedetectionofthe ber-coupledopticalthroughputwasusedforlocking.SuchasystemisparticularlyusefulinWGR-basedchemicalsensors,whichthefollowingsectionisdevotedto.
WGM谐振腔综述
ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS19
E.SpectroscopyandAnalysisofChemicalandBiologicalAgents
StartingfromliquidWGRsusedforresonator-enhancedspec-troscopy(see[77]forreview),solidstateWGRswereutilizetoenhancetheinteractionbetweenlightandatoms/molecules.Oneofthe rstexperimentsonthesubjectwasrealizedintheframeofcavity-QED[78].Theradiativecouplingoffreeatomstotheexternalevanescent eldofaWGMwasdetected.Thecouplingmanifesteditselfasanarrowabsorptionlineobservedintheres-onatortransmissionspectrum.Itwasproventhattheevanescent eldofthehigh-Q(5×107)andsmallmodevolume(10 8cm3)fusedsilicamicrosphereenablesvelocity-selectivein-teractionsbetweenasinglephotonintheWGMandasingleatominthesurroundingatomicvapor.Anultrasensitivespec-trometerbasedonastretchedsilicamicrospherewasproposedin[50],[79].
ThenextstageinthesensordevelopmentwasrelatedtoWGR-basedbiosensors[80]–[82].Opticalbiosensorsaretypi-callytransducersthatdetectthepresenceofmoleculesatasur-face.Theyhaveseveraldesirablefeatures,particularlyforthedetectionofbiologicalmolecules,thatinclude:1)highsensi-tivity(lessthannanomoles);2)non-destructivitytothesample;3)highselectivity;and4)applicabilitytovarioussubstances.Thetransductionprocessesinopticalbiosensorsgenerallytakeplaceonasurfaceandcanbetailoredtosensealmostanykindofmolecule,chemicalandprebiotic,aswellasbiological.WGRsensorsbelongtotheevanescentwavesensors,whichareamongthemostsensitiveclassofbiosensors[83],[84].Anevanescentwaveproducedbythetotalre ectionoflightwithinthewaveguideinteractswithanalytesonthewaveguidesurfaceintheevanescent eldsensors.Theevanescentwaveprotrudesabovethewaveguidesurfaceby~100nm(theactualdistancedependsontherelativeindexofrefractionofthewaveguideandthesamplemedium),andsamplesonlytheanalyteonthesur-face.Surfacetreatmentssuchasantibodiesoroligonucleotidestrandscanprovidespeci cityfortheanalyte;thesensorthendetectsonlythoseboundtothesurface.Transductionmech-anismsforboundanalyteinclude uorescence,masschangeintheevanescentregion[85],andchangeintheindexofre-fraction[86].Typicalsensitivityofevanescentwavebiosensorsbasedon beropticsensorsorplanarwaveguidesensorsisintherangeofnano-molestopico-moles.
ThebasicdetectionschemethatutilizesWGRsisthatbindingofmoleculestothemicroresonatorsurfaceinducesanopticalchangeproportionaltothequantityofboundmolecules.TheparadigmforthisprocessisachangeinthecavityQasthesurfaceboundmoleculesaffectthephotonstoragetime,eitherthroughincreasedscatteringorabsorption.Ineffect,theanalytespoilstheQ,andtheresultingchangecanbemeasured.
AnyproteinwilladheretoglasssurfaceofagenericWGR,andhence re-polishedspheresareentirelynonspeci c.Twoconditionsmustbemetforchemicalmodi cationofthemicro-spheresurface: rst,theglassmustbecoatedwithacompoundthatwillminimizenonspeci cbinding.Second,anantibodyorotherproteinwithsensitivitytoaparticularligandmustbelinkedtothesphereinsuchawaythatboththeprotein’sfunctionality
andthesphere’sQarepreserved.Athin lmofamaterialwiththicknesssmallerthantheWGM’sevanescent eldwillnotsig-ni cantlyaltertheQofthemicro-resonator;thus,athicknessof~10–100nmcanbeappliedtothemicrospherewhileretainingitshigh-Q.
Apossibilityofenhancementofthedetectionsensitivityofevanescent-waveopticalbiosensorswasdiscussedin[87]–[92].ItwasshownthattheresonantcouplingofpowerintotheWGRallowsforef cientuseofthelongphotonlifetimesofthehigh-QWGMstoincreasetheinteractionofthelightandtheparticlesunderthestudy.Thisenhancementresultsinstronger uores-cenceandinchangesoftheresonatorparameters.
Aspectroscopictechniqueforhigh-sensitivity,label-freeDNAquanti cationwasdevelopedin[93].ItwasdemonstratedthataWGMexcitedinamicron-sizedsilicaspherecanbeusedtodetectandmeasurenucleicacids.Thesurfaceofthesilicasphereistobechemicallymodi edwitholigonucleotides.A rst-orderperturbationtheorywasdevelopedforWGMsinadielectricmicrosphere[94],[95].Thetheorywereappliedtothreesensorapplicationsofthemicrospheretoprobethemediuminwhichthesphereisimmersed:arefractive-indexdetector,anadsorptionsensor,andarefractive-indexpro lesensor.
BiosensorsbasedontheshiftofWGMsinmicrospheresac-companyingproteinadsorptionweredescribedbyuseofaper-turbationtheoryin[94].Forrandomspatialadsorption,theorypredictsthattheshiftshouldbeinverselyproportionaltomicro-sphereradiusa,andproportionaltoproteinsurfacedensityandexcesspolarizability.
Hybridzincoxide/silicamicrodisklaserswereutilizedtosensevolatileorganiccompounds,suchastolueneandnitroben-zene[96].Nonspeci cadsorptionoftheseorganicmoleculesontotheWGRsurfacecausesanincreaseinthediskrefractiveindex,ultimatelyresultinginaredshiftoftheobservedlasingwavelengths.
ImprovementofphotonicWGMsensorsusingthefano-resonantlineshapewasproposedin[97].Polystyrenemicror-ingresonatorswerefabricatedbythenanoimprintingtechnique,andtheopticalspectraweremeasuredinglucosesolutionsofdifferentconcentrations.Theshiftinresonantwavelengthandvariationofthenormalizedtransmittedintensitywerelinearlyrelatedtotheconcentrationoftheglucosesolution.
ApplicationofWGRsinhigh eldhighfrequencyelectronmagneticresonancemeasurementswasdiscussedin[98].F.MechanicalSensors
High-QWGMsresultinincreaseinsensitivityofvariousmechanicalexperiments.Forinstance,WGMscouldbeusedforthemeasurementofstraininoptical bers[48].Atwo-resonatorsensorofsmalldisplacementsthatutilizeshigh-QandmechanicaltunabilityofnormalmodesincoupledopticalWGRswasproposedin[99].
Anaccelerometerutilizinghigh-QWGRswaspresentedin[100].Inducedconsoledisplacementsweremonitoredthroughchangesintheresonancecharacteristicsofasphericalopti-calcavitycoupledtothe exure.Instantaneousmeasurement
WGM谐振腔综述
20IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006
sensitivityofbetterthan1mgat250Hzbandwidth,andanoise oorof100µg,wereachieved.
Theideaofusageofpassiveandactiveopticalringinter-ferometersfordetectionofrotationwasdevelopedandim-plementedacoupleofdecadesago[101]–[103].AminiatureintegratedWGMopticalsensorforgyroscopesystemswasre-centlyproposed[104].Itwaspredictedthatthesensormaypossesshighenoughsensitivityevenonamillimetersizescale.ApassiveWGMgyroscopewasdiscussedin[105].ThebasicdifferenceofthegyroscopecomparedwiththeexistingringresonatorgyroscopesisintheusageofcrystallineWGRin-steadoftheusualringresonator.TheWGR-basedgyroscopeisexpectedtohavemuchlessbackscatteringandpolariza-tionrotationnoisescomparedwithconventional ber-basedgyroscopes.
G.FundamentalPhysicsWithPassiveWGMs
WGRsofferinterestingpossibilitiesfrombothclassicalaswellasquantumpointsofview.HighQ-factorsaswellassmallmodevolumesofWGMsresultinamultitudeofinterestingandimportantphenomena.Inthissection,wediscussthosephenomenarelatedto“passive”WGMs,whichdonotleadtogenerationoflight,leavingfundamentalpropertiesofWGMlasersandotheractivedevicestoasubsequentsection.
1)Chaos:OneofthefundamentalproblemsisrelatedtoWGMsinanasymmetricWGR.Itwasshownthatdeparturefromanaxialsymmetryresultsintheoccurrenceofchaoticbe-havioroflightintheresonator.Thishasbeenpredictedtogiverisetoauniversal,frequency-independentbroadeningoftheWGRs,andtohighlyanisotropicemission[106]–[110].Aso-lutionoftheproblemwhichcon rmsthesepredictions,butalsorevealsfrequency-dependenteffectscharacteristicofquantumchaos,waspresentedin[111].ItwasshownthatforsmallWGRdeformations,thelifetimeiscontrolledbyevanescentleakage,theopticalanalogofquantumtunneling[112].Theproblemofthedirectionalemissionfromegg-shapedasymmetricresonantcavitieswasdiscussedintheoreticaltermsin[115].
Thelifetimeoflightcon nedinaWGRcanbesigni -cantlyshortenedbyaprocessknownas“chaos-assistedtun-neling”[113].Surprisingly,evenforlargedeformations,someresonanceswerefoundtohavelongerlifetimesthanpredictedbytheraychaosmodelduetothephenomenonof“dynamicallocalization”[114].
Modesofpartially-stableWGRswerediscussedin[116]us-ingatheory,whereinexponentiallysuppressedtunnelingin-teractionbetweenregularandchaoticmodeswasconsideredasaperturbation.Itwasshownthatchaos-assistedtunnelingcanleadtosplittingofregularWGMsinasymmetricopticalresonances.Atheoryofin uenceofthechaos-assistedtunnel-ingonlifetimesandemissionpatternsoftheopticalmodesingenericmicroresonatorswasdevelopedin[117]usingapproachpresentedin[118].
The rstexperimentonchaos-assistedtunnelinginatwo-dimensionalannularbilliardwasreportedin[119].Highlydi-rectionalemissionfromWGMswasdemonstratedindeformednonaxisymmetricfused-silica“microspheres”[120].2)“PhotonicAtoms”:Anotherfundamentalareaofappli-cationofWGRsisbasedontheabilityoftheresonatorstomimicatomicproperties.ItwasshownthatWGMscanbethoughtofasclassicalanalogyofatomicorbitals[121].ItwaspointedoutthatWGMmodenumberscorrespondtoangular,radial,andtheazimuthalquantumnumbers,respectively,thesameasintheatomicphysics.Suchanapproachresultedinintro-ducingtheterm“photonicatoms”withrespecttoWGMres-onators[122],[123].“Photonicmolecules,”basedoncoupledWGRs,wasstudiedin[124],[125].
3)CavityQED:Thereisgreatactivityinboththeoreticalandexperimentalinvestigationsofcavityquantumelectrody-namics[126]–[130]effectsinWGRs.Forinstance,spontaneousemissionprocessesmaybeeitherenhancedorinhibitedinacav-ityduetoamodi cationofthedensityofelectromagneticstatescomparedwiththedensityinafreespace[131],[132].Thiseffectwasstudiedtheoretically[133]–[135]aswellasexperi-mentally[136],[137]inWGRs.
Methodsforcontrolofatomicquantumstateinatomscou-pledtosingle-modeandmultimodecavitiesandmicrosphereswerediscussedin[138].Thosemethodsincludeexcitation,de-caycontrol,location-dependentcontrolofinterferenceofdecaychannels,anddecoherencecontrolby“conditionallyinterferingparallelevolutions.”
Propertiesofatomicinteractionwiththe eldofahigh-Qcavitywasstudiedin[139]using“pseudomode”theory.ItwasshownthatthetheorycanbederivedbyapplyingtheFanodiag-onalizationmethodtoasysteminwhichtheatomictransitionsarecoupledtoadiscretesetofcavity“quasimodes.”Thecavitymodesdecayintoacontinuumsetofexternal“quasimodes.”Itwasshownthateach“pseudomode”canbeidenti edwithadis-crete“quasimode,”whichcontainsstructuretotheactualreser-voir.
PonderomotiveinteractionofanatomandaWGMwasdis-cussedin[143],[140],[141],seealso[142],[144],forreview.Inparticular,itwasshownthattheexternal eldsofopticalWGMsmaybeusedtocon neatomsinstableorbitsaroundadielectricmicrosphere[143].Theboundstatestructureanddynamicsfortheatomtrapwereinvestigatedin[140].Thedynamicsofthecenter-of-massofanultracoldexcitedatomicoscillatorinthevicinityofadielectricmicrospherewasstudiedin[141].
Theponderomotiveinteractionofanatomandphotonscon nedinaWGM,canbeusedforquantumnondemolitionmeasurements.Itwasshown[145]–[147]thatthedipoleforceexperiencedbyanatominanoff-resonantspatiallyinhomo-geneouslight eldisquantizedbythediscretenatureofthephoton.Similarschemestoperformquantumnondemolitiondetectionofopticalphotonsbyobservingthede ectionofabeamofatoms yingclosetoanopendielectricresonatorwereproposedinthestudies.
Theponderomotiveinteractionofanelectron,insteadofanatom,andphotonsinaWGM,wasproposedforaquantumnon-demolitionmeasurementofphotonnumber(thephotonnumberisde nedastheenergystoredinthemodedividedby¯hω0,whereω0isthefrequencyofthemode).Thetechniqueisbasedontheeffectofquadraticscatteringofelectronstravelingalongtheresonatorwithavelocityclosetothephasevelocityofthe
WGM谐振腔综述
ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS21
waveintheresonator[148].Themeasurementideareliesonthefactthatanelectrontravelingalongabaredielectricwaveguide(orsurfaceofaWGR),atavelocitynearthephasevelocity,ac-quiresatransversemomentumproportionaltothephotonenergyofthelightinthewaveguide.Itwasnotedthatthismomentumcanbemeasured[149].Thescatteringeffectwasanalyzedwithconsiderationforthewaveguide(andWGM)dispersion,radia-tionfriction,andthespuriousCherenkovradiation.
Aradiativecouplingofananoparticle/atomwithaWGMwasstudiedin[78],[150];seealso[130],[152]forareview.Thepossibilityofstrongcouplingbetweenaphotoncon nedinaWGMandanatomwasanalyzedin[153]–[155].TheresonantinteractionofanatomwithdipolarJ=0 J=1angular-momentumtransitionwiththequantized eldindielec-tricspheresandspheroidswasstudiedin[153].ThepossibilityoftheapplicationofamicrodiskWGRforthedetectionofasingletrappedatomwasstudiedin[156].
Ameasurementsofcavity-QEDeffectsfortheradiativecou-plingofatomsinadilutevaportotheexternalevanescent eldofaWGMwasreportedin[78].ExperimentsonthecouplingofasinglenanoemitterandWGMswerediscussedin[150],[151].AcompositesystemconsistingofaGaAsquantumwellstruc-tureplacedintheevanescent eldofafusedsilicamicrosphere,andevanescentcouplingbetweenexcitonsinthequantumwellandWGMsofthecompositesystem,wasdemonstratedin[157].AcompositesystemconsistingofCdSeZnSnanocrystalsandafused-silicamicrospherewasdemonstratedin[158].TheQ-factorsofthesystemwereoftheorderof108,providingamodelforinvestigatingcavityQEDandmicrolasersatthelevelofsinglequantumdots.
Opticalpropertiesofcon nedphotonstatesinanextremelysmallsphericalWGRswithsizesof2λ<R<10λ(dubbed“photonicdots”)resonantlyexcitedbyphotonsemittedfromsemiconductornanocrystals(thequantumdots)werestudiedin[159],[160]withparticularfocusonQEDpropertiesofWGRscontainingCdSequantumdotsandquantumrods.BothglassandpolymerWGRswerecharacterizedbyspatiallyandtemporallyresolvedmicrophotoluminescence.
III.WGRSWITHACTIVEMODES
SmallvolumesandhighQ-factorsofWGMsresultinen-hancementofnonlinearopticalprocesses.Duetothisenhance-ment,WGRbasednonlinearopticdevicespossessuniquechar-acteristics.Forexample,usageofWGMsallowstherealizationoflasersandwave-mixingdeviceswithmicroWattthresholds.NarrowlinewidthofWGMsresultinnarrowspectralcharacter-isticsofthelasers.Inthissection,wereviewresultsofrecentstudiesinthe eld.
