Optical Resonators With Whispering-Gallery applications

更新时间:2023-07-27 15:34:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

WGM谐振腔综述

OpticalResonatorsWithWhispering-Gallery

Modes—PartII:Applications

VladimirS.IlchenkoandAndreyB.Matsko

(InvitedPaper)

Abstract—Wereviewphotonicapplicationsofdielectricwhispering-gallerymode(WGM)resonators—tracingthegrowthofthetechnologyfromexperimentswithlevitatingdropletsofaerosolstoultrahigh-Qsolidstatecrystallineandintegratedon-chipmicroresonators.

IndexTerms—Four-wavemixing(FWM),high-orderoptical lters,lasers,laserresonators,monolithicopticaltotalinternalre ectionresonators,morphologydependentresonances,nonlin-earoptics,optical lters,opticalresonators,parametricoptics,Q-factor,solidstatelasers,spectroscopy,tunable lters,wavemix-ing,whispering-gallerymode(WGM)resonators.

I.INTRODUCTION

I

NTHISpaper,weaddressapplicationsofopendielectricres-onatorsandleavethedetaileddescriptionsoftheirpropertiestotextbooks[1],[2]andreviews[3]–[8].Thebasicpropertiesofresonatorsthatareimportanttotheirpracticalapplicationsarealsosummarizedinthepreviouspaperofthisissue[9].

Antalkingabout“photonicapplications,”weuseabroadmeaningofphotonics,whichincludeslinear,nonlinear,andquantumoptics,opticalengineering,andotherrelatedbranchesofscienceandtechnology.Specialattentionisgiventomi-crowavephotonics,wheredielectricresonatorsareusedtopro-cessmicrowavesignalsbyopticalmeans.

Wediscusstheresonatorsthataremadeoftransparentopti-caldielectricsandhavemonolithicringresonatordesign(wedonotconsidermacroscopic berringresonatorsbasedondirectionalcouplers).Theopticalmodesinsuchresonators;e.g.,morphology-dependentresonancesorwhisperinggallerymodes(WGMs),canbeunderstoodasclosedcircularbeamssupportedbytotalinternalre ectionsfromboundariesoftheresonators.

Modernopendielectricopticalresonatorshavecylindrical,spherical,spheroidal/toroidal,ring,andothershapesandtopolo-gieswithvariouscon ningprinciples.Forthesakeofuni ca-tion,weusethroughoutthisreviewthetermswhisperinggalleryresonators(WGRs)andwhisperinggallerymodestodescribethoseresonatorsandtheirmodes.

Itisusefultonotethat,strictlyspeaking,thetermWGMcannotbeappliedtoquasi-one-dimensionalobjectssuchasmi-

crorings.Insuchcases,thecurvatureoftheresonatordoesnotplayasigni cantroleintheformationofthespatialmodestruc-tures,andtheseobjectscouldsimplybedescribedasloopsmadeoutofanopticalwaveguide.

OriginalWGMsdonothavealotincommonwithsuchawaveguidepropagation.OriginallystudiedassoundwavespropagatingveryclosetothecylindricalwallofthegalleryinSt.Paul’scathedral,London[10],theWGMs(LordRayleighs’sterm)werefoundtobepartiallycon nedduetothesuppressionofthewavediffractionbythesoundre ectionfromthecurveddomewalls.Theeffectivevolumesand elddistributionsofthosemodesdependontheradiusofthe“resonator”[11].

Toavoidthisdiscrepancy,inourreview,werede neanopticalWGRasamonolithicringresonatorbasedontotalinternalre ectionoflight.

II.DEVICESWITHPASSIVEWGMRESONATORS

UniquespectralpropertiesofWGMs,includingnarrowlinewidth,tunability,andhighstabilityunderenvironmentalconditions,makeWGRsattractivefornumerouspracticalappli-cations.Inthissection,wereviewapplicationsofpassiveWGRsfor ltering,frequencystabilization,andsensing.

Photonic ltersbasedonopticalWGRsarecurrentlyamongthemostdevelopeddevicesthatinvolveWGMs.Foropticaltelecommunicationpurposes,themaintaskofthe ltersistoselectchannelsinwavelengthdivisionmultiplexing(WDM)schemes.Inthisdomain,wherechannelspacingisusuallynolessthan10GHz,planarringresonatorswithWGMandsimilardeviceswithQ<1×105areadequate.

Ultra-high-QWGRswithMHzrangeresonancebandwidthsofferauniqueopportunityforcreationofphotonicmicrowave ltersinwhichopticaldomainselectionisusedforseparatingtheRFchannelsimprintedassidebandsonastableopticalcar-rier.ImportantapplicationsofWGRsoccurinmetrologyforopticalandmicrowavefrequencystabilization,wherealongphotonstoragetimehelpstosuppressphaseandfrequencyde-viationofoscillators.

High-QandlongrecirculationoflightincompactWGRsofferinterestingnewcapabilitiesinspectroscopyandsensing,wherethechangeinQorresonancefrequencyofWGMscanserveasameasureofabsorptioninthesurroundingmedium,orinasmall(downtosinglemolecule)quantityofdepositedsubstanceonaresonatorsurface.Theresonatorcanalsobeusedformeasurementofchangeinambientparameters,suchastemperature,pressure,motion,etc.

ManuscriptreceivedApril10,2005;revisedOctober31,2005.ThisworkwassupportedinpartbytheNationalAeronauticsandSpaceAdministrationandinpartbyDefenseAdvancedResearchProjectsAgency(DARPA).

TheauthorsarewiththeJetPropulsionLaboratory,CaliforniaInstituteofTechnology,Pasadena,CA91109-8099USA(e-mail:vladimir@jpl.nasa.gov;andery.matsko@jpl.nasa.gov).

DigitalObjectIdenti er10.1109/JSTQE.2005.862943

1077-260X/$20.00©2006IEEE

WGM谐振腔综述

A.OpticalandPhotonicSingleResonatorFilters

Thesimplestresonator-based lterincludesaWGRandanopticalcoupler;e.g.,aprismcoupler.TransmissionofamonochromaticelectromagneticwaveoffrequencyωbyanopticalWGRinasingleprismcon gurationmaybecharacterizedbythecoef cient

T=

γc γ i(ω ω0)

γγ+i(ω ω(1)c+0)

whereTdescribestheamplitudetransmission,γ,γc,andω0aretheabsorptionandcouplinglinewidth,andresonancefrequencyofamodeoftheresonator,respectively[weassumethat|ω ω0|ismuchlessthanthecavityfreespectralrange(FSR)].Thepowertransmission|T|2throughtheresonatorisLorentzian.Conditionγ=γccorrespondstocriticalcouplingoftheresonator[12],[13].

The lterdescribedby(1)isastop-band lterbecauseitischaracterizedbytheabsorptionresonance.AWGRwithtwoinputandoutputcouplersischaracterizedbyatransmissionres-onance.Thisisanexampleofapassband lter.Thetransmissionandre ectioncoef cientsthroughtheresonatorare

T=

γc

γω ω,R=i(ω ω0)i(ω ω(2)c+i(0)γc+0)

whereTandRdescribetheamplitudetransmission(lightgoesintoonecouplerandexitstheothercoupler)andre ection(lightgoesandexitsthesamecoupler),respectively,andγc γisassumedforsimplicity.

Singlering-shapedWGR-based lterswerestudiedin[14]–[19],seealso[8],[20]forareview.Anall-opticalpassivefour-portsystemincludingafusedsilicamicrosphereandtwota-pered berswasusedasachanneladding–droppingdevice[21].The lterresponseofsingle-ringresonatorswithintegratedsemiconductoropticalampli ersbasedonGaInAsP–InPispre-sentedin[22].Achanneldropping lterbasedonadielectricmi-crosphereintegratedtoasiliconphotodiodewasstudiedin[23].Twodielectricwaveguidesthatareevanescentlycoupledtoafewmicronsizedsquareorrectangularregionofincreasedrefractiveindexcanserveasaverycompactintegratedopticalmicroresonator,similartoaringWGR.Applicationsofthedevicefor lteringarediscussedin[24].

Unfortunately,theLorentzianlineshapeofthe lterfunctionassociatedwithasinglemicroresonatorrepresentsalimitationforitsapplicationinmanysystemsthatrequirelargesidemoderejection,inadditiontoanarrowbandpassandalargetuningrange.

B.High-OrderFilters

Cascadedresonators,suchascoupledoptical berresonators,arewidelyusedasopticalandphotonic lters[25],[26].WGRsoffernewpossibilitiesformultipole lteringbecauseoftheirsmallsize,lowlosses,andintegrabilityintoopticalnetworks.Multipole ltersbasedoncascadedintegratedmicroringresonatorsfabricatedwithsilicahavebeendemonstratedincompactandrobustpackages.The ltershave10–100GHzbandwidthsandcorrespondingopticalQsontheorderof105–104[15],[27]–[31],andare,infact,commerciallyavailable.These ltersprovidepassbandswith attopsandsharpskirts,suitableforhighperformanceapplications,especiallyinopticalWDM.Asecond-orderoptical lterwithaMHzbandwidthwasrealizedwithtwocoupledhigh-Q(108)microsphereresonators,oneofwhichwastunable.ThetunableWGRwasmadeofgermanateglass[32].

Atunablethree-resonator ltermadeofLiNbO3WGRswasdemonstratedin[33].The lterhasthefollowingdistinctivefeatures/advantagesoverotherWGM lters:1)agiletunabilityaccompaniedbyahigh-order lterfunction;2)narrowlinewidth(≤20MHz);and3)low ber-to- berloss.Acombinationofthethreefeaturesmakesthis lterauniquedeviceforawiderangeofapplicationsinoptics.Sincethemicrowavesignalsinphotonicsystemsaresidebandsofanopticalcarrier,these lters,inprinciple,canbeusedatanymicrowavefrequency,providingthesamecharacteristicsthroughouttheband,from1to100GHzandhigher.