A.Continuous-Wave(CW)WGMLasers
MiniaturelasersareamongthemostobviousapplicationsofWGRs.Thehighqualityfactoroftheresonatorsleadstothereducedthresholdofthelasing.The rstWGMlaserswerereal-izedinsolidmaterials[161]–[163].However,probablybecauseofthelackofinput-outputtechniquesforWGMs,theworkwasdiscontinuedatthatpoint.ThenextdevelopmentoftheWGM-basedlaserswasinliquidaerosolsandindividualliquiddroplets[164]–[169].Finally,duringthelastdecade,thelasersbasedonsolesolidstateWGRswererediscovered,demon-stratedexperimentally,andintensivelystudied.Inthissection,wereviewrecentresultswithWGRCWlasers,leavingWGRRamanlasersforSectionIII-B.
1)LasinginCapillaries:TheWGRlasercanberealizedinacylindricalresonator.Thesimplestresonatorofthiskindisacap-illary.Thegainmediumcouldresideinsidethecapillary,whereWGMsarelocalized.Forinstance,laseremissionfromWGMsinahighlyrefractivedye-dopedsolvent owinginanormallyilluminatedsilicacapillary berwasdemonstratedin[170].ThecylindricalWGMlaserdiffersfromthesphericaldropletlaser[164]inthatithasaninternalrefractiveindexdiscontinu-ity.Thelightpenetratesintotheactivemediumiftherefractiveindexofthemediumishigherthantheoneofthecapillarymaterials;e.g.,nolaserpeaksareobservedwhentherefractiveindexofthesolventislessthanthatofsilica[170].AnexampleofmicroringlasingusingCdSenanocrystalquantumdotsincor-poratedintomicrocapillarytubeswasdemonstratedin[171].Thelasinginacapillarybasedontheevanescent eldcou-plingwiththegainmediumisalsopossible.Thelayeredmicro-cavitywasrealizedin[172],[173]by owingdye-dopedethanolthroughathinwallfusedsilicacapillarytubewhoserefractiveindexwaslargerthanthatoftheliquid.Thelasingspectrumshowedastrongmodeselection,andnearlyevensinglecon-structiveinterferencepeaks,duetotheinterferentialcouplingofWGMsattheinnerboundary.Variousmodeorders,whicharenotallowedintherayopticspicture,weremadetooscillateduetotheevanescentpropagationofWGMsattheouterboundary.Theestimatedcavityqualityfactorswerehigherthan106.Thelasingcharacteristicsofresonancemodesinathindye-dopeddielectricringcavitymadeontheinnerwallofacylindricalcapillarywerealsostudiedin[174].
AWGMlaserwithpulsedopticalpumpingfabricatedbysurroundingasmallsectionofaglasscapillarywithasolutionofRhodamine6G,andbycouplingthepumplightintothecapillarywall,wasdemonstratedin[175].Thelasingthresholdpumpenergywas100nJ/pulseatapumppulsedurationof6ns.2)LasinginDopedWGRs:AnotherwaytocreateaWGRlaseristheuseofsolidsdopedwithactiveelements;e.g.,rareearthionsasaWGRhostmaterial.
AWGMlaserbasedonneodymium-dopedsilicamicro-sphereswitha200nWthresholdwasrealized[176]withmicrospheresofradiusa~25–50µm,formedbyheat-fusingthetipofalengthofdopedsilica ber.Neodymiumionsprovideafavorablefour-levellasersystemthatcanbepumpedonthe4I9/2 4F5/2transitionat~810nmwithadiodelaser.Thelasertransition4F3/2 4I11/2inthe1.06–1.09µmrangeconnectsalonglivedupperleveltoalowerlevelthatisdepletedbystrongphononrelaxationsothatpopulationinversioniseasilyachieved.Similarexperimentswithaneodymium-dopedsilicamicrospherelaseroperatingat2Kandabsorbing200nWpumppowerwerereportedin[177].CWlaseroscillationonboththe4F3/2→4I11/2and4F3/2→4I13/2transitionsofNd3+ionsin uorideglassWGRswasalsoachieved[178].FabricationofNd-dopedtelluriteglassWGRsandobservations
WGM谐振腔综述
22IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006
oflaseroscillationcorrespondingtotheopticaltransition4
F3/2→4I11/2at1.06µmwasreportedin[179].
AWGMlaserutilizingamicrospheremadeofhighlydopederbium:ytterbiumphosphateglasswasusedtogeneratelightat1.5µm[180].Laserthresholdpumppowerof60µWand ber-coupledoutputpowerashighas3µWwithsingle-modeoperationwereobtained.Abispherelasersystemconsistingoftwomicrospheresattachedtoasingle bertaperwasalsodemonstrated.
AnEr3+-dopedtelluriteglassL-bandWGRlaserwasdemon-stratedanddiscussedin[181].Themicrospheresweremadebya“spinmethod.”Fibertaperswereutilizedtocouple975nmpumpintothesphereandcouplegeneratedlight(1.56–1.61µm)outofthesphere.Theerbiumionconcentrationofthetelluriteglasswas1.7×1020ions/cm3.
Agreenroomtemperatureup-conversionlaserwasdemon-stratedina120µmdiametermicrosphereofEr3+dopedZBLAN[182],[183].Lasingoccurredaround540nmwitha801nmdiodelaserpump.Thelasingthresholdwas30µWofabsorbedpumppower.
Experimentalresultsontherealizationandspectralcharac-terizationofEr:ZBLANmicrosphericallasersat1.56µmwerepresentedin[184],[185].Thelasingwasobtainedwiththeexternal1.48µmpumping.Multimodeoperationandalaserthresholdaslowas600µWwereobserved.
Greenlasinghaving4mWthresholdwasdemonstratedinanerbium-ion-doped uoro-zirconateglassWGR[186].Peri-odicnarrowpeaksoftheemissionspectracorrespondingtotheWGRswereobserved.
Anerbium-dopedmicrolaseronsilicon,operatingatwave-lengthof1.5µmandcharacterizedwithpumpthresholdaslowas4.5µW,wasdemonstratedin[187].The40-µmdi-ametertoroidallaserWGRwasmadeusingacombinationoferbiumionimplantation,photolithography,wetanddryetch-ing,andlaserannealing,usingathermallygrownSiO2 lmonaSisubstrateasastartingmaterial.Singlemodelasingwasobserved.
Anothererbium-dopedhigh-QsilicatoroidalWGRmicro-laser(25–80µmindiameter)wasdemonstratedin[188].TheWGRwascoupledwithataperedoptical ber.Erbiumioncon-centrationswereintherange0.009–0.09at.%.Thresholdpumppowerwasaslowas4.5µW.
ATm3+-dopedtelluriteglassWGRlaserwasdiscussedin[189].Thelaser,pumpedat800nmwithataperedopti-cal ber,oscillatesinboththeSbandandthe1.9-µmband.Thepeakat1.5µm(S-band)correspondstoemissionofthe3
H4→3F4transition,whilethepeakat1.9µmcorrespondstothe3F4→3H6transition.
Numericalanalysisofamicrodisklaser,takingintoaccountfullgainsaturationeffectandthevectorcharacterofthe eld,waspresentedin[190].TheauthorssuggestedthatNd:YAGmicrodisklasersaretheexcellentcandidatesforalightsourceforoptical bercommunicationsoperatingat1.064and1.3µm.Atheoreticalstudyofthein uenceofdeformationofaWGRonlasingpropertieswasreportedin[191].
3)LasinginCoatedWGRs:Insteadofusingdopedmateri-als,apassiveWGRcanbecoatedwithgainmedium.Forex-ample,erbium-dopedsolgel lmswereappliedtothesurfaceofsilicamicrospherestocreatelow-thresholdWGRlasers[192].Lasingactioninanultra-high-QsphericalWGRcoatedwithgainmediumwasreportedin[193].
LasinginasquarecavitywithroundcornerscoatedwithpolymethylmethacrylateandwithRhodamine6Gmolecules,wasstudiedin[194].Athingainlayerwascoatedonlyontheouterboundaryofcavity.Thethicknessofthegainlayervariedfromonemicrometertoseveralmicrometers.
Ultravioletmicrodisklasersonsiliconsubstratewithalayerofzincoxidegainmediumgrownontopofthesilicamicrodisksweredemonstratedin[195].LasingoccursintheWGRsatroomtemperature.ThehybridZnO–SiO2WGRwasopticallypumpedbythethirdharmonics(355nm)ofamode-lockedNd:YAGlaserwith~10Hzrepetitionrateand20pspulsewidth.Amicroscopeobjectivelensisusedforfocusingpumplightontheresonatoraswellasforcollectingtheultravioletemissionat~390nm.AWGM-enhancedinelasticemissionfromamonolayerofA488 uorophoresonthesurfaceofa9.8µmWGR(polystyrenebeadtrappedinanopticaltrap)wasobservedandreported[196].ItwaspointedoutthatitwaslikelythattheWGM-enhancedemissionisduetoA488lasing,withalasingthresholdbetween0.29and0.87W·cm 2.
4)WGMLasersWithSemiconductorGainMedia:WGM-basedlaserscanbecreatedwithsemiconductorquantumdotscoupledtotheWGMs.Oneofthemostimportantproblemshereisfabricationofasinglequantumdotmicrolaser.SuchamicrolasermadebycapturingthelightemittedfromasingleInAs–GaAsquantumdotintheWGMofaglassmicrospherewasproposedtheoreticallyin[197].Amasterequationmodelofasinglequantumdotmicrospherelaserwasdescribedin[198].Theoperationofasinglequantum-dot-microspherelaserandasemiconductormicrospherebistableelementwastheoreticallystudiedin[199].
Aquantumdot-microcavitysystemconsistingofCdTenanocrystalsattachedtoamelamineformaldehydelatexmi-crospherewasrealizedexperimentally[200].Thehighopticaltransparency,andthermalandmechanicalstabilityofmelamineformaldehyde,makeitinterestingasapotentialcandidateinop-ticalapplications.Therefractiveindexofmelamineformalde-hydeinthevisibleregion(n=1.68)isgreaterthanthatofsilica(n=1.47)orotherglassmaterials(n≈1.5).Photolumines-cencespectraofthemicrospherescoveredbyathinshellofCdTenanocrystalswerestudiedinordertoexaminetheemis-sionintensityasafunctionofexcitationpower.
Ultralow-threshold(thepumpwaslessthan2µW)CWlasingwasachievedatroomtemperatureinafused-silicamicrospherethatwascoatedwithHgTequantumdots(colloidalnanoparticles)[201].
WGRscansigni cantlyimproveoperationofsemiconductorquantumwelllasers.Amicrolaserdesignbasedonthehigh-re ectivityWGMsaroundtheedgeofathinsemiconductormicrodiskwasdescribed,andinitialexperimentalresultswerepresentedin[202].ItwasshownthatopticallypumpedInGaAsquantumwellsprovidesuf cientgainwhencooledwithliq-uidnitrogentoobtainsingle-modelasingat1.3and1.5µmwavelengthswiththresholdpumppowersbelow100µW.
WGM谐振腔综述
ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS23
ArealizationofanInGaAs–InGaAsProomtemperaturequantumwelldisklaser1.6µmindiameterand0.18µminthickness,operatingat1.542µmandusing0.85µmopticalpumping,wasreportedin[204].Methodsfordirectionalcou-plingoflightoutputfromandtoWGRmicrodisklasersweredescribedin[203].
Anopticallypumped,pulsedGaNmicrodisklaseroperatingatroomtemperaturewascreated[205].WGMsofthediskhadlinewidthasnarrowas0.1nm.WGRswithdiameterscoveringtherange25750µmweretested.Opticalpumpingwasperformedperpendiculartothediskplanebythethirdharmonic(355nm)orthefourthharmonic(266nm)ofaQ-switchedNd:YAGlaser.Theoutputlightemissionfromthesestructureswascollectedbyare ectingobjectivelocated80 fromthesurfacenormal,Quantum-cascadeWGMdisklasersemittingat9.5-and11.5-µmwavelengthswerereportedin[206].Takingadvantageofthehigh-qualityresonator(Q~200),thethresholdcurrentdensityofdisklasersemittingat9.5µmwasreducedtobelowthevalueofthecorrespondingridgewaveguidegeometry.
A“microgear”lasercomposedofamicrodiskandarota-tionallysymmetricBragggratingwasdescribedin[207].AGaInAsP-InPdevicewithmicronsizewasfabricated,andtheroomtemperatureCWoperationwasobtainedby17-µWpump-ing.
AnopticallypumpedmicrodiscGaN-basedlaserwasdemon-stratedin[208].TheopticallypumpedWGRshaddistinctmodesatexcitationpowersrangingfromabout8to16W·cm 2.Qualityfactorsforthemicrodiskswereoftheorderof4600.Theobservedlasingthresholdwas12.1W·cm 2.B.ResonatorModi edScattering
Thereareatleastthreescatteringprocessesplayingsigni -cantrolesinWGRs.TheyareBrillouin,Rayleigh,andRamanscattering.
1)BrillouinScattering:StimulatedBrillouinScattering(SBS)wasdemonstratedinliquiddroplets[209]–[218],thoughnoSBSinhigh-QsolidWGRswasregisteredbecauseofselec-tionrules[215].
2)RayleighScattering:Rayleighscatteringleadstothelim-itationoftheQ-factorofWGMsaswellastotheinter-modecoupling.Thescatteringislargelysuppressedinhigh-QWGRsbecauseofrestrictionsimposedonscatteringanglesbycavitycon nement,soveryhigh-QWGMsarefeasible[219].Thescattering,ontheotherhand,couplesinitiallydegeneratecoun-terpropagatingmodesintheWGRsandcreatestheintracavityfeedbackmechanisminstrumentalforthelaserfrequencylock-ingapplication[74].Rayleighscatteringmediatedintracavitybackscatteringreaches100%,aswasshowntheoretically[219]anddemonstratedexperimentally[220].Inthefrequencydo-main,intracavitybackscatteringisobservedasthesplittingofinitiallydegenerateWGMresonancesandtheoccurrenceofcharacteristicmodedoublets[221],[222].In uenceofRayleighscatteringonQ-factorsofhighrefractiveindexcontrastWGRsfabricatedfromsilicon-on-insulatorwaferswasstudiedusinganexternalsilica bertaperwaveguide[223],[224].
3)RamanScattering:Substantialopticalpowerenhance-mentwithinahigh- nesseopticalcavityhasrecentlyyieldedCWRamanlaserswithlowthresholdandlargetunability(see,e.g.,[225],[226]).Suchpropertiesmakecavity-enhancedCWRamanlasersattractiveforhighresolutionspectroscopy,remotesensing,atomicphysics,andtelecommunications.Reducingthecavitysizemayfurtherimprovetheperformanceofthelasers.Opendielectricsphericalmicrocavitiesarepromisingforthosepurposes.
AnenhancementofstimulatedRamanscattering(SRS)isoneoftheeffectsdemonstratedinsphericalmicrocavities.LowthresholdSRSwasobservedwithpulsed[213],[227]–[233]andCW[234],[235]opticalpumpinginmicrometer-sizeliquiddroplets.Theoreticaldescriptionoftheprocesswaspresentedin[236]–[239].
SRSwasinvestigatedinaliquidparahydrogendropletchar-acterizedwithWGMhavingQ-factorexceeding109[240].TheSRSwasregisterednotonlyforvibrationaltransitionbutalsoforrotationaltransitionasinthegas-phaseH2system,leadingtomultiorderSRSsidebandscoveringthewholevisiblespectralrange.
SRSinultrahigh-Qsurfacetension-inducedsphericalandchip-basedtoroidmicrocavitiesisconsideredboththeoreti-callyandexperimentallyin[241].ThesefusedsilicaWGRsexhibitsmallmodevolume(typically103µm3)andpossesswhispering-gallerytypemodeswithlongphotonstoragetimes(intherangeof100ns),signi cantlyreducingthethresholdforstimulatednonlinearopticalphenomena.