Multiresonator ltershavesigni cantlymoresparsespec-tracomparedwithastandaloneWGMresonator.ThisfeatureisduetothesocalledVerniereffect[34],andissimilartothefeatureobservedincoupled ber-ringresonators[25],[26]whicharenotedforararespectrum.Anef cient nesseofsuchmultiresonatorsystems,introducedasaratiooffrequencydif-ferencebetweenthetransmissionbandsofthe lterdividedoverthefrequencywidthofaband,isverylarge;e.g.,theFSRofthe lterreportedin[33]exceedsoneterahertz.Polymerdoublemicroring lterswiththermoopticaswellaselectrooptictuningweredemonstratedandreportedin[35].

Itwasnotedthatoneofseveraladvantagesofusingcou-pledmicroringsfor lteringisthepossibilityofahightuningenhancementfactorMgivenby

M=

1

1 a(3)2/a1

wherea1anda2aretheradiiofthetworings.Thetuningrangeofthedoublemicroring lterisMtimesthetuningrangeofasinglering[36].SinceMcanbeverylargeindouble-WGRstructures,thefasterbutmuchsmallerelectro-opticeffectcanbeusedfortuning.Itisimportanttonotethatthethederivationoftheparameterisvalidfortheresonatorswithsucharadiusratio,andthatMstayslessthanthe nesseoftheresonators.EachringresonatorhasasetoftransmissionspectraandthewavelengthperioddeterminedbyitsFSRfFSR.Thetworingshaveslightlydifferentradii(oreffectiveindices).Therefore,thetwosetsoftransmissionpeakcombshavesmalldifferentpeakspacing.Wavelengthtuningisachievedbyaligningthepeaksinthetwosetsofcombswiththeadjustmentofindexinoneorbothringresonators.The ltertransmissiondiscreetlyjumpsfromtransmissionatwavelengthf0tof0+fFSR,withMtimeslessvoltageappliedtooneoftheringscomparedwithvoltagenecessarytocontinuouslyshiftthespectrumoftheringbyfFSR.AtuningenhancementfactorofM=40inadouble-ring lterwasachievedatwavelengthsnear1.55µm[35].Thetuningrateforthethermoopticdeviceis120GHz/mW,andfortheelectroopticdeviceis120GHz/12V.Atunablelaserwithaside-modesuppressionratiogreaterthan30dBwasdemonstratedusingthis lteranderbium-doped berampli ergain.Thermaltuningover35nmwasachieved[35].

WGM谐振腔综述

ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS17

Oneofapparentapplicationsoftheoptical ltersisinopticaldelaylines.OpticaldelaydevicesbasedonchainsofcoupledWGRshavebeenstudiedin[37],[38].ItwasshownthattheQ-factorofthecoupling-splitmodesforasystemofNidenticalcoupledresonatorsisgreaterthanthatofasingleresonatorinthechainbyafactorofN,andevenmoreinthecaseofoptimumcoupling[39].Stoppinglightallopticallywithachainofinteractingtunableopticalresonatorswasdiscussedin[40].Anotherconceptofcoupledresonatoropticalwaveguideswasdevelopedin[41],[42].Inparticular,suchwaveguidescanberealizedinchainsofcoupledWGRs[44].Anumericalsimu-lationoflightpropagationinmicrocylindercoupledresonatorwaveguideswasreportedin[43].ThesimulationsshowthatlightpropagatesslowerintheWGMchainsformedbycouplingofthemodeshavingbiggerazimuthalnumbers.Thelightprop-agationbyWGMsofthesameazimuthalnumberhavethesamespeedregardlessofthesizeandthematerialoftheresonators.Generally,WGRtunable ltersallowshiftingthespectrumoftheresonators;however,theydonotprovidelinewidthtuningcapabilities.Cascadedresonatorswereproposedtobeusedforreal-timeshapingoftheirmodalstructures[45],[46].Akeyfeatureoftheapproachisthatitpointstoasimpletuningofthefrequencyandthewidthofthe ltertransmissionwindow,resultinginthetuningofthegroupdelayofopticalsignals—ahighlydesirablefeatureforsignalprocessingapplications.Thetransmissionspectralwindowofthe ltercouldbecuri-ouslynarrow.Theoretically,inthecaseofresonatorswithoutab-sorption,thewidthofthewindowcanbearbitrarilynarrow[45];however,inreality,theminimumwidthoftheresonanceisde-terminedbythematerialabsorption.Thephysicalprincipleofthe lteroperationthatresultsinthenarrowspectralwindowhasbeenrecognizedin[15],[25],[26].Theexistenceofthewindowhasalsobeendemonstratedexperimentally[47].C.TunableFilters

Tunabilityisahighlydesirablepropertyofanyapplicationofresonators.ThoughWGRsaresolidstatedevicesandtheirtun-abilityisnotreadilyconceivable,tunabilitycan,infact,achievedbyseveralmethods.MechanicaltrimmingofWGMswithap-pliedstrain[48]–[50]andtemperaturetuning[51],[52]havebeenpreviouslyused.Thoughthemechanicalaswellastem-peraturetuningrangesarerelativelylarge;e.g.,ontheorderofafewtoseveraltensofnanometersforthermaltuning,thesemethodsarenotveryconvenientformanyapplicationsbecauseofsmalltuningspeedsandlowtuningaccuracy.Thetuningaccuracyisespeciallyimportantforhigh-Qresonatorswithnar-row lterbandwidth.Anall-opticaltunable lterdesignbasedon“discontinuity-assistedringresonators”thatdoesnothavethepreviouslymentioneddisadvantageshasalsobeenproposedtheoretically[53],but,toourknowledge,noexperimentalim-plementationofthecon gurationhasbeenreported.

AtechniqueforWGMresonancetuningwasdemonstratedusingmicroringresonatorswithaphotosensitivecoating.Inthatstudy,glassmicroringsweredippedinapolymercoatingmaterialandwereexposedtoUVlight.ThismethodproducedresonatorswithrelativelysmallQ(about800)becauseofthe

polymer-inducedabsorption;yetitstillallowedlargetunabilityoftheopticalresonanceofthemicroring,enoughforwavelengthselectiveapplications[47].

Amethodforthetrimmingofpolymeropticalmicrores-onatorswasproposedin[54].Themethodisbasedonphoto-bleachingCLD-1chromophores.Amaximumwavelengthshiftof8.73nmwasobservedat1.55µm.Theresonatorshada3dBbandwidthof0.12nm,anFSRof1.11nm,anintrinsicQvalueof~2×104,anda nesseof~10.

Anotherapproachfortrimmingthefrequencyofmicrores-onatorsexploitsthephotosensitivityofthegermanatesilicaglass.WhenexposedtoUVlight,thismaterialundergoesasmallpermanentchangeinstructurethataltersitsindexofre-fraction.InthecaseofaWGR,thespatiallyuniformchangeintheindexofrefractionresultsinauniformtranslationoftheresonantfrequencies.Suchatunableresonator,aswellasasecond-orderoptical lterbasedontwocoupledresonators,oneofwhichwastunable,wasexperimentallyrealizedforopticalhigh-Q(108)WGMs[32],[55],[56].

Recently,fabricationofopticalWGMresonatorswithlithiumniobate[57]hasledtothedemonstrationofahigh-Qmicrowave lterwithalinewidthofabout10MHzandfastelectrooptictuningwithatuningrangeinexcessof10GHz[58].ThebesttunabilityforaLiNbO3singleresonator lterwas±20GHzbyapplyingdcvoltageof±50Vtoanelectrodeplacedovertheresonator.

ThefrequencyshiftoftheTEandTMmodesinaWGRmaybefoundfromthetheoryoftheelectroopticeffect[59].FortheLiNbO3WGR lterdiscussedin[58],we nd

ωTE

=ωn2

0e2

r33EZ,

ωTωn2

M

=0o2

r13EZ

(4)

whereω0=2π×2×1014Hzisthecarrierfrequencyofthelaser;r33=31pm/Vandr13=10pm/Varetheelectroopticconstants;ne=2.28andno=2.2aretherefractiveindicesofLiNbO3;andEZistheamplitudeoftheelectric eldappliedalongthecavityaxis.TMmodeswereusedintheexperimentreportedin[58]becausetheyhavelargerqualityfactorsthantheTEmodes.Ifthequalityfactorisnotveryimportant,itisbettertousetheTEmodes,becausetheirelectroopticshiftsarethreetimesaslargeasthoseofTMmodesforthesamevaluesoftheappliedvoltage.

Theoretically, ωTEand ωTMdonotdependontheres-onatorproperties,andarerelatedtothefundamentallimita-tionsofopticalresonator-basedhighspeedelectroopticmod-ulators[60].Forexample,thedomainreversalinacongruentLiNbO3crystaloccursatEZ 20kV/mm,whichcorrespondstoarelativeWGRfrequencyshiftof ωTE/ω0 1.6×10 3and ωTM 5×10 4,whichiswellabovetheobservedshifts.Lithiumniobate ltersareconvenient;however,theirlinewidthisrestrictedbyafewMHzbecauseoftheresidualabsorptionofthematerial.CrystallineWGRscouldpossessmanyordersofmagnitudenarrowerlines.Forinstance,opti-cal lterswithbandwidthsofabout10kHzusingCaF2WGMresonatorswasdemonstratedin[61].TheCaF2resonatorshavestableultrahighQ-factorscomparedwithfusedsilicaresonators,whereQdegradeswithtime.LimitedtuningoftheCaF2 lters

WGM谐振腔综述

18IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006

canberealizedwithtemperature.Theinsertionlossofthe lterwasatthe5dBlevel.

Tocharacterizetheabsolutetunabilityofanopticalresonator-basedphotonic lter,itisusefultointroducetheratiooftheresonatorFSRandlineartunabilityrangegivenbythehostma-terial.Tuningthe ltersdoesnotchangetheFSRinthe rstapproximation,butonlyshiftsthecomboftheopticalmodes,makingitoverlapwithitselfforeachfrequencyshiftpropor-tionaltotheFSR.Hence,the ltercanbetunedatanyprescribedsinglefrequencyifthelineartunabilityexceedstheFSR.Thelackofselectivityinasingle-resonator ltercanbecompen-satedwiththeapplicationofcoupled-resonator lters.Ifeachresonatorinthe ltercanbetunedbyitsFSR,thewhole l-tercanbetunedatanyfrequency,whereasthespectrumofthemultiresonator ltercanbeveryrareduetotheVerniereffect.Somephotonicapplicationscallfornarrowband lterssimul-taneouslypassingboththecarrierandsidebands.Forexample,thisisimportantforthegenerationofspectrallypuremicrowavesignalsinoptoelectronicoscillators[62],wherebeatingoftheopticalsidebandsandthecarrieronafastphotodiodegeneratesmicrowaves.Tunabilityofthemicrowavefrequencyoftheos-cillatorrequiresthatthefrequencydifferencebetweenthe lterpassbandschangecontrollably.Thispropertyislackinginex-istingtunable lters,wheretheentire lterspectrumshiftsasawholeasthetuningvoltageisapplied.Acriticalcomponentofanovelminiature lterwithelectro-opticallyrecon gurablespectrumwasrecentlyreported.The lterisbasedonaWGRfabricatedfromacommerciallyavailablelithiumniobatewaferhavingaspeciallyengineereddomainstructure[63].D.WGMFiltersinOptoelectronicOscillatorsandLasersforStabilization

1)WGMFiltersforOEO:Generationofspectrallypuresig-nalsat1to100GHzisrequiredincommunications,radar,andnavigation.Theadventofhighthroughputopticalcommunica-tionlinkspointstotheprospectsfornetworksoperatingatdataratesashighas160Gb/sandconsistingofmultiplesofchannelsseparatedbyafewGHz.Schemesforrealizingthistypeofcapa-bilityrelyonsourcescapableofprovidinghighfrequency,lowphasenoisesignals,withoutwhicherror-freehighdataratesys-temswouldnotbepossible.Similarly,highperformanceradarsystemsrequirelowphasenoiseoscillatorstoallowdetectionoffeeblesignalsfromadensebackgroundclutter.

Theoptoelectronicoscillator(OEO)isadevicethatproducesspectrallypuresignalsatmanytensofgigaltertgbasedonpho-tonictechniques,andthusovercomessomeoftheinherentlim-itationsoftheconventionalelectronicdevices[62],[64]–[69].TheOEOisagenericarchitectureconsistingofalaserasthesourceoflightenergy.Thelaserradiationpropagatesthroughamodulatorandanopticalenergystorageelement,suchasanoptical ber,beforeitisconvertedtotheelectricalenergywithafastphotodiode.TheRFelectricalsignalattheoutputofthephotodiodeisampli edand ltered,andthenfedbackintothemodulator,closingtheloop.Ifthetotalgainexceedslinearlosesoftheloop,thesystemoscillatesatthefrequencydeterminedbythe lter.TheuseofopticalstorageelementsallowsfortherealizationofextremelyhighQsandthusspectrallypuresignalsinopti-caloscillators,sincethenoiseperformanceofanoscillatorisdeterminedbytheenergystoragetime,orqualityfactorQ.Inparticular,along berdelayleadstorealizationofmicrosec-ondstoragetimes,correspondingtoQsofaboutamillionata10GHzoscillationfrequency.Thisisahighvaluecomparedtoconventionaldielectricmicrowavecavitiesusedinoscilla-tors[70],[71].The berdelaylinealsoprovidesforwidebandfrequencyoperationunhinderedbytheusualdegradationoftheoscillatorQwithincreasingfrequency.Thus,spectrallypuresignalsatfrequenciesashighas43GHz,limitedonlybythemodulatoranddetectorbandwidth,havebeendemonstrated.InagenericOEO[62],thelong berdelaylinesupportsmanymicrowavemodesimposedonanopticalwave.Anarrowbandelectrical ltershouldbeinsertedintotheelectronicseg-mentoftheOEOfeedbacklooptoachieveastablesinglemodeoperation.Thecenterfrequencyofthis lterdeterminestheop-erationalfrequencyoftheOEO.Whilethisapproachyieldsthedesiredspectrallypurehighfrequencysignals,thephysicalsizeoftheOEOisratherbulkybecauseofthekilometersof berdelayneeded.Moreover,thelong berdelayisverysensitivetothesurroundingenvironmentsotheOEOdoesnotproduceanoutputwithhighlongtermfrequencyaccuracyandstability.TheOEOistypicallyphaselockedtoastablereferenceforlongtermstability.

ThepropertiesoftheOEOwithahigh-QWGRinplaceoftheelectronic lter,aswellasthe berdelay,wasstudiedin[72].Itwasshownthatthemethodallowsonetochoosevirtuallyanarbitraryfrequencyofoscillationbytuningtheresonator.

2)WGMFiltersfortheLaserStabilization:InadditiontothestabilizationoftheOEO,WGRscanbeusedforlaserstabi-lization.Opticalfeedbackfromahigh-Qmicrosphereresonatorwasusedtonarrowthespectrumofaminiaturehigh-coherentdiodelaser,andanearlyhalf-pitchgradient-indexlensservedasacouplingelement[73].Aswasestimatedfromthevariationinfrequency-tuningrange(chirp-reductionfactor),thefastlinewidthofthelaserwasreducedbymorethanthreeordersofmagnitude.

Amodi cationofexternalopticalfeedbackthatincludesaWGRwasusedtonarrowthelineofadiodelaser[74].AWGMofahigh-Qmicrospherewasexcitedbymeansoffrustratedtotalinternalre ection,whilethefeedbackforopticallockingofthelaserwasprovidedbyintracavityRayleighbackscattering.Abeatnoteofthetwolaserdiodesopticallylockedtoapairoforthogonallypolarizedmodesofthesamemicroresonatorhadtheindicated 6aspectralwidthof20kHz,andthestabilityof2×10overaveragingtimesof10s.AtheoreticalmodelforthelaserstabilizationwithaWGRwaspresentedin[75].

Finally,insteadoflockingalasertoaWGM,theoppositewasrealizedin[76].AWGMofafused-silicamicrospherewaslockedtoafrequency-scanninglaser.Theresonancefrequencywasmodulatedbyaxialcompressionofthemicrosphere,andphase-sensitivedetectionofthe ber-coupledopticalthroughputwasusedforlocking.SuchasystemisparticularlyusefulinWGR-basedchemicalsensors,whichthefollowingsectionisdevotedto.

WGM谐振腔综述

ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS19

E.SpectroscopyandAnalysisofChemicalandBiologicalAgents

StartingfromliquidWGRsusedforresonator-enhancedspec-troscopy(see[77]forreview),solidstateWGRswereutilizetoenhancetheinteractionbetweenlightandatoms/molecules.Oneofthe rstexperimentsonthesubjectwasrealizedintheframeofcavity-QED[78].Theradiativecouplingoffreeatomstotheexternalevanescent eldofaWGMwasdetected.Thecouplingmanifesteditselfasanarrowabsorptionlineobservedintheres-onatortransmissionspectrum.Itwasproventhattheevanescent eldofthehigh-Q(5×107)andsmallmodevolume(10 8cm3)fusedsilicamicrosphereenablesvelocity-selectivein-teractionsbetweenasinglephotonintheWGMandasingleatominthesurroundingatomicvapor.Anultrasensitivespec-trometerbasedonastretchedsilicamicrospherewasproposedin[50],[79].

ThenextstageinthesensordevelopmentwasrelatedtoWGR-basedbiosensors[80]–[82].Opticalbiosensorsaretypi-callytransducersthatdetectthepresenceofmoleculesatasur-face.Theyhaveseveraldesirablefeatures,particularlyforthedetectionofbiologicalmolecules,thatinclude:1)highsensi-tivity(lessthannanomoles);2)non-destructivitytothesample;3)highselectivity;and4)applicabilitytovarioussubstances.Thetransductionprocessesinopticalbiosensorsgenerallytakeplaceonasurfaceandcanbetailoredtosensealmostanykindofmolecule,chemicalandprebiotic,aswellasbiological.WGRsensorsbelongtotheevanescentwavesensors,whichareamongthemostsensitiveclassofbiosensors[83],[84].Anevanescentwaveproducedbythetotalre ectionoflightwithinthewaveguideinteractswithanalytesonthewaveguidesurfaceintheevanescent eldsensors.Theevanescentwaveprotrudesabovethewaveguidesurfaceby~100nm(theactualdistancedependsontherelativeindexofrefractionofthewaveguideandthesamplemedium),andsamplesonlytheanalyteonthesur-face.Surfacetreatmentssuchasantibodiesoroligonucleotidestrandscanprovidespeci cityfortheanalyte;thesensorthendetectsonlythoseboundtothesurface.Transductionmech-anismsforboundanalyteinclude uorescence,masschangeintheevanescentregion[85],andchangeintheindexofre-fraction[86].Typicalsensitivityofevanescentwavebiosensorsbasedon beropticsensorsorplanarwaveguidesensorsisintherangeofnano-molestopico-moles.

ThebasicdetectionschemethatutilizesWGRsisthatbindingofmoleculestothemicroresonatorsurfaceinducesanopticalchangeproportionaltothequantityofboundmolecules.TheparadigmforthisprocessisachangeinthecavityQasthesurfaceboundmoleculesaffectthephotonstoragetime,eitherthroughincreasedscatteringorabsorption.Ineffect,theanalytespoilstheQ,andtheresultingchangecanbemeasured.