ThestudiesofRamangaininisolatedhigh-QWGRsareimportanttounderstandcavityQEDpropertiesofRamanlasing.Previously,microcavityQEDenhancementofRamangainhasbeeninferredastheresultofmeasurementsofadependenceoftheSRSthresholdonthesizeandmaterialofthemicrodroplets,anditscomparisonwiththevaluesofSRSthresholdreportedforliquidcore bershavingequivalentinteractionlengthandcorecomposition[234],[235].Thisenhancementhasbeenlinkedtothecavitymodi cationofthepropertiesofausuallaser.AtheoryoftheRamangainmodi cationthatexplainstheexperimentalresultswasdeveloped[242],[243].Recentexperimentswithsilicamicrosphereshavenotshownanysigni cantchangeinSRSgainwhichmightbeattributedtoquantumeffects[241],[244].Thisissuewasaddressedin[245],whereitwasshownthatnocavityQED-associatedRamangainenhancementexists,unlikethecavityenhancementofthespontaneousemission.C.SwitchesandModulators
1)WGMSwitches:WGRscanbeusedasef cientandcompactopticalswitchesandmodulators.NonlinearopticalswitchesbasedonWGMsareprimarilyconsideredinrelationwiththeirapplicationstoall-opticalcomputing.ApossibilityofsuchswitchingandapplicationsofWGRtocreateaquantummechanicalcomputerwas rstrecognizedin[246].
ThemajorityofstudiesofopticalswitchesthatutilizeWGMsaretheoretical.ItwasshowntheoreticallythatWGRmicrodisklasersarestableandswitchreliably[247],andhencearesuitableasswitchingelementsinall-opticalnetworks.
WGM谐振腔综述
24IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006
Anintegratedall-opticalswitchbasedonahigh-Qnonlin-earcylindricalmicrocavityresonatorwasproposed[248].TheswitchconsistsoftwoplanarwaveguidescoupledtoaWGR.Itwasarguedthatduetothehigh-Qfactorandthesmalldi-mensions,fastswitchingatlowpowerisfeasibleforthedevicesbasedonpresentlyavailablenonlinearpolymersastheactivematerial.
Ageneralelectrodynamicaltheoryofahigh-Qopticalmicro-sphereresonatorinanexternalalternatingmagnetic eldwasreportedin[249].ItwasshownthatthatsuchasystemcanchangeapolarizationstateoftheWGMphotonscon nedinthesphereduetotheFaradayeffect.Thispropertywasproposedforuseinall-opticalswitchesandlogicaldevices.
Numericalevaluationofanopticalresponseofaprism-couplednonlinearmicrospherewasdiscussedin[250].Thenumericalresultshaveshownthatthecontroland/orthesig-nallightscaninducetheopticalswitching-likevariationinthelightre ectance.ThiseffectwasinterpretedbythevariationinthedielectricconstantofthesphereduetoitsKerrnonlinearity.CoupledWGRspossessdifferentandfrequentlymoread-vancedpropertiescomparedtoasingleWGR.Sequencesofop-ticalmicroresonatorscanbeusedtoconstructintegratedstruc-turesthatdisplayslowgroupvelocityoflight,ultrahighorlowdispersionofcontrollablesign,enhancedself-phasemodulation,andnonlinearopticalswitching[251].
Itwaspointedoutthatthereshouldbeareductioninswitchingthresholdfornonlinearopticaldevicesincorporating berringresonators[252],[253].ThecirculatingpowerinsuchWGRsismuchlargerthantheincidentpower,andthephaseofthetransmittedlightvariesrapidlywiththesingle-passphaseshift.Itwasshownthatthecombinedactionoftheseeffectsleadstoa nesse-squaredreductionintheswitchingthreshold[252],allowingforphotonicswitchingdevicesthatoperateatmilli-wattpowerlevelsinordinaryoptical bers.AsetofcoupleddifferentialequationsthatdescribeKerrnonlinearopticalpulsepropagationandopticalswitchinginsystemscoupledbyafewmicroresonatorswasderivedin[254].Gap-solitonswitchinginasystemcomposedoftwochannelwaveguidescoupledbymicroresonatorswasstudiedin[255].
Anumericaldemonstrationofthefeasibilityofconstructinganall-optical“AND”gatebyusingamicroresonatorstructurewithKerrnonlinearitywaspresentedin[256].Itwasshownthatthegatecanbemuchsmallerthansimilar“AND”gatesbasedonBragggratings,andhaslowerpowerrequirements.
Thereareafewexperimentalstudiesofall-opticalswitchesthatutilizeWGMs.Forinstance,laser-inducedmodi cationofcavityQ’swasachievedinamicrodropletcontainingasat-urableabsorber[257].Theelastic-scatteringspectrafromsuchdropletsforhigherincidentintensitiesshowthatcavityQ’sareincreasedwhentheabsorptionisbleached.Thelasingspectrafromadropletcontainingasaturableabsorberandlaserdyeweremodi edwhenanintensebleaching eldwasinjectedintothedropletcavityafterthepump eldhadinitiatedthelasing.All-opticalnonlinearswitchingincompactGaAs–AlGaAsmicroringresonatorsatthe1.55-µmwavelengthwasdemon-stratedin[258].Switchingwasaccomplishedinthepump–probecon gurationinwhichthepump–probesignalswere
tunedtodifferentresonancewavelengthsofthemicroring.Re-fractiveindexchangeinthemicroringduetofreecarriersgen-eratedbytwophotonabsorptionwasusedtoswitchtheprobebeaminandoutofresonance.
Anall-opticalswitchingtechniqueutilizingasilicamicro-sphereopticalresonatorcoatedbyaconjugatedpolymerwasdevelopedin[51].A250-µm-diametersilicamicrospherewascoatedbydippingintoatoluenesolutionofthepolymer.WGMresonantfrequencyshiftsaslargeas3.2GHzwereobservedwhen405nmpumplightwithapowerdensityontheorderof10W/cm2wasincidentonthemicrosphere.Thetimeconstantoftheobservedfrequencyshiftswasapproximately0.165s,lead-ingustoattributethefrequencyshifttothermo-opticeffects.SuchasystemiscapableofswitchingtheWGMresonantfre-quencyhaving2MHzlinewidthatspeedsontheorderof100ms.Finally,opticalmemoryelementsweredevelopedusingWGMdevices.Amemoryelementconstructedbyinterconnect-ingWGMmicroscopiclaserswasdemonstratedin[259].Thedeviceswitcheswithin20pswith5.5-fJopticalswitchingen-ergy.Ontheotherhand,itwasshowntheoreticallyanddemon-stratedexperimentallythatarandomdistributionofsphericalmicroparticlesmaybeusedasaspectralholeburningmem-ory[122],[123].
2)WGMModulators:Microwavecellularphonesystemsandpersonaldataassistantnetworksrequiredevicescapableofreceiving,transforming,andprocessingsignalsinmillime-terwavelengthdomain[260].Electroopticmodulatorsbasedonelectromagneticwaveinteractioninnonlinearopticalcavitieswithhigh-QWGMswillplayanenablingrolefortheseandsimilarapplications.
Anapproachtocreatecouplingbetweenlightandami-crowave eldinaWGRwasrecentlyproposed[80],[81].Inthatstudy,anef cientresonantinteractionofseveralopticalWGMsandamicrowavemodewasachievedbyengineeringtheshapeofamicrowaveresonatorcoupledtoamicrotoroidalopticalcavity.Basedonthisinteraction,anewkindofelectro-opticmodulator,aswellasphotonicmicrowavereceiver,wassuggestedandrealized[261]–[268].D.OptoelectronicElectronicOscillator
Besidesthesourcesofcoherentopticalradiation;i.e.,lasers,opticalWGRscanbeusedinsourcesofcoherentmicrowaveradiation.Anoptoelectronicoscillator(OEO)isanexampleofsuchasource.AnOEOproducesmicrowavesignalsusingpho-tonictechniques[62],[64]–[69].ThemodulatorisoneofthemainsourcesofpowerconsumptionintheOEObecauseofthelargepowerrequiredtodrivetheconventionalmodulators.BothbroadbandMach–Zehndermodulatorsandfreespacemi-crowavecavity-assistednarrow-bandmodulatorstypicallyre-quireonetoafewWattsofmicrowavepowertoachieveasig-ni cantmodulation.ThismeansthateitherthephotocurrentintheOEOsystemshouldbeampli edsigni cantly,orapowerfullasershouldbeusedasthesourceofthedrivepowerfortheOEO.AnOEObasedonaWGMresonantmodulatorwasrecentlyproposedandfabricated[269].Thedeviceischaracterizedbylowthresholdandlowpowerconsumption.Thedisadvantages
WGM谐振腔综述
ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS25
ofthedevicearelowsaturationandlowoutputpower,andapossibilityoftransformingthenoiseofthelight eldintothemicrowavesignal.Ingeneral,resonantandconventionalOEOshavenonoverlappingcharacteristicsandarebothuseful,dependingontheapplication.E.PulsePropagationandGeneration
Itisconvenienttodistinguishbetweentworegimesofopti-calpulsepropagationinaWGR:1)thepulsedurationexceedstheinverseoftheFSRofthecavity;and2)thepulsedura-tionisshorterthantheinversecavityFSR.Studiespresentedin[270]–[273]areprimarilyfocusedonthe rstregime.Specif-ically,thetransientbehavioroflightintensityinsideadielectricsphereexcitedbyalightpulsewasdiscussedin[270],[271].Longopticalpulseswereusedforpumpingofpolymermicro-lasers[272].Linearandnonlinearopticalpropertiesofwaveg-uidecoupledWGRshasalsobeenstudiedtheoretically[273].Thesecondcase,propagationofshortpulsesinWGRs,wasalsoexamined[274]–[276],[278],andageneraltheoreticalanalysisofthepropagationwaspresentedin[274].Timeresolvedmea-surementsofpicosecondopticalpulsespropagatingindielectricspheres[275]andsubpicosecondterahertzpulsepropagationinadielectriccylinder[276],[277]wererecentlyreported,andmicrocavityinternal eldscreatedbypicosecondpulseswasdiscussedtheoretically[278].Thebehaviorofultrashortlightpulsescoupledintotheresonantmodesofsphericalmicrocav-itieswasexploredin[279].Anoninvasivepulse-trackingtech-niquewasexploitedtoobservethetime-resolvedmotionofanultrashortlightpulsewithinanintegratedopticalmicrores-onator[280].
Theminimumpulsewidth,aswellastheperiodoftheop-ticalpulsetraingeneratedbyasystemthatinvolvesahigh-Qcavity,isdeterminedbytheresonatordispersion.Dependingonthedielectrichostmaterialandthegeometricsize,aWGRmaypossesseitherapositive,negative,orzerogroupvelocitydispersion(GVD)[281].ThisdispersionisimportantwhenthepulsedurationisshorterthantheinversecavityFSR.ResonatorspossessingapositivegroupvelocitydispersionmaybeusedforGVDcompensationinoptical berlinks.NegativeGVDcav-itieswithKerrnonlinearity(e.g.,fusedsilicacavities)sustainnonlinearSchrodingersolitonpropagation,andmaybeusedforpulseshapingandsolitonshorteninginconventionalmode-lockedlasers(see,e.g.,[282]–[284]).ZeroGVDcavitiesmaybeusedashigh- nesseetalonstostabilizeactivelymode-lockedlasers(asin[285]).IntegratedopticalWGMall-pass lterscanalsobeusedfortunabledispersioncompensationintheopticaltransmissionlineifthepulsedurationexceedstheinverseoftheFSRoftheresonator[251],[286].
Smallresonators,likeWGRs,areimportantforthestablegenerationofopticalpulseswithhighrepetitionrates.Thisiscon rmedbytheexperimentswithplanar,notWGM,smallres-onators.Forexample,2-pspulsesata16.3-GHzrepetitionratewereobtainedfora2.5-mm-longactivelymode-lockedmono-lithiclaser[287];420GHzsubharmonicsynchronousmodelockingwasrealizedinalasercavityoftotallengthofap-proximately174µm[288].Asigni cantsupermodenoisesup-
pressionwasdemonstratedbyinsertingasmallhigh- nesseFabry–Perotresonatortothecavityofanactivelymode-lockedlaser[285],[289].
ItwasproposedtouseWGRstogenerateshortopticalpulses[281],[290].Theideaofthislaserisbasedontworecentlyreal-izedWGMdevices:theelectroopticmodulator,andtheerbium-dopedmicrosphereglasslaser[80],[180],[183],[186],[192].Itisalsoknownthatanelectroopticmodulatorplacedinanopticalresonatorcangenerateafrequencycomb[291]–[294],andthattheoutputofsuchadeviceissimilartothatofamode-lockedlaser.However,unlikethemode-lockedlaser,thepulsedurationisnotlimitedbythebandwidthofthelasergainbecausethesystemispassive.Thepulsewidthde-creaseswiththemodulationindexincrease,andwiththeoverallcavitydispersiondecrease.ThemodulationindexmaybeverylargeinaWGMmodulator,whichmaysigni cantlyimprovetheperformanceofthesystem[281].F.WaveMixingandOscillations
WGRswereusedinopticalparametricaswellashyperpara-metricwavemixingprocesses.
1)Hyper-ParametricOscillator:Hyperparametricopticaloscillation[295],alsoknownin beropticsasmodulationinsta-bility[296],isbasedonfour-wavemixing(FWM)amongtwopump,signal,andidlerphotons,andresultsinthegrowthofthesignalandidleropticalsidebandsfromvacuum uctuationsattheexpenseofthepumpingwave.Thehyperparametricoscil-lationsaredifferentfromtheparametricones.Theparametricoscillations1)arebasedonχ(2)nonlinearitycouplingthreephotons,and2)havephasematchingconditionsinvolvingfarseparatedopticalfrequenciesthatcanonlybesatis edinbire-fringentmaterialsintheforwarddirection.Inthecontrast,thehyperparametricoscillations1)arebasedonχ(3)nonlinearitycouplingfourphotons,and2)havephasematchingconditionsinvolvingnearly-degenerateopticalfrequenciesthatcanbesat-is edinmostofthematerials,bothintheforwardandbackwarddirections.
Recently,thestudyofhyperparametricoscillationshadanewstageconnectedwiththedevelopmentofWGM,aswellasphotoniccrystalmicroresonatortechnology[297],[8].Theos-cillationsoccurringincavities,orcavity-likesystems lledwithtransparentsolids,wereanalyzedtheoretically;e.g.,inisotropicphotoniccrystals[298],andwereobservedexperimentallyincrystallineWGMresonators[299],[300].Itwassuggested,inparticular,thatthenarrow-bandbeat-notesignalbetweentheop-ticalpumpandthegeneratedsidebandsemergingfromahigh-QWGMresonatorcouldbeusedasasecondaryfrequencyrefer-ence[300],[301].
ThephasestabilityofthefrequencyreferencesignalincreaseswithincreaseoftheQ-factoroftheresonatormodesforthesamegivenvalueofthepumppower.Thereexistsamaximumofthephasestability(minimumofthephasediffusion)ofthebeat-notesignalthatdoesnotdependeitheronthepumppowerorQ-factorofthemodes.KeepinginmindthatWGMsQ-factorcanexceed1010(afewtensofkilohertzresonancelinewidth)[61],itwasfoundthattheAllandeviationfactoroftheoscillations
WGM谐振腔综述
26IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006
issmallerthan10 12s 1/2forsub-milliwattopticalpumping.Thepumpthresholdcouldreachmicrowattlevelsforreasonableexperimentalparameters.
2)ParametricProcesses:Opticalparametricoscillators(OPO)havebeenextensivelystudiedsincethediscoveryoflasers[302]–[304].PropertiesofOPOarewellunderstoodbynow[305],[311],[312],[295],[59].TheCW-OPOisconsideredticalapplications.Filters,modulators,lasers,andotherwhisper-inggallerymodedeviceshavemultipleadvantagesovertheir“ordinary”counterparts.
ACKNOWLEDGMENT
A.MatskoacknowledgesilluminatingdiscussionswithJ.DickandL.Maleki.
anidealdevicethatcangenerateabroadrangeofwavelengths.Ef cientfrequencydoublingatλ=1.55µmandλ=1.319µmwasrealized[57]usingthesameWGRmadeofpe-riodicallypoledLiNbO3(PPLN)[306].TheWGRwasdoublyresonant,bothatfundamentalandsecondharmonicfrequen-cies.ThefollowupstudiesoftheparametricprocessesinPPLNWGRsareimportantbecauseithasbeenpredictedthatanop-ticalparametricoscillatorbasedontheresonatormighthaveapowerthresholdbelowamicrowatt[307]—ordersofmagnitudelessthanthatofthestate-of-the-artOPOs,typicallyat0.5themilliwattlevel[308].
Itwasshowntheoretically[309]thatanondegeneratemul-tifrequencyparametricoscillatorhasdifferentpropertiescom-paredwiththeusualthree-waveparametricoscillator.AschemeforaresonantCWmonolithicmicrowave-opticalparametricos-cillatorbasedonhigh-QWGMsexcitedinanonlineardielectriccavitywassuggested.Suchanoscillatormayhaveanextremelylowthresholdandstableoperation,andmaybeusedinspec-troscopyandmetrology.Theoscillatormimicsdevicesbasedonresonantχ(3)nonlinearity(hyperparametricprocess)andcanbeutilizedforef cientfour-wavemixingandopticalcombgeneration.
G.FundamentalPhysicsWithActiveWGMs
WGRscanbeusedforgenerationofnonclassicalstatesoflight.Forinstance,thepossibilitywasshownforthegenerationofheraldedsinglephotonsandofsub-Poissonianlaserlightintheelectricallypumpedsinglequantumdotmicrospherelaser[198].
Thereduceddensitymatrixmethodwasusedtocalculatethequantum-statisticalpropertiesoftheradiationofaquantumdotlaseroperatingontheWGMofadielectricmicrosphere[310].Itwasshownthatundertheconditionsofstrongcouplingbetweenthequantumdotandanelectromagnetic eld,theradiationofsuchalasercanbeinanonclassical(sub-Poissonian)state.Thelaserschemewascharacterizedbyanextremelylowlas-ingthresholdandasmallnumberofsaturationphotons;conse-quently,lasingispossiblewithclosetozeropopulationinversionoftheworkinglevels.
IV.CONCLUSION
Inthisreview,wehavecoveredrecentdevelopmentsintheapplicationsofwhisperinggallerymoderesonatorsinopticsandphotonics.Wehavetriedtomentionalltheactivitiesinthe eld,thoughweadmitthatsomeoftherecentadvancescouldhaveescapedourattentionbecausetheareagrowsveryfast,andeachmonthbringsnewstudiesrelatedtothesubject.
Thoughwhisperinggallerymodesareinterestingphysicalob-jectsbythemselves,weforeseethefastestgrowthintheirprac-
REFERENCES
[1]J.A.Stratton,ElectromagneticTheory.NewYork:McGrawHill,1941.[2]A.W.SnyderandJ.D.Love,OpticalWaveguideTheory.Norwell,MA:
Kluwer,1983.
[3]P.W.BarberandR.K.Chang,Eds.,OpticalEffectsAssociatedwith
SmallParticles.Singapore:WorldScienti c,1988.
[4]R.K.ChangandA.J.Campillo,Eds.,OpticalProcessesinMicrocav-ities.(AdvancedSeriesinAppliedPhysics),vol.3,Singapore:WorldScienti c,1996.
[5]M.H.Fields,J.Popp,andR.K.Chang,“Nonlinearopticsinmicro-spheres,”Prog.Opt.,vol.41,pp.1–95,2000.
[6]V.V.DatsyukandI.A.Izmailov,“Opticsofmicrodroplets,”Usp.Fiz.
Nauk,vol.171,pp.1117–1129,2001.
[7]A.N.Oraevsky,“Whispering-gallerywaves,”Quantum.Electron.,
vol.32,pp.377–400,2002.
[8]K.J.Vahala,“Opticalmicrocavities,”Nature,vol.424,pp.839–846,
2003.
[9]A.B.MatskoandV.S.Ilchenko,“Opticalresonatorswithwhispering-gallerymodes—PartI:Basics,”IEEEJ.Sel.TopicsQuantumElectron.,vol.12,no.1,pp.3–14,Jan/Feb.2006.
[10]J.W.StruttandL.Rayleigh,TheTheoryofSound.NewYork:Dover,
1945.
[11]L.Rayleigh,“FurtherapplicationsofBessel’sfunctionsofhighorder
tothewhisperinggalleryandalliedproblems,”Philos.Mag.,vol.27,pp.100–109,1914.
[12]A.Yariv,“Criticalcouplinganditscontrolinopticalwaveguide-ring
resonatorsystems,”IEEEPhoton.Technol.Lett.,vol.14,no.4,pp.483–485,Apr.2002.
[13]Y.Xu,Y.Li,R.K.Lee,andA.Yariv,“Scattering-theoryanalysisof
waveguide-resonatorcoupling,”Phys.Rev.E,vol.62,pp.7389–7404,2000.
[14]P.Rabiei,W.H.Steier,C.Zhang,andL.R.Dalton,“Polymermicroring
ltersandmodulators,”J.Lightw.Technol.,vol.20,no.11,pp.1968–1975,Nov.2002.
[15]B.E.Little,S.T.Chu,H.A.Haus,J.Foresi,ine,“Microring
resonatorchanneldropping lters,”J.Lightw.Technol.,vol.15,no.6,pp.998–1005,Jun.1997.
[16]J.K.S.Poon,Y.Y.Huang,G.T.Paloczi,andA.Yariv,“Softlithography
replicamoldingofcriticallycoupledpolymermicroringresonators,”IEEEPhoton.Technol.Lett.,vol.16,no.11,pp.2496–2498,Nov.2004.[17]S.J.Choi,K.Djordjev,S.J.Choi,P.D.Dapkus,W.Lin,G.Griffel,
R.Menna,andJ.Connolly,“Microringresonatorsverticallycoupledtoburiedheterostructurebuswaveguides,”IEEEPhoton.Technol.Lett.,vol.16,no.3,pp.828–830,Mar.2004.
[18]P.P.Absil,J.V.Hryniewicz,B.E.Little,R.A.Wilson,L.G.Joneckis,
andP.-T.Ho,“Compactmicroringnotch lters,”IEEEPhoton.Technol.Lett.,vol.12,no.4,pp.398–400,Apr.2000.
[19]F.C.Blom,H.Kelderman,H.J.W.M.Hoekstra,A.Driessen,Th.
J.A.Popma,S.T.Chu,andB.E.Little,“Asinglechanneldropping lterbasedonacylindricalmicroresonator,”mun.,vol.167,pp.77–82,1999.
[20]O.Schwelb,“Transmission,groupdelay,anddispersioninsingle-ring
opticalresonatorsandadd/drop lters—Atutorialoverview,”J.Lightw.Technol.,vol.22,no.5,pp.1380–1394,May2004.
[21]M.Cai,G.Hunziker,andK.Vahala,“Fiber-opticadd-dropdevicebased
onasilicamicrosphere-whisperinggallerymodesystem,”IEEEPhoton.Technol.Lett.,vol.11,no.6,pp.686–687,Jun.1999.
[22]D.G.Rabus,M.Hamacher,U.Troppenz,andH.Heidrich,“High-Q
channel-dropping ltersusingringresonatorswithintegratedSOAs,”IEEEPhoton.Technol.Lett.,vol.14,no.10,pp.1442–1444,Oct.2002.[23]T.Bilici,S.Isci,A.Kurt,andA.Serpenguzel,“Microsphere-basedchan-neldropping lterwithanintegratedphotodetector,”IEEEPhoton.Tech-nol.Lett.,vol.16,no.2,pp.476–478,Feb.2004.
WGM谐振腔综述
ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS27
[24]M.Lohmeyer,“Modeexpansionmodelingofrectangularintegratedop-ticalmicroresonators,”Opt.QuantumElectron.,vol.34,pp.541–557,2002.
[25]P.Urquhart,“Compoundoptical- ber-basedresonators,”J.Opt.Soc.
Amer.A,vol.5,pp.803–812,1988.
[26]K.Oda,N.Takato,andH.Toba,“Wide-FSRwaveguidedouble-ring
resonatorforopticalFDMtransmissionsystem,”J.Lightw.Technol.,vol.9,no.6,pp.728–736,Jun.1991.
[27]J.V.Hryniewicz,P.P.Absil,B.E.Little,R.A.Wilson,andP.-T.Ho,
“Higherorder lterresponseincoupledmicroringresonators,”IEEEPhoton.Technol.Lett.,vol.12,no.3,pp.320–322,Mar.2000.
[28]S.T.Chu,B.E.Little,W.Pan,T.Kaneko,andY.Kukubun,“Cascaded
microringresonatorsforcrosstalkreductionandspectrumcleanupinadd-drop lters,”IEEEPhoton.Technol.Lett.,vol.11,no.11,pp.1423–1425,Nov.1999.[29],“Second-order lterresponsefromparallelcoupledglassmicror-ingresonators,”IEEEPhoton.Technol.Lett.,vol.11,no.11,pp.1426–
1428,Nov.1999.
[30]K.Djordjev,S.J.Choi,S.J.Choi,andP.D.Dapkus,“Microdisktunable
resonant ltersandswitches,”IEEEPhoton.Technol.Lett.,vol.14,no.6,pp.828–830,Jun.2002.
[31]O.SchwelbandI.Frigyes,“Vernieroperationofseriescoupledoptical
microringresonator lters,”Microw.Opt.Technol.Lett.,vol.39,pp.258–261,2003.
[32]A.A.Savchenkov,V.S.Ilchenko,T.Handley,andL.Maleki,“Second-order lterresponsewithseries-coupledsilicamicroresonators,”IEEEPhoton.Technol.Lett.,vol.15,no.4,pp.543–544,Apr.2003.
[33]A.A.Savchenkov,V.S.Ilchenko,A.B.Matsko,andL.Maleki,“High-ordertunable ltersbasedonachainofcoupledcrystallinewhisperinggallerymoderesonators,”IEEEPhoton.Technol.Lett.,vol.17,no.1,pp.136–138,Jan.2005.
[34]G.Griffel,“Verniereffectinasymmetricalringresonatorarrays,”IEEE
Photon.Technol.Lett.,vol.12,no.12,pp.1642–1644,Dec.2000.
[35]P.RabieiandW.H.Steier,“Tunablepolymerdoublemicro-ring lters,”
IEEEPhoton.Technol.Lett.,vol.15,no.9,pp.1255–1257,Sep.2003.[36]B.Liu,A.Shakouri,andJ.E.Bowers,“Widetunabledoubleringres-onatorcoupledlasers,”IEEEPhoton.Technol.Lett.,vol.14,no.5,pp.600–602,May2002.
[37]J.E.Heebner,R.W.Boyd,andQ.Park,“Slowlight,induceddispersion,
enhancednonlinearity,andopticalsolitonsinaresonator-arraywaveg-uide,”Phys.Rev.E,vol.65,p.036619,2002.
[38]A.Melloni,F.Morichetti,andM.Martinelli,“Linearandnonlinear
pulsepropagationincoupledresonatorslow-waveopticalstructures,”Opt.Quantum.Electron.,vol.35,pp.365–379,2003.
[39]D.D.Smith,H.Chang,andK.A.Fuller,“Whispering-gallerymode
splittingincoupledmicroresonators,”J.Opt.Soc.Amer.B,vol.20,pp.1967–1974,2003.
[40]M.F.YanikandS.Fan,“Stoppinglightalloptically,”Phys.Rev.Lett.,
vol.92,p.083901,2004.
[41]A.Yariv,Y.Xu,R.K.Lee,andA.Scherer,“Coupled-resonatoroptical
waveguide:Aproposalandanalysis,”Opt.Lett.,vol.24,pp.711–713,1999.
[42]J.Poon,J.Scheuer,S.Mookherjea,G.T.Paloczi,Y.Huang,andA.Yariv,
“Matrixanalysisofmicroringcoupledresonatoropticalwaveguides,”Opt.Express,vol.12,pp.90–103,2004.
[43]S.Z.Deng,W.Cai,andV.N.Astratov,“Numericalstudyoflight
propagationviawhisperinggallerymodesinmicrocylindercoupledresonatoropticalwaveguides,”Opt.Express,vol.12,pp.6468–6480,2004.
[44]V.N.Astratov,J.P.Franchak,andS.P.Ashili,“Opticalcoupling
andtransportphenomenainchainsofsphericaldielectricmicrores-onatorswithsizedisorder,”Appl.Phys.Lett.,vol.85,pp.5508–5510,2004.
[45]L.Maleki,A.B.Matsko,A.A.Savchenkov,andV.S.Ilchenko,“Tunable
delaylinewithinteractingwhispering-gallery-moderesonators,”Opt.Lett.,vol.29,pp.626–628,2004.
[46]A.B.Matsko,A.A.Savchenkov,D.Strekalov,V.S.Ilchenko,and
L.Maleki,“Interferenceeffectsinlossyresonatorchains,”J.Mod.Opt.,vol.51,pp.2515–2522,2004.
[47]S.T.Chu,W.Pan,S.Sato,T.Kaneko,B.E.Little,andY.Kokubun,
“Wavelengthtrimmingofamicroringresonator lterbymeansofaUVsensitivepolymeroverlay,”IEEEPhoton.Technol.Lett.,vol.11,no.6,pp.688–690,Jun.1999.
[48]A.L.HustonandJ.D.Eversole,“Strain-sensitiveelasticscatteringfrom
cylinders,”Opt.Lett.,vol.18,pp.1104–1106,1993.[49]V.S.Ilchenko,P.S.Volikov,V.L.Velichansky,F.Treussart,V.Lefevre-Seguin,J.-M.Raimond,andS.Haroche,“Strain-tunablehigh-Qopticalmicrosphereresonator,”mun.,vol.145,pp.86–90,1998.
[50]W.vonKlitzing,R.Long,V.S.Ilchenko,J.Hare,andV.Lefevre-Seguin,“Frequencytuningofthewhispering-gallerymodesofsilicamicrospheresforcavityquantumelectrodynamicsandspectroscopy,”Opt.Lett.,vol.26,pp.166–168,2001.
[51]H.C.Tapalian,ine,ne,“Thermoopticalswitchesusing
coatedmicrosphereresonators,”IEEEPhoton.Technol.Lett.,vol.14,no.8,pp.1118–1120,Aug.2002.
[52]A.Chiba,H.Fujiwara,J.I.Hotta,S.Takeuchi,andK.Sasaki,“Resonant
frequencycontrolofamicrosphericalcavitybytemperatureadjustment,”Jpn.J.Appl.Phys.I,vol.43,pp.6138–6141,2004.
[53]O.SchwelbandI.Frigyes,“All-opticaltunable ltersbuiltwith
discontinuity-assistedringresonators,”J.Lighw.Technol.,vol.19,no.3,pp.380–386,Mar.2001.
[54]J.K.S.Poon,Y.Y.Huang,G.T.Paloczi,andA.Yariv,“Wide-range
tuningofpolymermicroringresonatorsbythephotobleachingofCLD-1chromophores,”Opt.Lett.,vol.29,pp.2584–2586,2004.
[55]A.A.Savchenkov,V.S.Ilchenko,T.Handley,andL.Maleki,
“Ultraviolet-assistedfrequencytrimmingofopticalmicrosphereres-onators,”Opt.Lett.,vol.28,pp.649–650,2003.
[56]V.S.Ilchenko,A.A.Savchenkov,A.B.Matsko,andL.Maleki,
“Tunabilityandsyntheticlineshapesinhigh-Qopticalwhisperinggallerymodes,”Proc.SPIEInt.Soc.Opt.Eng.,vol.4969,pp.195–206,2003.[57]“Nonlinearopticsandcrystallinewhisperinggallerymodecavi-ties,”Phys.Rev.Lett.,vol.92,p.043903,2004.
[58]A.A.Savchenkov,V.S.Ilchenko,A.B.Matsko,andL.Maleki,“Tun-able lterbasedonwhisperinggallerymodes,”Elelctron.Lett.,vol.39,pp.389–391,2003.
[59]R.W.Boyd,NonlinearOptics.NewYork:Academic,1992.
[60]J.-L.GheormaandR.M.Osgood,“Fundamentallimitationsofoptical
resonatorbasedhigh-speedEOmodulators,”IEEEPhoton.Technol.Lett.,vol.14,no.6,pp.795–797,Jun.2002.
[61]A.A.Savchenkov,V.S.Ilchenko,A.B.Matsko,andL.Maleki,“Kilo-Hertzopticalresonancesindielectriccrystalcavities,”Phys.Rev.A,vol.70,p.051804,2004.