AnyproteinwilladheretoglasssurfaceofagenericWGR,andhence re-polishedspheresareentirelynonspeci c.Twoconditionsmustbemetforchemicalmodi cationofthemicro-spheresurface: rst,theglassmustbecoatedwithacompoundthatwillminimizenonspeci cbinding.Second,anantibodyorotherproteinwithsensitivitytoaparticularligandmustbelinkedtothesphereinsuchawaythatboththeprotein’sfunctionality

andthesphere’sQarepreserved.Athin lmofamaterialwiththicknesssmallerthantheWGM’sevanescent eldwillnotsig-ni cantlyaltertheQofthemicro-resonator;thus,athicknessof~10–100nmcanbeappliedtothemicrospherewhileretainingitshigh-Q.

Apossibilityofenhancementofthedetectionsensitivityofevanescent-waveopticalbiosensorswasdiscussedin[87]–[92].ItwasshownthattheresonantcouplingofpowerintotheWGRallowsforef cientuseofthelongphotonlifetimesofthehigh-QWGMstoincreasetheinteractionofthelightandtheparticlesunderthestudy.Thisenhancementresultsinstronger uores-cenceandinchangesoftheresonatorparameters.

Aspectroscopictechniqueforhigh-sensitivity,label-freeDNAquanti cationwasdevelopedin[93].ItwasdemonstratedthataWGMexcitedinamicron-sizedsilicaspherecanbeusedtodetectandmeasurenucleicacids.Thesurfaceofthesilicasphereistobechemicallymodi edwitholigonucleotides.A rst-orderperturbationtheorywasdevelopedforWGMsinadielectricmicrosphere[94],[95].Thetheorywereappliedtothreesensorapplicationsofthemicrospheretoprobethemediuminwhichthesphereisimmersed:arefractive-indexdetector,anadsorptionsensor,andarefractive-indexpro lesensor.

BiosensorsbasedontheshiftofWGMsinmicrospheresac-companyingproteinadsorptionweredescribedbyuseofaper-turbationtheoryin[94].Forrandomspatialadsorption,theorypredictsthattheshiftshouldbeinverselyproportionaltomicro-sphereradiusa,andproportionaltoproteinsurfacedensityandexcesspolarizability.

Hybridzincoxide/silicamicrodisklaserswereutilizedtosensevolatileorganiccompounds,suchastolueneandnitroben-zene[96].Nonspeci cadsorptionoftheseorganicmoleculesontotheWGRsurfacecausesanincreaseinthediskrefractiveindex,ultimatelyresultinginaredshiftoftheobservedlasingwavelengths.

ImprovementofphotonicWGMsensorsusingthefano-resonantlineshapewasproposedin[97].Polystyrenemicror-ingresonatorswerefabricatedbythenanoimprintingtechnique,andtheopticalspectraweremeasuredinglucosesolutionsofdifferentconcentrations.Theshiftinresonantwavelengthandvariationofthenormalizedtransmittedintensitywerelinearlyrelatedtotheconcentrationoftheglucosesolution.

ApplicationofWGRsinhigh eldhighfrequencyelectronmagneticresonancemeasurementswasdiscussedin[98].F.MechanicalSensors

High-QWGMsresultinincreaseinsensitivityofvariousmechanicalexperiments.Forinstance,WGMscouldbeusedforthemeasurementofstraininoptical bers[48].Atwo-resonatorsensorofsmalldisplacementsthatutilizeshigh-QandmechanicaltunabilityofnormalmodesincoupledopticalWGRswasproposedin[99].

Anaccelerometerutilizinghigh-QWGRswaspresentedin[100].Inducedconsoledisplacementsweremonitoredthroughchangesintheresonancecharacteristicsofasphericalopti-calcavitycoupledtothe exure.Instantaneousmeasurement

WGM谐振腔综述

20IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006

sensitivityofbetterthan1mgat250Hzbandwidth,andanoise oorof100µg,wereachieved.

Theideaofusageofpassiveandactiveopticalringinter-ferometersfordetectionofrotationwasdevelopedandim-plementedacoupleofdecadesago[101]–[103].AminiatureintegratedWGMopticalsensorforgyroscopesystemswasre-centlyproposed[104].Itwaspredictedthatthesensormaypossesshighenoughsensitivityevenonamillimetersizescale.ApassiveWGMgyroscopewasdiscussedin[105].ThebasicdifferenceofthegyroscopecomparedwiththeexistingringresonatorgyroscopesisintheusageofcrystallineWGRin-steadoftheusualringresonator.TheWGR-basedgyroscopeisexpectedtohavemuchlessbackscatteringandpolariza-tionrotationnoisescomparedwithconventional ber-basedgyroscopes.

G.FundamentalPhysicsWithPassiveWGMs

WGRsofferinterestingpossibilitiesfrombothclassicalaswellasquantumpointsofview.HighQ-factorsaswellassmallmodevolumesofWGMsresultinamultitudeofinterestingandimportantphenomena.Inthissection,wediscussthosephenomenarelatedto“passive”WGMs,whichdonotleadtogenerationoflight,leavingfundamentalpropertiesofWGMlasersandotheractivedevicestoasubsequentsection.

1)Chaos:OneofthefundamentalproblemsisrelatedtoWGMsinanasymmetricWGR.Itwasshownthatdeparturefromanaxialsymmetryresultsintheoccurrenceofchaoticbe-havioroflightintheresonator.Thishasbeenpredictedtogiverisetoauniversal,frequency-independentbroadeningoftheWGRs,andtohighlyanisotropicemission[106]–[110].Aso-lutionoftheproblemwhichcon rmsthesepredictions,butalsorevealsfrequency-dependenteffectscharacteristicofquantumchaos,waspresentedin[111].ItwasshownthatforsmallWGRdeformations,thelifetimeiscontrolledbyevanescentleakage,theopticalanalogofquantumtunneling[112].Theproblemofthedirectionalemissionfromegg-shapedasymmetricresonantcavitieswasdiscussedintheoreticaltermsin[115].

Thelifetimeoflightcon nedinaWGRcanbesigni -cantlyshortenedbyaprocessknownas“chaos-assistedtun-neling”[113].Surprisingly,evenforlargedeformations,someresonanceswerefoundtohavelongerlifetimesthanpredictedbytheraychaosmodelduetothephenomenonof“dynamicallocalization”[114].

Modesofpartially-stableWGRswerediscussedin[116]us-ingatheory,whereinexponentiallysuppressedtunnelingin-teractionbetweenregularandchaoticmodeswasconsideredasaperturbation.Itwasshownthatchaos-assistedtunnelingcanleadtosplittingofregularWGMsinasymmetricopticalresonances.Atheoryofin uenceofthechaos-assistedtunnel-ingonlifetimesandemissionpatternsoftheopticalmodesingenericmicroresonatorswasdevelopedin[117]usingapproachpresentedin[118].

The rstexperimentonchaos-assistedtunnelinginatwo-dimensionalannularbilliardwasreportedin[119].Highlydi-rectionalemissionfromWGMswasdemonstratedindeformednonaxisymmetricfused-silica“microspheres”[120].2)“PhotonicAtoms”:Anotherfundamentalareaofappli-cationofWGRsisbasedontheabilityoftheresonatorstomimicatomicproperties.ItwasshownthatWGMscanbethoughtofasclassicalanalogyofatomicorbitals[121].ItwaspointedoutthatWGMmodenumberscorrespondtoangular,radial,andtheazimuthalquantumnumbers,respectively,thesameasintheatomicphysics.Suchanapproachresultedinintro-ducingtheterm“photonicatoms”withrespecttoWGMres-onators[122],[123].“Photonicmolecules,”basedoncoupledWGRs,wasstudiedin[124],[125].

3)CavityQED:Thereisgreatactivityinboththeoreticalandexperimentalinvestigationsofcavityquantumelectrody-namics[126]–[130]effectsinWGRs.Forinstance,spontaneousemissionprocessesmaybeeitherenhancedorinhibitedinacav-ityduetoamodi cationofthedensityofelectromagneticstatescomparedwiththedensityinafreespace[131],[132].Thiseffectwasstudiedtheoretically[133]–[135]aswellasexperi-mentally[136],[137]inWGRs.

Methodsforcontrolofatomicquantumstateinatomscou-pledtosingle-modeandmultimodecavitiesandmicrosphereswerediscussedin[138].Thosemethodsincludeexcitation,de-caycontrol,location-dependentcontrolofinterferenceofdecaychannels,anddecoherencecontrolby“conditionallyinterferingparallelevolutions.”

Propertiesofatomicinteractionwiththe eldofahigh-Qcavitywasstudiedin[139]using“pseudomode”theory.ItwasshownthatthetheorycanbederivedbyapplyingtheFanodiag-onalizationmethodtoasysteminwhichtheatomictransitionsarecoupledtoadiscretesetofcavity“quasimodes.”Thecavitymodesdecayintoacontinuumsetofexternal“quasimodes.”Itwasshownthateach“pseudomode”canbeidenti edwithadis-crete“quasimode,”whichcontainsstructuretotheactualreser-voir.

PonderomotiveinteractionofanatomandaWGMwasdis-cussedin[143],[140],[141],seealso[142],[144],forreview.Inparticular,itwasshownthattheexternal eldsofopticalWGMsmaybeusedtocon neatomsinstableorbitsaroundadielectricmicrosphere[143].Theboundstatestructureanddynamicsfortheatomtrapwereinvestigatedin[140].Thedynamicsofthecenter-of-massofanultracoldexcitedatomicoscillatorinthevicinityofadielectricmicrospherewasstudiedin[141].

Theponderomotiveinteractionofanatomandphotonscon nedinaWGM,canbeusedforquantumnondemolitionmeasurements.Itwasshown[145]–[147]thatthedipoleforceexperiencedbyanatominanoff-resonantspatiallyinhomo-geneouslight eldisquantizedbythediscretenatureofthephoton.Similarschemestoperformquantumnondemolitiondetectionofopticalphotonsbyobservingthede ectionofabeamofatoms yingclosetoanopendielectricresonatorwereproposedinthestudies.