[62]X.S.YaoandL.Maleki,“Optoelectronicmicrowaveoscillator,”J.Opt.
Soc.Amer.B,vol.70,pp.1725–1735,2004.
[63]M.Mohageg,A.Savchenkov,D.Strekalov,A.Matsko,V.Ilchenko,and
L.Maleki,“Recon gurableoptical lter,”Electron.Lett.,2005,tobepublished.
[64]Y.Ji,X.S.Yao,andL.Maleki,“Compactoptoelectronicoscillatorwith
ultralowphasenoiseperformance,”Electron.Lett.,vol.35,pp.1554–1555,1999.
[65]T.Davidson,P.Goldgeier,G.Eisenstein,andM.Orenstein,“High
spectralpurityCWoscillationandpulsegenerationinoptoelec-tronicmicrowaveoscillator,”Electron.Lett.,vol.35,pp.1260–1261,1999.
[66]S.Romisch,J.Kitching,E.Ferre-Pikal,L.Hollberg,andF.L.Walls,
“Performanceevaluationofanoptoelectronicoscillator,”IEEETrans.Ultrason.,Ferroelectr.,Freq.Control,vol.47,no.5,pp.1159–1165,Sep.2000.
[67]X.S.YaoandL.Maleki,“Multiloopoptoelectronicoscillator,”IEEEJ.
QuantumElectron.,vol.36,no.1,pp.79–84,Jan.2000.
[68]S.Poinsot,H.Porte,J.P.Goedgebuer,W.T.Rhodes,andB.Boussert,
“Multiloopoptoelectronicoscillator,”Opt.Lett.,vol.27,pp.1300–1302,2002.
[69]D.H.Chang,H.R.Fetterman,H.Erlig,H.Zhang,M.C.Oh,C.Zhang,
andW.H.Steier,“39-GHzoptoelectronicoscillatorusingbroad-bandpolymerelectroopticmodulator,”IEEEPhoton.Technol.Lett.,vol.14,no.2,pp.191–193,Feb.2002.
[70]J.K.PlourdeandC.L.Ren,“Applicationofdielectricresonatorsin
microwavecomponents,”IEEETrans.Microw.TheoryTech.,vol.29,no.8,pp.754–770,Aug.1981.
[71]S.J.Fiedziuszko,I.C.Hunter,T.Itoh,Y.Kobayashi,T.Nishikawa,S.
N.Stitzer,andK.Wakino,“Dielectricmaterials,devices,andcircuits,”IEEETrans.Microw.TheoryTech.,vol.50,no.3,pp.706–720,Mar.2002.
[72]D.Strekalov,D.Aveline,N.Yu,R.Thompson,A.B.Matsko,and
L.Maleki,“Stabilizinganoptoelectronicmicrowaveoscillatorwithpho-tonic lters,”J.Lightw.Technol.,vol.21,no.12,pp.3052–3061,Dec.2003.
WGM谐振腔综述
28IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006
[73]V.V.Vassiliev,S.M.Ilina,andV.L.Velichansky,“Diodelasercoupledto
ahigh-QmicrocavityviaaGRINlens,”Appl.Phys.B,vol.76,pp.521–523,2003.
[74]V.V.Vassiliev,V.L.Velichansky,V.S.Ilchenko,M.L.Gorodetsky,
L.Hollberg,andA.V.Yarovitsky,“Narrow-line-widthdiodelaserwithahigh-Qmicrosphereresonator,”mun.,vol.158,pp.305–312,1998.
[75]A.N.Oraevskii,A.V.Yarovitskii,andV.L.Velichansky,“Frequency
stabilisationofadiodelaserbyawhispering-gallerymode,”Quantum.Electron.,vol.31,pp.897–903,2001.
[76]J.P.RezacandA.T.Rosenberger,“Lockingamicrospherewhispering-gallerymodetoalaser,”Opt.Express.,vol.8,pp.605–610,2001.
[77]R.Symes,R.M.Sayer,andJ.P.Reid,“Cavityenhanceddropletspec-troscopy:Principles,perspectives,andprospects,”Phys.Chem.Chem.Phys.,vol.6,pp.474–487,2004.
[78]D.W.Vernooy,A.Furusawa,N.P.Georgiades,V.S.Ilchenko,andH.
J.Kimble,“CavityQEDwithhigh-Qwhisperinggallerymodes,”Phys.Rev.A,vol.57,pp.R2293–R2296,1998.
[79]W.vonKlitzing,R.Long,V.S.Ilchenko,J.Hare,andV.Lefevre-Seguin,“TunablewhisperinggallerymodesforspectroscopyandCQEDexperiments,”NewJ.Phys.,vol.3,pp.141–144,2001.
[80]V.S.Ilchenko,X.S.Yao,andL.Maleki,“Microsphereintegrationin
activeandpassivephotonicsdevices,”Proc.SPIE-Int.Soc.Opt.Eng.,vol.3930,pp.154–162,2000.
[81]V.S.IlchenkoandL.Maleki,“Novelwhispering-galleryresonators
forlasers,modulators,andsensors,”Proc.SPIE-Int.Soc.Opt.Eng.,vol.4270,pp.120–130,2001.
[82]J.L.Nadeau,V.S.Ilchenko,D.Kossakovski,G.H.Bearman,and
L.Maleki,“High-Qwhispering-gallerymodesensorinliquids,”Proc.SPIE-Int.Soc.Opt.Eng.,vol.4629,pp.172–180,2002.
[83]W.Lukosz,“Integratedopticalchemicalanddirectbiochemicalsensors,”
Sens.ActuatorsB,vol.29,pp.37–50,1995.
[84]K.Schult,A.Katerkamp,D.Trau,F.Grawe,K.Cammann,and
M.Meusel,“Disposableopticalsensorchipformedicaldiagnostics:Newwaysinbioanalysis,”Anal.Chem.,vol.71,pp.5430–5435,1999.[85]M.W.Foster,D.J.Ferrell,andR.A.Lieberman,“Surfaceplasmon
resonancebiosensorminiaturization,”Proc.SPIE-Int.Soc.Opt.Eng.,vol.2293,pp.122–131,1995.
[86]M.Weisser,G.Tovar,S.Mittler-Neher,W.Knoll,F.Brosinger,
H.Freimuth,cher,andW.Ehrfeld,“Speci cbio-recognitionreac-tionsobservedwithanintegratedMach-Zehnderinterferometer,”Biosen-sorsBioelectron.,vol.14,pp.405–411,1999.
[87]S.BlairandY.Chen,“Resonant-enhancedevanescent-wave uorescence
biosensingwithcylindricalopticalcavities,”Appl.Opt.,vol.40,pp.570–582,2001.
[88]R.W.BoydandJ.E.Heebner,“Sensitivediskresonatorphotonicbiosen-sor,”Appl.Opt.,vol.40,pp.5742–5747,2001.
[89]E.Krioukov,D.J.W.Klunder,A.Driessen,J.Greve,andC.Otto,
“Sensorbasedonanintegratedopticalmicrocavity,”Opt.Lett.,vol.27,pp.512–514,2002.
[90]E.Krioukov,J.Greve,andC.Otto,“Performanceofintegratedopti-calmicrocavitiesforrefractiveindexand uorescencesensing,”Sens.ActuatorsB,vol.90,pp.58–67,2003.
[91]F.Vollmer,D.Braun,A.Libchaber,M.Khoshsima,I.Teraoka,and
S.Arnold,“Proteindetectionbyopticalshiftofaresonantmicrocavity,”Appl.Phys.Lett.,vol.80,pp.4057–4059,2002.
[92]R.W.Boyd,J.E.Heebner,N.N.Lepeshkin,Q.-H.Park,A.Schweins-berg,G.W.Wicks,A.S.Baca,J.E.Fajardo,R.R.Hancock,M.A.Lewis,R.M.Boysel,M.Quesada,R.Welty,A.R.Bleier,J.Tre-ichler,andR.E.Slusher,“Nanofabricationofopticalstructuresandde-vicesforphotonicsandbiophotonics,”J.Mod.Opt.,vol.50,pp.2543–2550,2003.
[93]F.Vollmer,S.Arnold,D.Braun,I.Teraoka,andA.Libchaber,“Mul-tiplexedDNAquanti cationbyspectroscopicshiftoftwomicrospherecavities,”Biophys.J.,vol.85,pp.1974–1979,2003.
[94]S.Arnold,M.Khoshsima,I.Teraoka,S.Holler,andF.Vollmer,“Shiftof
whispering-gallerymodesinmicrospheresbyproteinadsorption,”Opt.Lett.,vol.28,pp.272–274,2003.
[95]I.Teraoka,S.Arnold,andF.Vollmer,“Perturbationapproachtores-onanceshiftsofwhispering-gallerymodesinadielectricmicrosphereasaprobeofasurroundingmedium,”J.Opt.Soc.Amer.B,vol.20,pp.1937–1946,2003.
[96]W.FangW,D.B.Buchholz,R.C.Bailey,J.T.Hupp,R.P.H.Chang,
andH.Cao,“Detectionofchemicalspeciesusingultravioletmicrodisklasers,”Appl.Phys.Lett.,vol.85,pp.3666–3668,2004.[97]C.Y.ChaoandL.J.Guo,“Biochemicalsensorsbasedonpolymermi-croringswithsharpasymmetricalresonance,”Appl.Phys.Lett.,vol.83,pp.1527–1529,2003.
[98]G.Annino,M.Cassettari,M.Fittipaldi,L.Lenci,I.Longo,M.Mar-tinelli,C.A.Massa,andL.A.Pardi,“Whisperinggallerymodedi-electricresonatorsinEMRspectroscopyabove150GHz:Problemsandperspectives,”Appl.Magn.Reson.,vol.19,pp.495–506,2000.
[99]V.S.Ilchenko,M.L.Gorodetsky,andS.P.Vyatchanin,“Couplingand
tunabilityofopticalwhisperinggallerymodes—Abasisforcoordinatemeter,”mun.,vol.107,pp.41–48,1994.
[100]ine,C.Tapalian,B.Little,andH.Haus,“Accelerationsensor
basedonhigh-Qopticalmicrosphereresonatorandpedestalantireso-nantre ectingwaveguidecoupler,”Sens.ActuatorsA,vol.93,pp.1–7,2001.
[101]G.A.Sanders,M.G.Prentiss,andS.Ezekiel,“Passiveringresonator
methodforsensitiveinertialrotationmeasurementsingeophysicsandrelativity,”Opt.Lett.,vol.6,pp.569–571,1981.
[102]W.W.Chow,J.Gea-Banacloche,L.M.Pedrotti,V.E.Sanders,W.Schle-ich,andM.O.Scully,“Theringlasergyro,”Rev.Mod.Phys.,vol.57,pp.61–104,1985.
[103]I.A.AndronovaandG.B.Malykin,“Physicalproblemsof bergy-roscopybasedontheSagnaceffect,”PhysicsUspekhi,vol.45,pp.793–817,2002.
[104]M.N.Armenise,V.M.N.Passaro,F.DeLeonardis,andM.Armenise,
“Modelinganddesignofanovelminiaturizedintegratedopticalsensorforgyroscopesystems,”J.Lightw.Technol.,vol.19,no.10,pp.1476–1494,Oct.2001.
[105]A.B.Matsko,A.A.Savchenkov,V.S.Ilchenko,andL.Maleki,“Op-ticalgyroscopewithwhisperinggallerymodeopticalcavities,”mun.,vol.233,pp.107–112,2004.
[106]J.U.Noeckel,A.D.Stone,andR.K.Chang,“Q-spoilinganddirec-tionalityindeformedringcavities,”Opt.Lett.,vol.19,pp.1693–1695,1994.
[107]A.Mekis,J.U.Noeckel,G.Chen,A.D.Stone,andR.K.Chang,
“RaychaosandQspoilinginlasingdroplets,”Phys.Rev.Lett.,vol.75,pp.2682–2685,1995.
[108]J.U.Nockel,A.D.Stone,G.Chen,H.L.Grossman,andR.K.Chang,
“Directionalemissionfromasymmetricresonantcavities,”Opt.Lett.,vol.21,pp.1609–1611,1996.
[109]A.D.Stone,“Wave-chaoticopticalresonatorsandlasers,”Phys.Scripta,
vol.T90,pp.248–262,2001.[110]“Classicalandwavechaosinasymmetricresonantcavities,”Phys-icaA,vol.288,pp.130–151,2000.
[111]J.U.NockelandA.D.Stone,“Rayandwavechaosinasymmetric
resonantopticalcavities,”Nature,vol.385,pp.45–47,1997.
[112]B.R.Johnson,“Theoryofmorphology-dependentresonances:Shape
resonancesandwidthformulas,”J.Opt.Soc.Amer.A,vol.10,pp.343–352,1993.
[113]E.DoronandS.D.Frischat,“Semiclassicaldescriptionoftunnelingin
mixedsystems:CaseoftheAnnularBilliard,”Phys.Rev.Lett.,vol.75,pp.3661–3664,1995.
[114]G.Casati,B.V.Chirikov,I.Guarneri,andD.L.Shepelyansky,“Dynamic
stabilityofquantumchaoticmotioninahydrogenatom,”Phys.Rev.Lett.,vol.56,pp.2437–2440,1986.
[115]K.Shima,R.Omori,andA.Suzuki,“High-Qconcentrateddirectional
emissionfromegg-shapedasymmetricresonantcavities,”Opt.Lett.,vol.26,pp.795–797,2001.
[116]H.E.Tureci,H.G.L.Schwefel,A.D.Stone,andE.E.Narimanov,
“Gaussian-opticalapproachtostableperiodicorbitresonancesofpar-tiallychaoticdielectricmicro-cavities,”Opt.Express,vol.10,pp.752–776,2002.
[117]V.A.PodolskiyandE.E.Narimanov,“Chaos-assistedtunnelingin
dielectricmicrocavities,”Opt.Lett.,vol.30,pp.474–476,2005.[118]“Semiclassicaldescriptionofchaos-assistedtunneling,”Phys.Rev.
Lett.,vol.91,p.263601,2003.
[119]C.Dembowski,H.D.Graf,A.Heine,R.Hofferbert,F.Rehfeld,and
A.Richter,“Firstexperimentalevidenceforchaos-assistedtunnelinginamicrowaveannularbilliard,”Phys.Rev.Lett.,vol.84,pp.867–870,2000.
[120]ceyandH.Wang,“Directionalemissionfromwhispering-gallery
modesindeformedfused-silicamicrospheres,”Opt.Lett.,vol.26,pp.1943–1945,2001.
[121]E.Lidorikis,M.M.Sigalas,E.N.Economou,andC.M.Soukoulis,
“Tight-bindingparametrizationforphotonicbandgapmaterials,”Phys.Rev.Lett.,vol.81,pp.1405–1408,1998.
WGM谐振腔综述
ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS29
[122]S.Arnold,C.T.Liu,W.B.Whitten,andJ.M.Ramsey,“Room-temperaturemicroparticle-basedpersistentspectralholeburningmem-ory,”Opt.Lett.,vol.16,pp.420–422,1991.
[123]S.Arnold,unale,W.B.Whitten,J.M.Ramsey,andK.A.Fuller,
“Room-temperaturemicroparticle-basedpersistenthole-burningspec-troscopy,”J.Opt.Soc.Amer.B,vol.9,pp.819–824,1992.
[124]T.Mukaiyama,K.Takeda,H.Miyazaki,Y.Jimba,andM.Kuwata-Gonokami,“Tight-bindingphotonicmoleculemodesofresonantbi-spheres,”Phys.Rev.Lett.,vol.82,pp.4623–4626,1999.
[125]Y.P.Rakovich,J.F.Donegan,M.Gerlach,A.L.Bradley,T.M.Connolly,
J.J.Boland,N.Gaponik,andA.Rogach,“Finestructureofcoupledopticalmodesinphotonicmolecules,”Phys.Rev.A,vol.70,p.051801,2004.
[126]S.HarocheandD.Kleppner,“Cavityquantumelectrodynamics,”Phys.
Today,vol.42,pp.24–30,1989.
[127]H.Walther,“Experimentsoncavityquantumelectrodynamics,”Phys.
Rep.,vol.219,pp.263–281,1992.
[128]G.Rempe,“Atomsinanopticalcavity—Quantumelectrodynamicsin
con nedspace,”Contemp.Phys.,vol.34,pp.119–129,1993.