Theponderomotiveinteractionofanelectron,insteadofanatom,andphotonsinaWGM,wasproposedforaquantumnon-demolitionmeasurementofphotonnumber(thephotonnumberisde nedastheenergystoredinthemodedividedby¯hω0,whereω0isthefrequencyofthemode).Thetechniqueisbasedontheeffectofquadraticscatteringofelectronstravelingalongtheresonatorwithavelocityclosetothephasevelocityofthe

WGM谐振腔综述

ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS21

waveintheresonator[148].Themeasurementideareliesonthefactthatanelectrontravelingalongabaredielectricwaveguide(orsurfaceofaWGR),atavelocitynearthephasevelocity,ac-quiresatransversemomentumproportionaltothephotonenergyofthelightinthewaveguide.Itwasnotedthatthismomentumcanbemeasured[149].Thescatteringeffectwasanalyzedwithconsiderationforthewaveguide(andWGM)dispersion,radia-tionfriction,andthespuriousCherenkovradiation.

Aradiativecouplingofananoparticle/atomwithaWGMwasstudiedin[78],[150];seealso[130],[152]forareview.Thepossibilityofstrongcouplingbetweenaphotoncon nedinaWGMandanatomwasanalyzedin[153]–[155].TheresonantinteractionofanatomwithdipolarJ=0 J=1angular-momentumtransitionwiththequantized eldindielec-tricspheresandspheroidswasstudiedin[153].ThepossibilityoftheapplicationofamicrodiskWGRforthedetectionofasingletrappedatomwasstudiedin[156].

Ameasurementsofcavity-QEDeffectsfortheradiativecou-plingofatomsinadilutevaportotheexternalevanescent eldofaWGMwasreportedin[78].ExperimentsonthecouplingofasinglenanoemitterandWGMswerediscussedin[150],[151].AcompositesystemconsistingofaGaAsquantumwellstruc-tureplacedintheevanescent eldofafusedsilicamicrosphere,andevanescentcouplingbetweenexcitonsinthequantumwellandWGMsofthecompositesystem,wasdemonstratedin[157].AcompositesystemconsistingofCdSeZnSnanocrystalsandafused-silicamicrospherewasdemonstratedin[158].TheQ-factorsofthesystemwereoftheorderof108,providingamodelforinvestigatingcavityQEDandmicrolasersatthelevelofsinglequantumdots.

Opticalpropertiesofcon nedphotonstatesinanextremelysmallsphericalWGRswithsizesof2λ<R<10λ(dubbed“photonicdots”)resonantlyexcitedbyphotonsemittedfromsemiconductornanocrystals(thequantumdots)werestudiedin[159],[160]withparticularfocusonQEDpropertiesofWGRscontainingCdSequantumdotsandquantumrods.BothglassandpolymerWGRswerecharacterizedbyspatiallyandtemporallyresolvedmicrophotoluminescence.

III.WGRSWITHACTIVEMODES

SmallvolumesandhighQ-factorsofWGMsresultinen-hancementofnonlinearopticalprocesses.Duetothisenhance-ment,WGRbasednonlinearopticdevicespossessuniquechar-acteristics.Forexample,usageofWGMsallowstherealizationoflasersandwave-mixingdeviceswithmicroWattthresholds.NarrowlinewidthofWGMsresultinnarrowspectralcharacter-isticsofthelasers.Inthissection,wereviewresultsofrecentstudiesinthe eld.

A.Continuous-Wave(CW)WGMLasers

MiniaturelasersareamongthemostobviousapplicationsofWGRs.Thehighqualityfactoroftheresonatorsleadstothereducedthresholdofthelasing.The rstWGMlaserswerereal-izedinsolidmaterials[161]–[163].However,probablybecauseofthelackofinput-outputtechniquesforWGMs,theworkwasdiscontinuedatthatpoint.ThenextdevelopmentoftheWGM-basedlaserswasinliquidaerosolsandindividualliquiddroplets[164]–[169].Finally,duringthelastdecade,thelasersbasedonsolesolidstateWGRswererediscovered,demon-stratedexperimentally,andintensivelystudied.Inthissection,wereviewrecentresultswithWGRCWlasers,leavingWGRRamanlasersforSectionIII-B.

1)LasinginCapillaries:TheWGRlasercanberealizedinacylindricalresonator.Thesimplestresonatorofthiskindisacap-illary.Thegainmediumcouldresideinsidethecapillary,whereWGMsarelocalized.Forinstance,laseremissionfromWGMsinahighlyrefractivedye-dopedsolvent owinginanormallyilluminatedsilicacapillary berwasdemonstratedin[170].ThecylindricalWGMlaserdiffersfromthesphericaldropletlaser[164]inthatithasaninternalrefractiveindexdiscontinu-ity.Thelightpenetratesintotheactivemediumiftherefractiveindexofthemediumishigherthantheoneofthecapillarymaterials;e.g.,nolaserpeaksareobservedwhentherefractiveindexofthesolventislessthanthatofsilica[170].AnexampleofmicroringlasingusingCdSenanocrystalquantumdotsincor-poratedintomicrocapillarytubeswasdemonstratedin[171].Thelasinginacapillarybasedontheevanescent eldcou-plingwiththegainmediumisalsopossible.Thelayeredmicro-cavitywasrealizedin[172],[173]by owingdye-dopedethanolthroughathinwallfusedsilicacapillarytubewhoserefractiveindexwaslargerthanthatoftheliquid.Thelasingspectrumshowedastrongmodeselection,andnearlyevensinglecon-structiveinterferencepeaks,duetotheinterferentialcouplingofWGMsattheinnerboundary.Variousmodeorders,whicharenotallowedintherayopticspicture,weremadetooscillateduetotheevanescentpropagationofWGMsattheouterboundary.Theestimatedcavityqualityfactorswerehigherthan106.Thelasingcharacteristicsofresonancemodesinathindye-dopeddielectricringcavitymadeontheinnerwallofacylindricalcapillarywerealsostudiedin[174].

AWGMlaserwithpulsedopticalpumpingfabricatedbysurroundingasmallsectionofaglasscapillarywithasolutionofRhodamine6G,andbycouplingthepumplightintothecapillarywall,wasdemonstratedin[175].Thelasingthresholdpumpenergywas100nJ/pulseatapumppulsedurationof6ns.2)LasinginDopedWGRs:AnotherwaytocreateaWGRlaseristheuseofsolidsdopedwithactiveelements;e.g.,rareearthionsasaWGRhostmaterial.

AWGMlaserbasedonneodymium-dopedsilicamicro-sphereswitha200nWthresholdwasrealized[176]withmicrospheresofradiusa~25–50µm,formedbyheat-fusingthetipofalengthofdopedsilica ber.Neodymiumionsprovideafavorablefour-levellasersystemthatcanbepumpedonthe4I9/2 4F5/2transitionat~810nmwithadiodelaser.Thelasertransition4F3/2 4I11/2inthe1.06–1.09µmrangeconnectsalonglivedupperleveltoalowerlevelthatisdepletedbystrongphononrelaxationsothatpopulationinversioniseasilyachieved.Similarexperimentswithaneodymium-dopedsilicamicrospherelaseroperatingat2Kandabsorbing200nWpumppowerwerereportedin[177].CWlaseroscillationonboththe4F3/2→4I11/2and4F3/2→4I13/2transitionsofNd3+ionsin uorideglassWGRswasalsoachieved[178].FabricationofNd-dopedtelluriteglassWGRsandobservations

WGM谐振腔综述

22IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006

oflaseroscillationcorrespondingtotheopticaltransition4

F3/2→4I11/2at1.06µmwasreportedin[179].

AWGMlaserutilizingamicrospheremadeofhighlydopederbium:ytterbiumphosphateglasswasusedtogeneratelightat1.5µm[180].Laserthresholdpumppowerof60µWand ber-coupledoutputpowerashighas3µWwithsingle-modeoperationwereobtained.Abispherelasersystemconsistingoftwomicrospheresattachedtoasingle bertaperwasalsodemonstrated.

AnEr3+-dopedtelluriteglassL-bandWGRlaserwasdemon-stratedanddiscussedin[181].Themicrospheresweremadebya“spinmethod.”Fibertaperswereutilizedtocouple975nmpumpintothesphereandcouplegeneratedlight(1.56–1.61µm)outofthesphere.Theerbiumionconcentrationofthetelluriteglasswas1.7×1020ions/cm3.

Agreenroomtemperatureup-conversionlaserwasdemon-stratedina120µmdiametermicrosphereofEr3+dopedZBLAN[182],[183].Lasingoccurredaround540nmwitha801nmdiodelaserpump.Thelasingthresholdwas30µWofabsorbedpumppower.

Experimentalresultsontherealizationandspectralcharac-terizationofEr:ZBLANmicrosphericallasersat1.56µmwerepresentedin[184],[185].Thelasingwasobtainedwiththeexternal1.48µmpumping.Multimodeoperationandalaserthresholdaslowas600µWwereobserved.

Greenlasinghaving4mWthresholdwasdemonstratedinanerbium-ion-doped uoro-zirconateglassWGR[186].Peri-odicnarrowpeaksoftheemissionspectracorrespondingtotheWGRswereobserved.

Anerbium-dopedmicrolaseronsilicon,operatingatwave-lengthof1.5µmandcharacterizedwithpumpthresholdaslowas4.5µW,wasdemonstratedin[187].The40-µmdi-ametertoroidallaserWGRwasmadeusingacombinationoferbiumionimplantation,photolithography,wetanddryetch-ing,andlaserannealing,usingathermallygrownSiO2 lmonaSisubstrateasastartingmaterial.Singlemodelasingwasobserved.

Anothererbium-dopedhigh-QsilicatoroidalWGRmicro-laser(25–80µmindiameter)wasdemonstratedin[188].TheWGRwascoupledwithataperedoptical ber.Erbiumioncon-centrationswereintherange0.009–0.09at.%.Thresholdpumppowerwasaslowas4.5µW.

ATm3+-dopedtelluriteglassWGRlaserwasdiscussedin[189].Thelaser,pumpedat800nmwithataperedopti-cal ber,oscillatesinboththeSbandandthe1.9-µmband.Thepeakat1.5µm(S-band)correspondstoemissionofthe3

H4→3F4transition,whilethepeakat1.9µmcorrespondstothe3F4→3H6transition.

Numericalanalysisofamicrodisklaser,takingintoaccountfullgainsaturationeffectandthevectorcharacterofthe eld,waspresentedin[190].TheauthorssuggestedthatNd:YAGmicrodisklasersaretheexcellentcandidatesforalightsourceforoptical bercommunicationsoperatingat1.064and1.3µm.Atheoreticalstudyofthein uenceofdeformationofaWGRonlasingpropertieswasreportedin[191].

3)LasinginCoatedWGRs:Insteadofusingdopedmateri-als,apassiveWGRcanbecoatedwithgainmedium.Forex-ample,erbium-dopedsolgel lmswereappliedtothesurfaceofsilicamicrospherestocreatelow-thresholdWGRlasers[192].Lasingactioninanultra-high-QsphericalWGRcoatedwithgainmediumwasreportedin[193].

LasinginasquarecavitywithroundcornerscoatedwithpolymethylmethacrylateandwithRhodamine6Gmolecules,wasstudiedin[194].Athingainlayerwascoatedonlyontheouterboundaryofcavity.Thethicknessofthegainlayervariedfromonemicrometertoseveralmicrometers.

Ultravioletmicrodisklasersonsiliconsubstratewithalayerofzincoxidegainmediumgrownontopofthesilicamicrodisksweredemonstratedin[195].LasingoccursintheWGRsatroomtemperature.ThehybridZnO–SiO2WGRwasopticallypumpedbythethirdharmonics(355nm)ofamode-lockedNd:YAGlaserwith~10Hzrepetitionrateand20pspulsewidth.Amicroscopeobjectivelensisusedforfocusingpumplightontheresonatoraswellasforcollectingtheultravioletemissionat~390nm.AWGM-enhancedinelasticemissionfromamonolayerofA488 uorophoresonthesurfaceofa9.8µmWGR(polystyrenebeadtrappedinanopticaltrap)wasobservedandreported[196].ItwaspointedoutthatitwaslikelythattheWGM-enhancedemissionisduetoA488lasing,withalasingthresholdbetween0.29and0.87W·cm 2.

4)WGMLasersWithSemiconductorGainMedia:WGM-basedlaserscanbecreatedwithsemiconductorquantumdotscoupledtotheWGMs.Oneofthemostimportantproblemshereisfabricationofasinglequantumdotmicrolaser.SuchamicrolasermadebycapturingthelightemittedfromasingleInAs–GaAsquantumdotintheWGMofaglassmicrospherewasproposedtheoreticallyin[197].Amasterequationmodelofasinglequantumdotmicrospherelaserwasdescribedin[198].Theoperationofasinglequantum-dot-microspherelaserandasemiconductormicrospherebistableelementwastheoreticallystudiedin[199].

Aquantumdot-microcavitysystemconsistingofCdTenanocrystalsattachedtoamelamineformaldehydelatexmi-crospherewasrealizedexperimentally[200].Thehighopticaltransparency,andthermalandmechanicalstabilityofmelamineformaldehyde,makeitinterestingasapotentialcandidateinop-ticalapplications.Therefractiveindexofmelamineformalde-hydeinthevisibleregion(n=1.68)isgreaterthanthatofsilica(n=1.47)orotherglassmaterials(n≈1.5).Photolumines-cencespectraofthemicrospherescoveredbyathinshellofCdTenanocrystalswerestudiedinordertoexaminetheemis-sionintensityasafunctionofexcitationpower.

Ultralow-threshold(thepumpwaslessthan2µW)CWlasingwasachievedatroomtemperatureinafused-silicamicrospherethatwascoatedwithHgTequantumdots(colloidalnanoparticles)[201].

WGRscansigni cantlyimproveoperationofsemiconductorquantumwelllasers.Amicrolaserdesignbasedonthehigh-re ectivityWGMsaroundtheedgeofathinsemiconductormicrodiskwasdescribed,andinitialexperimentalresultswerepresentedin[202].ItwasshownthatopticallypumpedInGaAsquantumwellsprovidesuf cientgainwhencooledwithliq-uidnitrogentoobtainsingle-modelasingat1.3and1.5µmwavelengthswiththresholdpumppowersbelow100µW.

WGM谐振腔综述

ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS23

ArealizationofanInGaAs–InGaAsProomtemperaturequantumwelldisklaser1.6µmindiameterand0.18µminthickness,operatingat1.542µmandusing0.85µmopticalpumping,wasreportedin[204].Methodsfordirectionalcou-plingoflightoutputfromandtoWGRmicrodisklasersweredescribedin[203].

Anopticallypumped,pulsedGaNmicrodisklaseroperatingatroomtemperaturewascreated[205].WGMsofthediskhadlinewidthasnarrowas0.1nm.WGRswithdiameterscoveringtherange25750µmweretested.Opticalpumpingwasperformedperpendiculartothediskplanebythethirdharmonic(355nm)orthefourthharmonic(266nm)ofaQ-switchedNd:YAGlaser.Theoutputlightemissionfromthesestructureswascollectedbyare ectingobjectivelocated80 fromthesurfacenormal,Quantum-cascadeWGMdisklasersemittingat9.5-and11.5-µmwavelengthswerereportedin[206].Takingadvantageofthehigh-qualityresonator(Q~200),thethresholdcurrentdensityofdisklasersemittingat9.5µmwasreducedtobelowthevalueofthecorrespondingridgewaveguidegeometry.

A“microgear”lasercomposedofamicrodiskandarota-tionallysymmetricBragggratingwasdescribedin[207].AGaInAsP-InPdevicewithmicronsizewasfabricated,andtheroomtemperatureCWoperationwasobtainedby17-µWpump-ing.

AnopticallypumpedmicrodiscGaN-basedlaserwasdemon-stratedin[208].TheopticallypumpedWGRshaddistinctmodesatexcitationpowersrangingfromabout8to16W·cm 2.Qualityfactorsforthemicrodiskswereoftheorderof4600.Theobservedlasingthresholdwas12.1W·cm 2.B.ResonatorModi edScattering

Thereareatleastthreescatteringprocessesplayingsigni -cantrolesinWGRs.TheyareBrillouin,Rayleigh,andRamanscattering.

1)BrillouinScattering:StimulatedBrillouinScattering(SBS)wasdemonstratedinliquiddroplets[209]–[218],thoughnoSBSinhigh-QsolidWGRswasregisteredbecauseofselec-tionrules[215].

2)RayleighScattering:Rayleighscatteringleadstothelim-itationoftheQ-factorofWGMsaswellastotheinter-modecoupling.Thescatteringislargelysuppressedinhigh-QWGRsbecauseofrestrictionsimposedonscatteringanglesbycavitycon nement,soveryhigh-QWGMsarefeasible[219].Thescattering,ontheotherhand,couplesinitiallydegeneratecoun-terpropagatingmodesintheWGRsandcreatestheintracavityfeedbackmechanisminstrumentalforthelaserfrequencylock-ingapplication[74].Rayleighscatteringmediatedintracavitybackscatteringreaches100%,aswasshowntheoretically[219]anddemonstratedexperimentally[220].Inthefrequencydo-main,intracavitybackscatteringisobservedasthesplittingofinitiallydegenerateWGMresonancesandtheoccurrenceofcharacteristicmodedoublets[221],[222].In uenceofRayleighscatteringonQ-factorsofhighrefractiveindexcontrastWGRsfabricatedfromsilicon-on-insulatorwaferswasstudiedusinganexternalsilica bertaperwaveguide[223],[224].

3)RamanScattering:Substantialopticalpowerenhance-mentwithinahigh- nesseopticalcavityhasrecentlyyieldedCWRamanlaserswithlowthresholdandlargetunability(see,e.g.,[225],[226]).Suchpropertiesmakecavity-enhancedCWRamanlasersattractiveforhighresolutionspectroscopy,remotesensing,atomicphysics,andtelecommunications.Reducingthecavitysizemayfurtherimprovetheperformanceofthelasers.Opendielectricsphericalmicrocavitiesarepromisingforthosepurposes.

AnenhancementofstimulatedRamanscattering(SRS)isoneoftheeffectsdemonstratedinsphericalmicrocavities.LowthresholdSRSwasobservedwithpulsed[213],[227]–[233]andCW[234],[235]opticalpumpinginmicrometer-sizeliquiddroplets.Theoreticaldescriptionoftheprocesswaspresentedin[236]–[239].

SRSwasinvestigatedinaliquidparahydrogendropletchar-acterizedwithWGMhavingQ-factorexceeding109[240].TheSRSwasregisterednotonlyforvibrationaltransitionbutalsoforrotationaltransitionasinthegas-phaseH2system,leadingtomultiorderSRSsidebandscoveringthewholevisiblespectralrange.

SRSinultrahigh-Qsurfacetension-inducedsphericalandchip-basedtoroidmicrocavitiesisconsideredboththeoreti-callyandexperimentallyin[241].ThesefusedsilicaWGRsexhibitsmallmodevolume(typically103µm3)andpossesswhispering-gallerytypemodeswithlongphotonstoragetimes(intherangeof100ns),signi cantlyreducingthethresholdforstimulatednonlinearopticalphenomena.