[129]P.R.Berman,Ed.,CavityQuantumElectrodynamics,Advancesin
Atomic,Molecular,andOpticalPhysics.NewYork:Academic,1994.[130]H.J.Kimble,“Stronginteractionsofsingleatomsandphotonsincavity
QED,”Phys.Scripta,vol.T76,pp.127–137,1998.
[131]E.M.Purcell,“Spontaneousemissionprobabilitiesatradiofrequencies,”
Phys.Rev.,vol.69,pp.681–681,1946.
[132]D.Kleppner,“Inhibitedspontaneousemission,”Phys.Rev.Lett.,vol.47,
pp.233–236,1981.
[133]S.C.Ching,i,andK.Young,“Dielectricmicrospheresasoptical
cavities:Thermalspectrumanddensityofstates,”J.Opt.Soc.Amer.B,vol.4,pp.1995–2003,1987.
[134]S.C.Ching,i,andK.Young,“Dielectricmicrospheresasoptical
cavities:EinsteinAandBcoef cientsandlevelshift,”J.Opt.Soc.Amer.B,vol.4,pp.2004–2009,1987.
[135]i,P.T.Leung,andK.Young,“Electromagneticdecayintoa
narrowresonanceinanopticalcavity,”Phys.Rev.A,vol.37,pp.1597–1606,1988.
[136]A.J.Campillo,J.D.Eversole,andH.B.Lin,“Cavityquantumelectro-dynamicenhancementofstimulatedemissioninmicrodroplets,”Phys.Rev.Lett.,vol.67,pp.437–440,1991.
[137]H.B.Lin,J.D.Eversole,C.D.Merritt,andA.J.Campillo,“Cavity-modi edspontaneous-emissionratesinliquidmicrodroplets,”Phys.Rev.A.,vol.45,pp.6756–6760,1992.
[138]G.Kurizki,A.G.Kofman,A.Kozhekin,andG.Harel,“Controlof
atomicstatedecayincavitiesandmicrospheres,”NewJ.Phys.,vol.2,pp.28.1–28.21,2000.
[139]B.J.Dalton,S.M.Barnett,andB.M.Garraway,“Theoryofpseudo-modesinquantumopticalprocesses,”Phys.Rev.A.,vol.64,p.053813,2001.
[140]D.W.VernooyandH.J.Kimble,“Quantumstructureanddynamicsfor
atomgalleries,”Phys.Rev.A,vol.55,pp.1239–1261,1997.
[141]V.Klimov,V.S.Letokhov,andM.Ducloy,“Quasiorbitalmotionof
ultracoldexcitedatomicdipoleneardielectricmicrosphere,”Eur.Phys.J.D,vol.5,pp.345–350,1999.
[142]V.I.Balykin,V.G.Minogin,andV.S.Letokhov,“Electromag-netictrappingofcoldatoms,”Rep.Prog.Phys.,vol.63,pp.1429–1510,2000.
[143]H.MabuchiandH.J.Kimble,“Atomgalleriesforwhisperingatoms—
Bindingatomsinstableorbitsaroundanopticalresonator,”Opt.Lett.,vol.19,pp.749–751,1994.
[144]P.DomokosandH.Ritsch,“Mechanicaleffectsoflightinopticalres-onators,”J.Opt.Soc.Amer.B,vol.20,pp.1098–1130,2003.
[145]A.B.Matsko,S.P.Vyatchanin,H.Mabuchi,andH.J.Kimble,
“Quantum-nondemolitiondetectionofsinglephotonsinanopenres-onatorbyatomic-beamde ection,”Phys.Lett.A,vol.192,pp.175–179,1994.
[146]F.Treussart,J.Hare,L.Collot,V.Lefevre,D.S.Weiss,V.Sandoghdar,J.
M.Raimond,andS.Haroche,“Quantizedatom- eldforceatthesurfaceofamicrosphere,”Opt.Lett.,vol.19,pp.1651–1653,1994.
[147]A.B.MatskoandY.V.Rostovtsev,“Quantumnondemolitionmeasure-mentofthephotonnumberusingLambda-typeatoms,”J.Opt.B,vol.4,pp.179–183,2002.
[148]S.P.VyatchaninandA.B.Matsko,“Quantumnondisturbingmeasure-mentofthenumberofphotonsandthevacuumstateenergyintheschemeofquadraticelectronscattering,”MoscowUniv.Phys.Bull.,vol.48,pp.32–36,1993.[149]S.P.Vyatchanin,“Quantumnondemolitionmeasurementofphotonen-ergyinthequadraticelectronscatteringscheme,”MoscowUniv.Phys.Bull.,vol.45,pp.40–45,1990.
[150]S.Gotzinger,O.Benson,andV.Sandoghdar,“Towardscontrolledcou-plingbetweenahigh-Qwhispering-gallerymodeandasinglenanopar-ticle,”Appl.Phys.B,vol.73,pp.825–828,2001.
[151]S.Gotzinger,L.D.Menezes,O.Benson,D.V.Talapin,N.Gaponik,
H.Weller,A.L.Rogach,andV.Sandoghdar,“Confocalmicroscopyandspectroscopyofnanocrystalsonahigh-Qmicrosphereresonator,”J.Opt.B.,vol.6,pp.154–158,2004.
[152]G.S.Agarwal,“Spectroscopyofstronglycoupledatom-cavitysystems:
Atopicalreview,”J.Mod.Opt.,vol.45,pp.449–470,1998.
[153]D.Lenstra,G.Kurizki,L.D.Bakalis,andK.Banaszek,“Strong-coupling
QEDinasphere:Degeneracyeffects,”Phys.Rev.A,vol.54,pp.2690–2697,1996.
[154]V.V.Klimov,M.Ducloy,andV.S.Letokhov,“Stronginteractionbe-tweenatwo-levelatomandthewhispering-gallerymodesofadielectricmicrosphere:Quantum-mechanicalconsideration,”Phys.Rev.A,vol.59,pp.2996–3014,1999.
[155]J.R.BuckandH.J.Kimble,“Optimalsizesofdielectricmicrospheres
forcavityQEDwithstrongcoupling,”Phys.Rev.A,vol.67,p.033806,2003.
[156]M.Rosenblit,P.Horak,S.Helsby,andR.Folman,“Single-atomdetection
usingwhispering-gallerymodesofmicrodiskresonators,”Phys.Rev.A,vol.70,p.053808,2004.
[157]X.Fan,A.Doran,andH.Wang,“High-Qwhisperinggallerymodesfrom
acompositesystemofGaAsquantumwellandfusedsilicamicrosphere,”Appl.Phys.Lett.,vol.73,pp.3190–3192,1998.
[158]X.Fan,P.Palinginis,cey,H.Wang,andM.C.Lonergan,“Coupling
semiconductornanocrystalstoafused-silicamicrosphere:Aquantum-dotmicrocavitywithextremelyhighQfactors,”Opt.Lett.,vol.25,pp.1600–1602,2000.
[159]M.V.ArtemyevandU.Woggon,“Quantumdotsinphotonicdots,”Appl.
Phys.Lett.,vol.76,pp.1353–1355,2000.
[160]U.Woggon,R.Wannemacher,M.V.Artemyev,B.Moller1,N.Le
Thomas,V.Anikeyev,andO.Schops,“Dot-in-a-dot:Electronicandphotoniccon nementinallthreedimensions,”Appl.Phys.B,vol.77,pp.469–484,2003.
[161]C.G.B.Garrett,W.Kaiser,andW.L.Bond,“Stimulatedemission
intoopticalwhisperinggallerymodesofspheres,”Phys.Rev.,vol.124,pp.1807–1809,1961.
[162]P.WalshandG.Kemeny,“Laseroperationwithoutspikesinarubyring,”
J.Appl.Phys.,vol.34,pp.956–957,1963.
[163]D.RoessandG.Gehrer,“Selectionofdiscretemodesintoroidallasers,”
Proc.IEEE,vol.52,no.11,pp.1359–1360,Nov.1964.
[164]H.M.Tzeng,K.F.Wall,M.B.Long,andR.K.Chang,“Laseremission
fromindividualdropletsatwavelengthscorrespondingtomorphology-dependentresonances,”Opt.Lett.,vol.9,pp.499–501,1984.
[165]ti ,A.Biswas,R.L.Armstrong,andR.G.Pinnick,“Lasingand
stimulatedRamanscatteringinsphericaldroplets—Time,irradiance,andwavelengthdependence,”Appl.Opt.,vol.29,pp.5387–5392,1990.[166]R.L.Armstrong,J.-G.Xie,T.E.Ruekgauer,andR.G.Pinnick,“Energy
transferassistedlasingfrommicrodropletsseededwith uorescentsol,”Opt.Lett.,vol.17,pp.943–945,1992.
[167]H.-B.Lin,J.D.Eversole,andA.J.Campillo,“Spectralpropertiesof
lasingmicrodroplets,”J.Opt.Soc.Amer.B,vol.9,pp.43–50,1992.[168]H.TaniguchiandS.Tanosaki,“3-colorwhisperinggallerymodedye
lasersusingdye-dopedliquidspheres,”Jpn.J.Appl.Phys.II,vol.32,pp.L1421–L1424,1993.
[169]H.Taniguchi,H.Tomisawa,andSarjono,“Morphology-dependentdye
lasingfromasinglemicrodropletwithdouble-layereddyedoping,”Opt.Lett.,vol.19,pp.366–368,1994.
[170]J.C.Knight,H.S.T.Driver,R.J.Hutcheon,andG.N.Robertson,
“Coreresonancecapillary berwhisperinggallerymodelaser,”Opt.Lett.,vol.17,pp.1280–1282,1992.
[171]A.V.Malko,A.A.Mikhailovsky,M.A.Petruska,J.A.Hollingsworth,
H.Htoon,M.G.Bawendi,andV.I.Klimov,“Fromampli edspon-taneousemissiontomicroringlasingusingnanocrystalquantumdotsolids,”Appl.Phys.Lett.,vol.81,pp.1303–1305,2002.
[172]H.J.MoonandK.An,“Interferentialcouplingeffectonthewhispering-gallerymodelasinginadouble-layeredmicrocylinder,”Appl.Phys.Lett.,vol.80,pp.3250–3252,2002.
[173]H.J.MoonandK.An,“Observationofrelativelyhigh-Qcoupledmodes
inalayeredcylindricalmicrocavitylaser,”Jpn.J.Appl.Phys.I,vol.42,pp.3409–3414,2003.
WGM谐振腔综述
30IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006
[174]H.J.Moon,G.W.Park,S.B.Lee,A.Kyungwon,andJ.H.Lee,“Laser
oscillationsofresonancemodesinathingain-dopedring-typecylindricalmicrocavity,”mun.,vol.235,pp.401–407,2004.
[175]A.Shevchenko,K.Lindfors,S.C.Buchter,andM.Kaivola,“Evanescent-wavepumpedcylindricalmicrocavitylaserwithintenseoutputradia-tion,”mun.,vol.245,pp.349–353,2005.
[176]V.Sandoghdar,F.Treussart,J.Hare,V.Lefevre-Seguin,J.M.Raimond,
andS.Haroche,“Verylowthresholdwhispering-gallery-modemicro-spherelaser,”Phys.Rev.A,vol.54,pp.R1777–R1780,1996.
[177]F.Treussart,V.S.Ilchenko,J.F.Roch,P.Domokos,J.Hare,V.Lefevre,
J.M.Raimond,andS.Haroche,“WhisperinggallerymodemicrolaseratliquidHeliumtemperature,”J.Lumin.,vol.76,pp.670–673,1998.[178]K.4Miura,K.Tanaka,andK.Hirao,“CWlaseroscillationonboththethe
F3/2→4I11/2and4F3/2→4I13/2transitionsofNd
3+ionsusinga uorideglassmicrosphere,”J.Non-CrystallineSolids,vol.213,pp.276–280,1997.
[179]K.Sasagawa,K.Kusawake,J.Ohta,andM.Nunoshita,“Nd-doped
telluriteglassmicrospherelaser,”Electron.Lett.,vol.38,pp.1355–1357,2002.
[180]M.Cai,O.Painter,K.J.Vahala,andP.C.Sercel,“Fiber-coupledmicro-spherelaser,”Opt.Lett.,vol.25,pp.1430–1432,2000.
[181]X.Peng,F.Song,S.B.Jiang,N.Peyghambarian,M.Kuwata-Gonokami,
andL.Xu,“Fiber-taper-coupledL-bandEr3+-dopedtelluriteglassmi-crospherelaser,”Appl.Phys.Lett.,vol.82,pp.1497–1499,2003.
[182]W.vonKlitzing,E.Jahier,R.Long,F.Lissillour,V.Lefevre-Seguin,
J.Hare,J.M.Raimond,andS.Haroche,“VerylowthresholdlasinginEr3+dopedZBLANmicrosphere,”Electron.Lett.,vol.35,pp.1745–1746,1999.
[183]W.vonKlitzing,E.Jahier,R.Long,F.Lissillour,V.Lefevre-Seguin,
J.Hare,J.M.Raimond,andS.Haroche,“Verylowthresholdgreenlasinginmicrospheresbyup-conversionofIRphotons,”J.Opt.B,vol.2,pp.204–206,2000.
[184]F.Lissillour,P.Feron,N.Dubreuil,P.Dupriez,M.Poulain,andG.
M.Stephan,“Erbium-dopedmicrosphericallasersat1.56µm,”Electron.Lett.,vol.36,pp.1382–1384,2000.
[185]F.Lissillour,D.Messager,G.Stephan,andP.Ferron,“Whispering-gallery-modelaserat1.56µmexcitedbya bertaper,”Opt.Lett.,vol.26,pp.1051–1053,2001.
[186]H.FujiwaraandK.Sasaki,“Microsphericallasingofanerbium-ion-dopedglassparticle,”Jpn.J.Appl.Phys.II.,vol.41,pp.L46–L48,2002.[187]A.Polman,B.Min,J.Kalkman,T.J.Kippenberg,andK.J.Vahala,
“Ultralow-thresholderbium-implantedtoroidalmicrolaseronsilicon,”Appl.Phys.Lett.,vol.84,pp.1037–1039,2004.
[188]B.Min,T.J.Kippenberg,L.Yang,K.J.Vahala,J.Kalkman,andA.Pol-man,“Erbium-implantedhigh-Qsilicatoroidalmicrocavitylaseronasiliconchip,”Phys.Rev.A.,vol.70,p.033803,2004.
[189]K.Sasagawa,3+Z.Yonezawa,R.Iwai,J.Ohta,andM.Nunoshita,“S-band
Tm-dopedtelluriteglassmicrospherelaserviaacascadeprocess,”Appl.Phys.Lett.,vol.85,pp.4325–4327,2004.
[190]M.Nakielska,A.Mossakowska-Wyszyska,M.Malinowski,and
P.Szczepaski,“Nd:YAGmicrodisklasergeneratinginthefundamen-talmode,”mun.,vol.235,pp.435–443,2004.
[191]S.Sunada,T.Harayama,andK.S.Ikeda,“Nonlinearwhispering-gallery
modesinamicroellipsecavity,”Opt.Lett.,vol.29,pp.718–720,2004.[192]L.YangandK.J.Vahala,“Gainfunctionalizationofsilicamicrores-onators,”Opt.Lett.,vol.28,pp.592–594,2003.
[193]K.AnandH.J.Moon,“Laseroscillationswithpumping-independent
ultrahighcavityqualityfactorsinevanescent-wave-coupled-gainmicro-spheredyelasers,”J.Phys.Soc.Jpn.,vol.72,pp.773–776,2003.
[194]H.-J.Moon,S.-P.Sun,G.-W.Park,J.-H.Lee,andK.An,“Whispering
gallerymodelasinginagain-coatedsquaremicrocavitywithroundcorners,”Jpn.J.Appl.Phys.II,vol.42,pp.L652–L654,2003.
[195]X.Liu,W.Fang,Y.Huang,X.H.Wu,S.T.Ho,H.Cao,andR.P.
H.Chang,“Opticallypumpedultravioletmicrodisklaseronasiliconsubstrate,”Appl.Phys.Lett.,vol.84,pp.2488–2490,2004.
[196]P.G.SchiroandA.S.Kwok,“Cavity-enhancedemissionfromadye-coatedmicrosphere,”Opt.Express,vol.12,pp.2857–2863,2004.
[197]M.PeltonandY.Yamamoto,“Ultralowthresholdlaserusingasingle
quantumdotandamicrospherecavity,”Phys.Rev.A,vol.59,pp.2418–2421,1999.
[198]O.BensonandY.Yamamoto,“Masterequationmodelofasinglequan-tumdotmicrospherelaser,”Phys.Rev.A,vol.59,pp.4756–4763,1999.[199]A.N.Oraevsky,M.O.Scully,T.V.Sarkisyan,andD.K.Bandy,“Using
whisperinggallerymodesinsemiconductormicrodevices,”LaserPhys.,vol.9,pp.990–1003,1999.[200]Y.P.Rakovich,L.Yang,E.M.McCabe,J.F.Donegan,T.Perova,
A.Moore,N.Gaponik,andA.Rogach,“Whisperinggallerymodeemis-sionfromacompositesystemofCdTenanocrystalsandasphericalmicrocavity,”Semicond.Sci.Technol.,vol.18,pp.914–918,2003.
[201]S.I.Shopova,G.Farca,A.T.Rosenberger,W.M.S.Wickramanayake,
andN.A.Kotov,“Microspherewhispering-gallery-modelaserusingHgTequantumdots,”Appl.Phys.Lett.,vol.85,pp.6101–6103,2004.[202]S.L.McCall,A.F.J.Levi,R.E.Slusher,S.J.Pearton,andR.A.Logan,
“Whispering-gallerymodemicrodisklasers,”Appl.Phys.Lett.,vol.60,pp.289–291,1992.
[203]A.F.J.Levi,R.E.Slusher,S.L.McCall,J.L.Glass,S.J.Pearton,and
R.A.Logan,“Directionallightcouplingfrommicrodisklasers,”Appl.Phys.Lett.,vol.62,pp.561–563,1993.
[204]A.F.J.Levi,S.L.McCall,S.J.Pearton,andR.A.Logan,“Room-temperatureoperationofsubmicrometerradiusdisklaser,”Electron.Lett.,vol.29,pp.1666–1668,1993.
[205]S.Chang,N.B.Rex,R.K.Chang,G.Chong,andL.J.Guido,“Stimu-latedemissionandlasinginwhispering-gallerymodesofGaNmicrodiskcavities,”Appl.Phys.Lett.,vol.75,pp.166–168,1999.
[206]C.Gmachl,J.Faist,F.Capasso,C.Sirtori,D.L.Sivco,andA.
Y.Cho,“Long-wavelength(9.5–11.5µm)microdiskquantum-cascadelasers,”IEEEJ.QuantumElectron.,vol.33,no.9,pp.1567–1573,Sep.1997.
[207]M.FujitaandT.Baba,“Microgearlaser,”Appl.Phys.Lett.,vol.80,
pp.2051–2053,2002.
[208]E.D.Haberer,R.Sharma,C.Meier,A.R.Stonas,S.Nakamura,S.P.Den-Baars,andE.L.Hu,“Free-standing,opticallypumped,GaN/InGaNmi-crodisklasersfabricatedbyphotoelectrochemicaletching,”Appl.Phys.Lett.,vol.85,pp.5179–5181,2004.
[209]J.-Z.ZhangandR.K.Chang,“Generationandsuppressionofstimulated
Brillouinscatteringinsingleliquiddroplets,”J.Opt.Soc.Amer.B.,vol.6,pp.151–153,1989.
[210]J.-Z.Zhang,G.Chen,andR.K.Chang,“PumpingofstimulatedRa-manscatteringbystimulatedBrillouinscatteringwithinasingleliquiddroplet:Inputlaserlinewidtheffects,”J.Opt.Soc.Amer.B.,vol.7,pp.108–115,1989.
[211]S.M.ChitanvisandC.D.Cantrell,“Simpleapproachtostimulated
Brillouinscatteringinglassaerosols,”J.Opt.Soc.Amer.B,vol.6,pp.1326–1331,1989.
[212]A.L.Huston,H.-B.Lin,J.D.Eversole,andA.J.Campillo,“Nonlin-earMiescattering:Electrostrictivecouplingoflighttodropletacousticmodes,”Opt.Lett.,vol.15,pp.1176–1178,1990.
[213]J.-Z.Zhang,G.Chen,andR.K.Chang,“PumpingofstimulatedRa-manscatteringbystimulatedBrillouinscatteringwithinasingleliquiddroplet:Inputlaserlinewidtheffects,”J.Opt.Soc.Amer.B.,vol.7,pp.108–115,1990.
[214]S.C.Ching,P.T.Leung,andK.Young,“SpontaneousBrillouinscattering
inamicrodroplet,”Phys.Rev.A.,vol.41,pp.5026–5038,1990.
[215]P.T.LeungandK.Young,“DoublyresonantstimulatedBrillouinscat-teringinamicrodroplet,”Phys.Rev.A.,vol.44,pp.593–607,1991.[216]C.D.Cantrell,“Theoryofnonlinearopticsindielectricspheres.II.
Coupled-partial-wavetheoryofresonant,resonantlypumpedstimulatedBrillouinscattering,”J.Opt.Soc.Amer.B,vol.8,pp.2158–2180,1991.[217]C.D.Cantrell,“Theoryofnonlinearopticsindielectricspheres.III.
Partial-wave-indexdependenceofthegainforstimulatedBrillouinscat-tering,”J.Opt.Soc.Amer.B,vol.8,pp.2181–2189,1991.
[218]i,P.T.Leung,C.K.Ng,andK.Young,“Nonlinearelas-ticscatteringoflightfromamicrodroplet:Roleofelectrostrictivelygeneratedacousticvibrations,”J.Opt.Soc.Amer.B,vol.10,pp.924–932,1993.
[219]M.L.Gorodetsky,A.D.Pryamikov,andV.S.Ilchenko,“Rayleighscat-teringinhigh-Qmicrospheres,”J.Opt.Soc.Amer.B,vol.17,pp.1051–1057,2000.
[220]T.J.Kippenberg,S.M.Spillane,andK.J.Vahala,“Modalcouplingin
traveling-waveresonators,”Opt.Lett.,vol.27,pp.1669–1671,2002.[221]M.L.GorodetskyandV.S.Ilchenko,“Thermalnonlineareffectsinopti-calwhispering-gallerymicroresonators,”LaserPhys.,vol.2,pp.1004–1009,1992.
[222]D.S.Weiss,V.Sandoghbar,J.Hare,V.Lefevre-Seguin,J.-M.Rai-mond,andS.Haroche,“Splittingofhigh-QMiemodesinducedbylightbackscatteringinsilicamicrospheres,”Opt.Lett.,vol.20,pp.1835–1837,1995.
[223]M.Borselli,K.Srinivasan,P.E.Barclay,andO.Painter,“Rayleigh
scattering,modecoupling,andopticallossinsiliconmicrodisks,”Appl.Phys.Lett.,vol.85,pp.3693–3695,2004.
WGM谐振腔综述
ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS31
[224]M.Borselli,T.J.Johnson,andO.Painter,“BeyondtheRayleighscat-teringlimitinhigh-Qsiliconmicrodisks:Theoryandexperiment,”Opt.Express,vol.13,pp.1515–1530,2005.
[225]L.S.Meng,P.A.Roos,K.S.Repasky,andJ.L.Carlsten,“Highcon-versionef ciency,diodepumpedcontinuouswaveRamanlaser,”Opt.Lett.,vol.26,pp.426–428,2001.
[226]L.S.Meng,P.A.Roos,andJ.L.Carlsten,“High-ef ciencycontinuous-waveRamanlaserpumpedbyaninjection-lockedbroad-areadiodelaser,”IEEEJ.Quantum.Electron.,vol.40,no.4,pp.390–393,Apr.2004.
[227]S.-X.QianandR.K.Chang,“Multiorderstokesemissionfrom
micrometer-sizedroplets,”Phys.Rev.Lett.,vol.56,pp.926–929,1986.
[228]S.-X.Qian,J.B.Snow,andR.K.Chang,“CoherentRamanmixingand
coherentanti-StokesRamanscatteringfromindividualmicrometer-sizedroplets,”Opt.Lett.,vol.10,pp.499–501,1985.
[229]J.B.Snow,S.-X.Qian,andR.K.Chang,“StimulatedRamanscattering
fromindividualwaterandethanoldropletsatmorpholody-dependentresonances,”Opt.Lett.,vol.10,pp.37–39,1985.
[230]A.Biswas,ti ,R.L.Armstrong,andR.G.Pinnick,“Double-resonancestimulatedRamanscatteringfromopticallylevitatedglyceroldroplets,”Phys.Rev.A.,vol.40,pp.7413–7416,1989.
[231]J.-Z.Zhang,D.H.Leach,andR.K.Chang,“Photonlifetimewithina
droplet:Temporaldeterminationofelasticandstimulatedscattering,”Opt.Lett.,vol.13,pp.270–272,1988.
[232]W.-F.Hsieh,J.-B.Zheng,andR.K.Chang,“Timedependenceofmul-tiorderstimulatedRamanscatteringfromsingledroplets,”Opt.Lett.,vol.30,pp.497–499,1988.
[233]G.Schweiger,“Observationofmorphologydependentresonances
causedbytheinput eldintheRamanspectrumofmicrodroplets,”J.RamanSpectr.,vol.21,pp.165–168,1990.
[234]H.-B.LinandA.J.Campillo,“CWnonlinearopticsindropletmicrocav-itiesdisplayingenhancedgain,”Phys.Rev.Lett.,vol.73,pp.2440–2443,1994.
[235]H.-B.LinandA.J.Campillo,“MicrocavityenhancedRamangain,”Opt.
Commun.,vol.133,pp.287–292,1997.
[236]G.KurizkiandA.Nitzan,“Theoryofstimulatedemissionpro-cessesinsphericalmicroparticles,”Phys.Rev.A,vol.38,pp.267–270,1988.
[237]A.Serpenguzel,G.Chen,R.K.Chang,andW.-F.Hsieh,“Heuristic
modelforthegrowthandcouplingofnonlinearprocessesindroplets,”J.Opt.Soc.Amer.B,vol.9,pp.871–883,1992.
[238]D.Braunstein,A.M.Khazanov,G.A.Koganov,andR.Shuker,“Lower-ingofthresholdconditionsfornonlineareffectsinamicrosphere,”Phys.Rev.A,vol.53,pp.3565–3572,1996.
[239]M.V.JouravlevandG.Kurizki,“Uni edtheoryofRamanandpara-metricampli cationinnonlinearmicrospheres,”Phys.Rev.A,vol.70,p.053804,2004.
[240]S.Uetake,M.Katsuragawa,M.Suzuki,andK.Hakuta,“Stimulated
Ramanscatteringinaliquid-hydrogendroplet,”Phys.Rev.A,vol.61,p.011803,2000.
[241]T.J.Kippenberg,S.A.Spillane,B.Min,andK.J.Vahala,“Theoretical
andexperimentalstudyofstimulatedandcascadedRamanscatteringinultrahigh-Qopticalmicrocavities,”IEEEJ.Sel.TopicsQuantumElec-tron.,vol.10,no.5,pp.1219–1228,Sep./Oct.2004.
[242]Y.Wu,X.Yang,andP.T.Leung,“Theoryofmicrocavity-enhanced
Ramangain,”Opt.Lett.,vol.24,pp.345–347,1999.
[243]Y.WuandP.T.Leung,“Lasingthresholdforwhisperinggallerymode
microspherelaser,”Phys.Rev.A,vol.60,pp.630–633,1999.
[244]S.M.Spillane,T.J.Kippenberg,andK.J.Vahala,“Ultralow-threshold
Ramanlaserusingasphericaldielectricmicrocavity,”Nature,vol.415,pp.621–623,2002.
[245]A.B.Matsko,A.A.Savchenkov,R.J.LeTargat,V.S.Ilchenko,and
L.Maleki,“Oncavitymodi cationofstimulatedRamanscattering,”J.Opt.B,vol.5,pp.272–278,2003.
[246]V.B.Braginsky,M.L.Gorodetsky,andV.S.Ilchenko,“Quality-factor
andnonlinearpropertiesofopticalwhisperinggallerymodes,”Phys.Lett.A,vol.5,pp.393–397,1989.
[247]A.EschmannandC.W.Gardiner,“Stabilityandswitchinginwhispering
gallerymodemicrodisklasers,”Phys.Rev.A,vol.49,pp.2907–2913,1994.
[248]F.C.Blom,D.R.vanDijk,H.J.W.M.Hoekstra,A.Driessen,and
Th.J.A.Popma,“Experimentalstudyofintegrated-opticsmicrocavityresonators:Towardanall-opticalswitchingdevice,”Appl.Phys.Lett.,vol.71,pp.747–749,1997.[249]A.Y.Smirnov,S.N.Rashkeev,andA.M.Zagoskin,“Polarization
switchinginopticalmicrosphereresonator,”Appl.Phys.Lett.,vol.80,pp.3503–3505,2002.
[250]M.Haraguchi,M.Fukui,Y.Tamaki,andT.Okamoto,“Opticalswitching
duetowhisperinggallerymodesindielectricmicrospherescoatedbyaKerrmaterial,”J.Microscopy,vol.210,pp.229–233,2003.
[251]J.E.Heebner,P.Chak,S.Pereira,J.E.Sipe,andR.W.Boyd,“Dis-tributedandlocalizedfeedbackinmicroresonatorsequencesforlinearandnonlinearoptics,”J.Opt.Soc.Amer.B,vol.21,pp.1818–1832,2004.
[252]J.E.HeebnerandR.W.Boyd,“Enhancedall-opticalswitchingbyuseof
anonlinear berringresonator,”Opt.Lett.,vol.24,pp.847–849,1999.[253]M.Soljacic,S.G.Johnson,S.H.Fan,M.Ibanescu,E.Ippen,andJ.
D.Joannopoulos,“Photonic-crystalslow-lightenhancementofnonlinearphasesensitivity,”J.Opt.Soc.Amer.B,vol.19,pp.2052–2059,2002.[254]P.Chak,J.E.Sipe,andS.Pereira,“Lorentzianmodelfornonlin-earswitchinginamicroresonatorstructure,”mun.,vol.213,pp.163–171,2002.
[255]S.Pereira,P.Chak,andJ.E.Sipe,“Gap-solitonswitchinginshortmi-croresonatorstructures,”J.Opt.Soc.Amer.B,vol.19,pp.2191–2202,2002.
[256]S.Pereira,P.Chak,andJ.E.Sipe,“All-opticalANDgatebyuseofa
Kerrnonlinearmicroresonatorstructure,”Opt.Lett.,vol.28,pp.444–446,2003.
[257]J.Popp,M.H.Fields,andR.K.Chang,“Qswitchingbysaturable
absorptioninmicrodroplets:Elasticscatteringandlaseremission,”Opt.Lett.,vol.22,pp.1296–1298,1997.
[258]V.Van,T.A.Ibrahim,K.Ritter,P.P.Absil,F.G.Johnson,R.Grover,
J.Goldhar,andP.T.Ho,“All-opticalnonlinearswitchinginGaAs-AlGaAsmicroringresonators,”IEEEPhoton.Technol.Lett.,vol.14,no.1,pp.74–76,Jan.2002.
[259]M.T.Hill,H.J.S.Dorren,T.deVries,X.J.M.Leijtens,J.H.denBesten,
B.Smalbrugge,Y.S.Oei,H.Binsma,G.D.Khoe,andM.K.Smit,“Afastlow-poweropticalmemorybasedoncoupledmicro-ringlasers,”Nature,vol.432,pp.206–209,2004.
[260]K.Ohata,T.Inoue,M.Funabashi,A.Inoue,Y.Takimoto,T.Kuwabara,
S.Shinozaki,K.Maruhashi,K.Hosaya,andH.Nagai,“Sixty-GHz-bangultra-miniaturemonolithicT/Rmodulesformultimediawirelesscommunicationsystems,”IEEETrans.Microw.TheoryTech.,vol.44,no.12,pp.2354–2360,Dec.1996.
[261]V.S.Ilchenko,A.B.Matsko,A.A.Savchenkov,andL.Maleki,“High-ef ciencymicrowaveandmillimeter-waveelectro-opticalmodulationwithwhispering-galleryresonators,”Proc.SPIE-Int.Soc.Opt.Eng.,vol.4629,pp.158–163,2002.