ThestudiesofRamangaininisolatedhigh-QWGRsareimportanttounderstandcavityQEDpropertiesofRamanlasing.Previously,microcavityQEDenhancementofRamangainhasbeeninferredastheresultofmeasurementsofadependenceoftheSRSthresholdonthesizeandmaterialofthemicrodroplets,anditscomparisonwiththevaluesofSRSthresholdreportedforliquidcore bershavingequivalentinteractionlengthandcorecomposition[234],[235].Thisenhancementhasbeenlinkedtothecavitymodi cationofthepropertiesofausuallaser.AtheoryoftheRamangainmodi cationthatexplainstheexperimentalresultswasdeveloped[242],[243].Recentexperimentswithsilicamicrosphereshavenotshownanysigni cantchangeinSRSgainwhichmightbeattributedtoquantumeffects[241],[244].Thisissuewasaddressedin[245],whereitwasshownthatnocavityQED-associatedRamangainenhancementexists,unlikethecavityenhancementofthespontaneousemission.C.SwitchesandModulators

1)WGMSwitches:WGRscanbeusedasef cientandcompactopticalswitchesandmodulators.NonlinearopticalswitchesbasedonWGMsareprimarilyconsideredinrelationwiththeirapplicationstoall-opticalcomputing.ApossibilityofsuchswitchingandapplicationsofWGRtocreateaquantummechanicalcomputerwas rstrecognizedin[246].

ThemajorityofstudiesofopticalswitchesthatutilizeWGMsaretheoretical.ItwasshowntheoreticallythatWGRmicrodisklasersarestableandswitchreliably[247],andhencearesuitableasswitchingelementsinall-opticalnetworks.

WGM谐振腔综述

24IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006

Anintegratedall-opticalswitchbasedonahigh-Qnonlin-earcylindricalmicrocavityresonatorwasproposed[248].TheswitchconsistsoftwoplanarwaveguidescoupledtoaWGR.Itwasarguedthatduetothehigh-Qfactorandthesmalldi-mensions,fastswitchingatlowpowerisfeasibleforthedevicesbasedonpresentlyavailablenonlinearpolymersastheactivematerial.

Ageneralelectrodynamicaltheoryofahigh-Qopticalmicro-sphereresonatorinanexternalalternatingmagnetic eldwasreportedin[249].ItwasshownthatthatsuchasystemcanchangeapolarizationstateoftheWGMphotonscon nedinthesphereduetotheFaradayeffect.Thispropertywasproposedforuseinall-opticalswitchesandlogicaldevices.

Numericalevaluationofanopticalresponseofaprism-couplednonlinearmicrospherewasdiscussedin[250].Thenumericalresultshaveshownthatthecontroland/orthesig-nallightscaninducetheopticalswitching-likevariationinthelightre ectance.ThiseffectwasinterpretedbythevariationinthedielectricconstantofthesphereduetoitsKerrnonlinearity.CoupledWGRspossessdifferentandfrequentlymoread-vancedpropertiescomparedtoasingleWGR.Sequencesofop-ticalmicroresonatorscanbeusedtoconstructintegratedstruc-turesthatdisplayslowgroupvelocityoflight,ultrahighorlowdispersionofcontrollablesign,enhancedself-phasemodulation,andnonlinearopticalswitching[251].

Itwaspointedoutthatthereshouldbeareductioninswitchingthresholdfornonlinearopticaldevicesincorporating berringresonators[252],[253].ThecirculatingpowerinsuchWGRsismuchlargerthantheincidentpower,andthephaseofthetransmittedlightvariesrapidlywiththesingle-passphaseshift.Itwasshownthatthecombinedactionoftheseeffectsleadstoa nesse-squaredreductionintheswitchingthreshold[252],allowingforphotonicswitchingdevicesthatoperateatmilli-wattpowerlevelsinordinaryoptical bers.AsetofcoupleddifferentialequationsthatdescribeKerrnonlinearopticalpulsepropagationandopticalswitchinginsystemscoupledbyafewmicroresonatorswasderivedin[254].Gap-solitonswitchinginasystemcomposedoftwochannelwaveguidescoupledbymicroresonatorswasstudiedin[255].

Anumericaldemonstrationofthefeasibilityofconstructinganall-optical“AND”gatebyusingamicroresonatorstructurewithKerrnonlinearitywaspresentedin[256].Itwasshownthatthegatecanbemuchsmallerthansimilar“AND”gatesbasedonBragggratings,andhaslowerpowerrequirements.

Thereareafewexperimentalstudiesofall-opticalswitchesthatutilizeWGMs.Forinstance,laser-inducedmodi cationofcavityQ’swasachievedinamicrodropletcontainingasat-urableabsorber[257].Theelastic-scatteringspectrafromsuchdropletsforhigherincidentintensitiesshowthatcavityQ’sareincreasedwhentheabsorptionisbleached.Thelasingspectrafromadropletcontainingasaturableabsorberandlaserdyeweremodi edwhenanintensebleaching eldwasinjectedintothedropletcavityafterthepump eldhadinitiatedthelasing.All-opticalnonlinearswitchingincompactGaAs–AlGaAsmicroringresonatorsatthe1.55-µmwavelengthwasdemon-stratedin[258].Switchingwasaccomplishedinthepump–probecon gurationinwhichthepump–probesignalswere

tunedtodifferentresonancewavelengthsofthemicroring.Re-fractiveindexchangeinthemicroringduetofreecarriersgen-eratedbytwophotonabsorptionwasusedtoswitchtheprobebeaminandoutofresonance.

Anall-opticalswitchingtechniqueutilizingasilicamicro-sphereopticalresonatorcoatedbyaconjugatedpolymerwasdevelopedin[51].A250-µm-diametersilicamicrospherewascoatedbydippingintoatoluenesolutionofthepolymer.WGMresonantfrequencyshiftsaslargeas3.2GHzwereobservedwhen405nmpumplightwithapowerdensityontheorderof10W/cm2wasincidentonthemicrosphere.Thetimeconstantoftheobservedfrequencyshiftswasapproximately0.165s,lead-ingustoattributethefrequencyshifttothermo-opticeffects.SuchasystemiscapableofswitchingtheWGMresonantfre-quencyhaving2MHzlinewidthatspeedsontheorderof100ms.Finally,opticalmemoryelementsweredevelopedusingWGMdevices.Amemoryelementconstructedbyinterconnect-ingWGMmicroscopiclaserswasdemonstratedin[259].Thedeviceswitcheswithin20pswith5.5-fJopticalswitchingen-ergy.Ontheotherhand,itwasshowntheoreticallyanddemon-stratedexperimentallythatarandomdistributionofsphericalmicroparticlesmaybeusedasaspectralholeburningmem-ory[122],[123].

2)WGMModulators:Microwavecellularphonesystemsandpersonaldataassistantnetworksrequiredevicescapableofreceiving,transforming,andprocessingsignalsinmillime-terwavelengthdomain[260].Electroopticmodulatorsbasedonelectromagneticwaveinteractioninnonlinearopticalcavitieswithhigh-QWGMswillplayanenablingrolefortheseandsimilarapplications.

Anapproachtocreatecouplingbetweenlightandami-crowave eldinaWGRwasrecentlyproposed[80],[81].Inthatstudy,anef cientresonantinteractionofseveralopticalWGMsandamicrowavemodewasachievedbyengineeringtheshapeofamicrowaveresonatorcoupledtoamicrotoroidalopticalcavity.Basedonthisinteraction,anewkindofelectro-opticmodulator,aswellasphotonicmicrowavereceiver,wassuggestedandrealized[261]–[268].D.OptoelectronicElectronicOscillator

Besidesthesourcesofcoherentopticalradiation;i.e.,lasers,opticalWGRscanbeusedinsourcesofcoherentmicrowaveradiation.Anoptoelectronicoscillator(OEO)isanexampleofsuchasource.AnOEOproducesmicrowavesignalsusingpho-tonictechniques[62],[64]–[69].ThemodulatorisoneofthemainsourcesofpowerconsumptionintheOEObecauseofthelargepowerrequiredtodrivetheconventionalmodulators.BothbroadbandMach–Zehndermodulatorsandfreespacemi-crowavecavity-assistednarrow-bandmodulatorstypicallyre-quireonetoafewWattsofmicrowavepowertoachieveasig-ni cantmodulation.ThismeansthateitherthephotocurrentintheOEOsystemshouldbeampli edsigni cantly,orapowerfullasershouldbeusedasthesourceofthedrivepowerfortheOEO.AnOEObasedonaWGMresonantmodulatorwasrecentlyproposedandfabricated[269].Thedeviceischaracterizedbylowthresholdandlowpowerconsumption.Thedisadvantages

WGM谐振腔综述

ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS25

ofthedevicearelowsaturationandlowoutputpower,andapossibilityoftransformingthenoiseofthelight eldintothemicrowavesignal.Ingeneral,resonantandconventionalOEOshavenonoverlappingcharacteristicsandarebothuseful,dependingontheapplication.E.PulsePropagationandGeneration

Itisconvenienttodistinguishbetweentworegimesofopti-calpulsepropagationinaWGR:1)thepulsedurationexceedstheinverseoftheFSRofthecavity;and2)thepulsedura-tionisshorterthantheinversecavityFSR.Studiespresentedin[270]–[273]areprimarilyfocusedonthe rstregime.Specif-ically,thetransientbehavioroflightintensityinsideadielectricsphereexcitedbyalightpulsewasdiscussedin[270],[271].Longopticalpulseswereusedforpumpingofpolymermicro-lasers[272].Linearandnonlinearopticalpropertiesofwaveg-uidecoupledWGRshasalsobeenstudiedtheoretically[273].Thesecondcase,propagationofshortpulsesinWGRs,wasalsoexamined[274]–[276],[278],andageneraltheoreticalanalysisofthepropagationwaspresentedin[274].Timeresolvedmea-surementsofpicosecondopticalpulsespropagatingindielectricspheres[275]andsubpicosecondterahertzpulsepropagationinadielectriccylinder[276],[277]wererecentlyreported,andmicrocavityinternal eldscreatedbypicosecondpulseswasdiscussedtheoretically[278].Thebehaviorofultrashortlightpulsescoupledintotheresonantmodesofsphericalmicrocav-itieswasexploredin[279].Anoninvasivepulse-trackingtech-niquewasexploitedtoobservethetime-resolvedmotionofanultrashortlightpulsewithinanintegratedopticalmicrores-onator[280].