[262]D.A.CohenandA.F.J.Levi,“Microphotonicmillimetre-wavereceiver
architecture,”Electron.Lett.,vol.37,pp.37–39,2001.
[263]L.Maleki,A.F.J.Levi,S.Yao,andV.Ilchenko,“LightModulationin
Whispering-Gallery-ModeResonators,”U.S.Patent6473218,2002.[264]D.A.Cohen,M.Hossein-Zadeh,andA.F.J.Levi,“Microphotonic
modulatorformicrowavereceiver,”Electron.Lett.,vol.37,pp.300–301,2001.
[265]D.A.CohenandA.F.J.Levi,“Microphotoniccomponentsforamm-wavereceiver,”SolidStateElectron.,vol.45,pp.495–505,2001.
[266]D.A.Cohen,M.Hossein-Zadeh,andA.F.J.Levi,“High-Qmicropho-tonicelectro-opticmodulator,”SolidStateElectron.,vol.45,pp.1577–1589,2001.
[267]V.S.Ilchenko,A.A.Savchenkov,A.B.Matsko,andL.Maleki,“Whis-peringgallerymodeelectro-opticmodulatorandphotonicmicrowavereceiver,”J.Opt.Soc.Amer.B,vol.20,pp.333–342,2003.
[268]V.S.Ilchenko,A.A.Savchenkov,A.B.Matsko,andL.Maleki,“Sub-microWattphotonicmicrowavereceiver,”IEEEPhoton.Technol.Lett.,vol.14,no.11,pp.1602–1604,Nov.2002.
[269]A.B.Matsko,L.Maleki,A.A.Savchenkov,andV.S.Ilchenko,“Whis-peringgallerymodebasedoptoelectronicmicrowaveoscillator,”J.Mod.Opt.,vol.50,pp.2523–2542,2003.
[270]D.Q.Chowdhury,S.C.Hill,andP.W.Barber,“Timedependenceof
internalintensityofadielectricsphereonandnearresonance,”J.Opt.Soc.Amer.B,vol.9,pp.1364–1373,1992.
[271]E.E.M.Khaled,D.Q.Chowdhury,S.C.Hill,andP.W.Barber,“Internal
andscatteredtime-dependentintensityofadielectricsphereilluminatedwithapulsedGaussianbeam,”J.Opt.Soc.Amer.B,vol.11,pp.2065–2071,1994.
[272]S.V.Frolov,M.Shkunov,Z.V.Vardeny,andK.Yoshino,“Ringmi-crolasersfromconductingpolymers,”Phys.Rev.B,vol.56,pp.R4363–R4366,1997.
WGM谐振腔综述
32IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006
[273]J.E.Heebner,R.W.Boyd,andQ.-H.Park,“SCISSORsolitonsandother
novelpropagationeffectsinmicroresonator-modi edwaveguides,”J.Opt.Soc.Amer.B,vol.19,pp.722–731,2002.
[274]W.B.Whitten,M.D.Barnes,andJ.M.Ramsey,“Propagationofshort
opticalpulsesinadielectricsphere,”J.Opt.Soc.Amer.B,vol.14,pp.3424–3429,1997.
[275]R.W.Shaw,W.B.Whitten,M.D.Barnes,andJ.M.Ramsey,“Time-domainobservationofopticalpulsepropagationinwhispering-gallerymodesofglassspheres,”Opt.Lett.,vol.23,pp.1301–1303,1998.
[276]J.ZhangandD.Grischkowsky,“Whispering-gallerymodeterahertz
pulses,”Opt.Lett.,vol.27,pp.661–663,2002.
[277]J.ZhangandD.Grischkowsky,“Whispering-gallery-modecavityfor
terahertzpulses,”J.Opt.Soc.Amer.B,vol.20,pp.1894–1904,2003.[278]L.Mees,G.Gouesbet,andG.Grehan,“Numericalpredictionsofmicro-cavityinternal eldscreatedbyfemtosecondpulses,withemphasisonwhisperinggallerymodes,”J.Opt.A,vol.4,pp.S150–S153,2002.[279]T.Siebert,O.Sbanski,M.Schmitt,V.Engel,W.Kiefer,andJ.Popp,
“Themechanismoflightstorageinsphericalmicrocavitiesexploredonafemtosecondtimescale,”mun.,vol.216,pp.321–327,2003.
[280]H.Gersen,D.J.W.Klunder,J.P.Korterik,A.Driessen,N.F.vanHulst,
andL.Kuipers,“Propagationofafemtosecondpulseinamicroresonatorvisualizedintime,”Opt.Lett.,vol.29,pp.1291–1293,2004.
[281]L.Maleki,A.A.Savchenkov,V.S.Ilchenko,andA.B.Matsko,“Whis-peringgallerymodelithiumniobatemicroresonatorsforphotonicsap-plications,”Proc.SPIE-Int.Soc.Opt.Eng.,vol.5104,pp.1–13,2003.[282]J.D.Kafka,T.Baer,andD.W.Hall,“Mode-lockederbium-doped ber
laserwithsolitonpulseshaping,”Opt.Lett.,vol.14,pp.1269–1271,1989.
[283]F.X.Kartner,D.Kopf,andU.Keller,“Solitary-pulsestabilizationand
shorteninginactivelymode-lockedlasers,”J.Opt.Soc.Amer.B,vol.12,pp.486–496,1995.
[284]T.F.GarruthersandI.N.DulingIII,“10-GHz,1.3-pserbium berlaser
employingsolitonpulseshortening,”Opt.Lett.,vol.21,pp.1927–1929,1996.
[285]C.M.DePriest,T.Yilmaz,P.J.Delfyett,S.Etemad,A.Braun,and
J.Abeles,“Ultralownoiseandsupermodesuppressioninanactivelymode-lockedexternal-cavitysemiconductordioderinglaser,”Opt.Lett.,vol.27,pp.719–721,2002.
[286]C.K.Madsen,G.Lenz,A.J.Bruce,M.A.Cappuzzo,L.T.Gomez,
andR.E.Scotti,“Integratedall-pass ltersfortunabledispersionanddispersionslopecompensation,”IEEEPhoton.Technol.Lett.,vol.11,no.12,pp.1623–1625,Dec.1999.
[287]K.Sato,K.Wakita,I.Kotaka,Y.Kondo,M.Yamamoto,andA.Takada,
“Monolithicstrained-InGaAsPmultiple-quantum-welllaserswithin-tegratedelectroabsorptionmodulatorsforactivemodelocking,”Appl.Phys.Lett.,vol.65,pp.1–3,1994.
[288]S.ArahiraandY.Ogawa,“480-GHzsubharmonicsynchronousmode
lockinginashort-cavitycolliding-pulsemode-lockedlaser,”IEEEPho-ton.Technol.Lett.,vol.14,no.4,pp.537–539,Apr.2002.
[289]G.T.HarveyandL.F.Mollenauer,“Harmonicallymode-locked berring
laserwithaninternalFabry-Perotstabilizerforsolitontransmission,”Opt.Lett.,vol.18,pp.187–189,1993.
[290]A.B.Matsko,V.S.Ilchenko,A.A.Savchenkov,andL.Maleki,“Active
modelockingwithwhispering-gallerymodes,”J.Opt.Soc.Amer.B,vol.20,pp.2292–2296,2003.
[291]M.Kourogi,K.Nakagawa,andM.Ohtsu,“Wide-spanopticalre-quencycombgeneratorforacurateopticalfrequencydifferencemea-surement,”IEEEJ.QuantumElectron.,vol.29,no.10,pp.2693–2701,Oct.1993.
[292]L.R.Brothers,D.Lee,andN.C.Wong,“Terahertzopticalfrequency
combgenerationandphaselockingofanopticalparametricoscillatorat665GHz,”Opt.Lett.,vol.19,pp.245–247,1994.
[293]M.Kourogi,B.Widiyatomoko,Y.Takeuchi,andM.Ohtsu,“Limitof
optical-frequencycombgenerationduetomaterialdispersion,”IEEEJ.QuantumElectron.,vol.31,no.12,pp.2120–2126,Dec.1995.
[294]G.M.Macfarlane,A.S.Bell,E.Riis,andA.I.Ferguson,“Optical
combgeneratorasanef cientshort-pulsesource,”Opt.Lett.,vol.21,pp.534–536,1996.
[295]D.N.Klyshko,PhotonsandNonlinearOptics.NewYork:Taylor&
Francis,1988.
[296]G.P.Agrawal,NonlinearFiberOptics.NewYork:Academic,1995.[297]J.Vuckovic,M.Pelton,A.Scherer,andY.Yamamoto,“Optimizationof
three-dimensionalmicropostmicrocavitiesforcavityquantumelectro-dynamics,”Phys.Rev.A,vol.66,p.023808,2002.
[298]C.Conti,A.DiFalco,andG.Assanto,“Opticalparametricoscillations
inisotropicphotoniccrystals,”Opt.Express,vol.12,pp.823–828,2004.[299]T.J.Kippenberg,S.M.Spillane,andK.J.Vahala,“Kerr-nonlinearityop-ticalparametricoscillationinanultrahigh-Qtoroidmicrocavity,”Phys.Rev.Lett.,vol.93,p.083904,2004.
[300]A.A.Savchenkov,A.B.Matsko,D.Strekalov,M.Mohageg,
V.S.Ilchenko,andL.Maleki,“LowthresholdopticaloscillationsinawhisperinggallerymodeCaF2resonator,”Phys.Rev.Lett.,vol.93,p.243905,2004.
[301]A.B.Matsko,D.Strekalov,V.S.Ilchenko,andL.Maleki,“Optical
hyper-parametricoscillationsinawhisperinggallerymoderesonator:Thresholdandphasediffusion,”Phys.Rev.A,vol.71,p.033804,2005.[302]W.H.Louisell,A.Yariv,andA.E.Siegmann,“Quantum uctuations
andnoiseinparametricprocesses,”Phys.Rev.,vol.124,pp.1646–1654,1961.
[303]J.A.Armstrong,N.Bloembergen,J.Ducuing,andP.S.Pershan,“In-teractionsbetweenlightwavesinanonlineardielectric,”Phys.Rev.,vol.127,pp.1918–1939,1962.
[304]R.GrahamandH.Haken,“Thequantum uctuationsoftheoptical
parametricoscillator,”Z.Phys.,vol.210,pp.276–302,1968.[305]SpecialIssueonOPO,J.Opt.Soc.Amer.B,vol.10,no.9,1993.
[306]L.E.Myers,R.C.Eckardt,M.M.Fejer,R.L.Byer,W.R.Bosenberg,
andJ.W.Pierce,“Quasiphase-matchedopticalparametricoscillatorsinbulkperiodicallypoledLiNbO3,”J.Opt.Soc.Amer.B,vol.12,p.2102,1995.
[307]V.S.Ilchenko,A.B.Matsko,A.A.Savchenkov,andL.Maleki,“Low
thresholdparametricnonlinearopticswithquasi-phase-matchedwhis-peringgallerymodes,”J.Opt.Soc.Amer.B,vol.20,p.1304,2003.[308]M.Martinelli,K.S.Zhang,T.Coudreau,A.Maitre,andC.Fabre,“Ultra-lowthresholdCWtriplyresonantOPOinthenearinfraredusingperiod-icallypoledlithiumniobate,”J.Opt.A,vol.3,p.300,2001.
[309]A.B.Matsko,V.S.Ilchenko,A.A.Savchenkov,andL.Maleki,“Highly
nondegenerateall-resonantopticalparametricoscillator,”Phys.Rev.A,vol.66,p.043814,2002.
[310]A.V.KozlovskyandA.N.Oraevsky,“Quantum-dotmicrolaseroperating
onthewhisperinggallerymode—Asourceofsqueezed(sub-Poissonian)light,”J.Eng.Phys.Thermophys.,vol.91,pp.938–944,2000.[311]SpecialIssueonOPO,J.Opt.Soc.Amer.B,vol.12,no.11,1995.[312]SpecialIssueonOPO,Appl.Phys.B,vol.66,no.6,
1998.
VladimirS.Ilchenko,receivedtheM.S.andPh.D.degreesfromMoscowStateUniversity,Russia,in1983and1986,respectively.
HehasbeenaSeniorMemberoftheTechnicalStaffattheNASAJetPropulsionLaboratory(JPL),CaliforniaInstituteTechnology,Pasadena,CA,since1998.HejoinedtheTimeandFrequencyGroupatJPL(currentlyQuantumSciencesandTechnologyGroup)aftera12yeartenureasResearchAssociateandAssociateProfessorinthePhysicsDepartment,MoscowStateUniversitywhere,withcolleagues,he
pioneeredtheexperimentaldemonstrationofultrahigh-Qopticalwhispering-gallerymicroresonators(microspheres).Hiscurrentresearchinterestsarefo-cusedonthedevelopmentandapplicationsofcrystallineopticalmicroresonatorswithkilohertzlinewidthsforhighspectralpurityopticalandmicrowaveoscil-lators,photonic lters,modulators,andsensors.Since2001,hehasbeenChiefScientistofOEwaves,Inc.,Pasadena,CA.
Dr.IlchenkoisamemberoftheOpticalSocietyofAmerica,
SPIE.AndreyB.MatskoreceivedtheM.S.andPh.D.de-greesfromMoscowStateUniversity,Russia,in1994and1996,respectively.
HehasbeenaSeniorMemberofTechnicalStaffwiththeQuantumSciencesandTechnologyGroupattheJetPropulsionLaboratory(JPL),CaliforniaInstituteTechnology,Pasadena,CA,since2001.Hereceivedpost-doctoraltrainingattheDepartmentofPhysics,TexasA&MUniversity(1997–2001),wherehewasawardedtheRobertA.WelchFoundationPostdoctoralFellowship.Hiscurrentresearchinter-estsinclude,butarenotrestrictedto,applicationsofwhispering-gallerymoderesonatorsinquantumandnonlinearopticsandphotonics;coherenceeffectsinresonantmedia;andquantumtheoryofmeasurements.
Dr.MatskoisamemberoftheOpticalSocietyofAmerica.HereceivedJPL’sLewAllenAwardforexcellencein2005.
正在阅读:
Optical Resonators With Whispering-Gallery applications07-27
七年级数学上册第二章单元测试03-20
党建研究课题参考题目04-08
困难救助申请书03-20
无锡小学作文06-15
学校职教个人工作总结03-04
我国信息系统建设的经验和教训05-13
论家庭暴力的成因及对策112-05
云南省2017年小学《教育教学知识与能力》:教师专业的发展考试试题09-15
电子商务(B2C)网站需求设计方案03-22
- 1From Sequential Programs to Multi-Tier Applications by Progr
- 2baseline matching with applications to visual servoing
- 3visual learning and applications with the probailistic graph
- 42016 - Cell - Biology and Applications of CRISPR Systems - 图文
- 5Theory of nonlinear optical spectroscopy of electron spin coherence in quantum dots
- 6BEFVP41 - VPN - Applications - 图文
- 72016 - Cell - Biology and Applications of CRISPR Systems -
- 8Bridging the Observability Gap for Java and Scripting Applications
- 9Size dependent interface energy and its applications
- 10Parallel Communication Mechanisms for Sparse, Irregular Applications
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- applications
- Resonators
- Whispering
- Optical
- Gallery
- With
- 通用规范汉字表公布8105个汉字
- 第 课时 第四节《免疫调节》教学设计
- 高中数学解题基本方法——配方法
- 2012届广州市黄埔区九年级中考一模物理试题
- 供电所电能计量装置异常处理及电量退补管理办法
- 绩效管理方案-连锁餐饮公司绩效考核管理体系设计方案 精品
- 2010一级新疆维吾尔自治区建造师市政最新考试试题库
- 2011云南省数据结构与算法考试答题技巧
- 沉降观测实施细则
- 电子体重秤校准与我要太胖了要减肥
- 秋实家园社区2011年全民健身活动总结
- 税收制度和税收管理制度改革
- KONE3000小机房菜单000
- 日本武士道死的觉悟与宗教体验
- 降低中深孔爆破大块率的技术措施
- 小学五年级下册语文教学计划通用范本
- 2011邵武市驾校理论考试c1小车仿真试题
- 最详细的iTunes使用攻略,iPhone必备
- 电视综艺节目概述
- 868-上海优合超声波流量计选型技术要求表-Qs