Theminimumpulsewidth,aswellastheperiodoftheop-ticalpulsetraingeneratedbyasystemthatinvolvesahigh-Qcavity,isdeterminedbytheresonatordispersion.Dependingonthedielectrichostmaterialandthegeometricsize,aWGRmaypossesseitherapositive,negative,orzerogroupvelocitydispersion(GVD)[281].ThisdispersionisimportantwhenthepulsedurationisshorterthantheinversecavityFSR.ResonatorspossessingapositivegroupvelocitydispersionmaybeusedforGVDcompensationinoptical berlinks.NegativeGVDcav-itieswithKerrnonlinearity(e.g.,fusedsilicacavities)sustainnonlinearSchrodingersolitonpropagation,andmaybeusedforpulseshapingandsolitonshorteninginconventionalmode-lockedlasers(see,e.g.,[282]–[284]).ZeroGVDcavitiesmaybeusedashigh- nesseetalonstostabilizeactivelymode-lockedlasers(asin[285]).IntegratedopticalWGMall-pass lterscanalsobeusedfortunabledispersioncompensationintheopticaltransmissionlineifthepulsedurationexceedstheinverseoftheFSRoftheresonator[251],[286].

Smallresonators,likeWGRs,areimportantforthestablegenerationofopticalpulseswithhighrepetitionrates.Thisiscon rmedbytheexperimentswithplanar,notWGM,smallres-onators.Forexample,2-pspulsesata16.3-GHzrepetitionratewereobtainedfora2.5-mm-longactivelymode-lockedmono-lithiclaser[287];420GHzsubharmonicsynchronousmodelockingwasrealizedinalasercavityoftotallengthofap-proximately174µm[288].Asigni cantsupermodenoisesup-

pressionwasdemonstratedbyinsertingasmallhigh- nesseFabry–Perotresonatortothecavityofanactivelymode-lockedlaser[285],[289].

ItwasproposedtouseWGRstogenerateshortopticalpulses[281],[290].Theideaofthislaserisbasedontworecentlyreal-izedWGMdevices:theelectroopticmodulator,andtheerbium-dopedmicrosphereglasslaser[80],[180],[183],[186],[192].Itisalsoknownthatanelectroopticmodulatorplacedinanopticalresonatorcangenerateafrequencycomb[291]–[294],andthattheoutputofsuchadeviceissimilartothatofamode-lockedlaser.However,unlikethemode-lockedlaser,thepulsedurationisnotlimitedbythebandwidthofthelasergainbecausethesystemispassive.Thepulsewidthde-creaseswiththemodulationindexincrease,andwiththeoverallcavitydispersiondecrease.ThemodulationindexmaybeverylargeinaWGMmodulator,whichmaysigni cantlyimprovetheperformanceofthesystem[281].F.WaveMixingandOscillations

WGRswereusedinopticalparametricaswellashyperpara-metricwavemixingprocesses.

1)Hyper-ParametricOscillator:Hyperparametricopticaloscillation[295],alsoknownin beropticsasmodulationinsta-bility[296],isbasedonfour-wavemixing(FWM)amongtwopump,signal,andidlerphotons,andresultsinthegrowthofthesignalandidleropticalsidebandsfromvacuum uctuationsattheexpenseofthepumpingwave.Thehyperparametricoscil-lationsaredifferentfromtheparametricones.Theparametricoscillations1)arebasedonχ(2)nonlinearitycouplingthreephotons,and2)havephasematchingconditionsinvolvingfarseparatedopticalfrequenciesthatcanonlybesatis edinbire-fringentmaterialsintheforwarddirection.Inthecontrast,thehyperparametricoscillations1)arebasedonχ(3)nonlinearitycouplingfourphotons,and2)havephasematchingconditionsinvolvingnearly-degenerateopticalfrequenciesthatcanbesat-is edinmostofthematerials,bothintheforwardandbackwarddirections.

Recently,thestudyofhyperparametricoscillationshadanewstageconnectedwiththedevelopmentofWGM,aswellasphotoniccrystalmicroresonatortechnology[297],[8].Theos-cillationsoccurringincavities,orcavity-likesystems lledwithtransparentsolids,wereanalyzedtheoretically;e.g.,inisotropicphotoniccrystals[298],andwereobservedexperimentallyincrystallineWGMresonators[299],[300].Itwassuggested,inparticular,thatthenarrow-bandbeat-notesignalbetweentheop-ticalpumpandthegeneratedsidebandsemergingfromahigh-QWGMresonatorcouldbeusedasasecondaryfrequencyrefer-ence[300],[301].

ThephasestabilityofthefrequencyreferencesignalincreaseswithincreaseoftheQ-factoroftheresonatormodesforthesamegivenvalueofthepumppower.Thereexistsamaximumofthephasestability(minimumofthephasediffusion)ofthebeat-notesignalthatdoesnotdependeitheronthepumppowerorQ-factorofthemodes.KeepinginmindthatWGMsQ-factorcanexceed1010(afewtensofkilohertzresonancelinewidth)[61],itwasfoundthattheAllandeviationfactoroftheoscillations

WGM谐振腔综述

26IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006

issmallerthan10 12s 1/2forsub-milliwattopticalpumping.Thepumpthresholdcouldreachmicrowattlevelsforreasonableexperimentalparameters.

2)ParametricProcesses:Opticalparametricoscillators(OPO)havebeenextensivelystudiedsincethediscoveryoflasers[302]–[304].PropertiesofOPOarewellunderstoodbynow[305],[311],[312],[295],[59].TheCW-OPOisconsideredticalapplications.Filters,modulators,lasers,andotherwhisper-inggallerymodedeviceshavemultipleadvantagesovertheir“ordinary”counterparts.

ACKNOWLEDGMENT

A.MatskoacknowledgesilluminatingdiscussionswithJ.DickandL.Maleki.

anidealdevicethatcangenerateabroadrangeofwavelengths.Ef cientfrequencydoublingatλ=1.55µmandλ=1.319µmwasrealized[57]usingthesameWGRmadeofpe-riodicallypoledLiNbO3(PPLN)[306].TheWGRwasdoublyresonant,bothatfundamentalandsecondharmonicfrequen-cies.ThefollowupstudiesoftheparametricprocessesinPPLNWGRsareimportantbecauseithasbeenpredictedthatanop-ticalparametricoscillatorbasedontheresonatormighthaveapowerthresholdbelowamicrowatt[307]—ordersofmagnitudelessthanthatofthestate-of-the-artOPOs,typicallyat0.5themilliwattlevel[308].

Itwasshowntheoretically[309]thatanondegeneratemul-tifrequencyparametricoscillatorhasdifferentpropertiescom-paredwiththeusualthree-waveparametricoscillator.AschemeforaresonantCWmonolithicmicrowave-opticalparametricos-cillatorbasedonhigh-QWGMsexcitedinanonlineardielectriccavitywassuggested.Suchanoscillatormayhaveanextremelylowthresholdandstableoperation,andmaybeusedinspec-troscopyandmetrology.Theoscillatormimicsdevicesbasedonresonantχ(3)nonlinearity(hyperparametricprocess)andcanbeutilizedforef cientfour-wavemixingandopticalcombgeneration.

G.FundamentalPhysicsWithActiveWGMs

WGRscanbeusedforgenerationofnonclassicalstatesoflight.Forinstance,thepossibilitywasshownforthegenerationofheraldedsinglephotonsandofsub-Poissonianlaserlightintheelectricallypumpedsinglequantumdotmicrospherelaser[198].

Thereduceddensitymatrixmethodwasusedtocalculatethequantum-statisticalpropertiesoftheradiationofaquantumdotlaseroperatingontheWGMofadielectricmicrosphere[310].Itwasshownthatundertheconditionsofstrongcouplingbetweenthequantumdotandanelectromagnetic eld,theradiationofsuchalasercanbeinanonclassical(sub-Poissonian)state.Thelaserschemewascharacterizedbyanextremelylowlas-ingthresholdandasmallnumberofsaturationphotons;conse-quently,lasingispossiblewithclosetozeropopulationinversionoftheworkinglevels.

IV.CONCLUSION

Inthisreview,wehavecoveredrecentdevelopmentsintheapplicationsofwhisperinggallerymoderesonatorsinopticsandphotonics.Wehavetriedtomentionalltheactivitiesinthe eld,thoughweadmitthatsomeoftherecentadvancescouldhaveescapedourattentionbecausetheareagrowsveryfast,andeachmonthbringsnewstudiesrelatedtothesubject.

Thoughwhisperinggallerymodesareinterestingphysicalob-jectsbythemselves,weforeseethefastestgrowthintheirprac-

REFERENCES

[1]J.A.Stratton,ElectromagneticTheory.NewYork:McGrawHill,1941.[2]A.W.SnyderandJ.D.Love,OpticalWaveguideTheory.Norwell,MA:

Kluwer,1983.

[3]P.W.BarberandR.K.Chang,Eds.,OpticalEffectsAssociatedwith

SmallParticles.Singapore:WorldScienti c,1988.

[4]R.K.ChangandA.J.Campillo,Eds.,OpticalProcessesinMicrocav-ities.(AdvancedSeriesinAppliedPhysics),vol.3,Singapore:WorldScienti c,1996.

[5]M.H.Fields,J.Popp,andR.K.Chang,“Nonlinearopticsinmicro-spheres,”Prog.Opt.,vol.41,pp.1–95,2000.

[6]V.V.DatsyukandI.A.Izmailov,“Opticsofmicrodroplets,”Usp.Fiz.

Nauk,vol.171,pp.1117–1129,2001.

[7]A.N.Oraevsky,“Whispering-gallerywaves,”Quantum.Electron.,

vol.32,pp.377–400,2002.

[8]K.J.Vahala,“Opticalmicrocavities,”Nature,vol.424,pp.839–846,

2003.

[9]A.B.MatskoandV.S.Ilchenko,“Opticalresonatorswithwhispering-gallerymodes—PartI:Basics,”IEEEJ.Sel.TopicsQuantumElectron.,vol.12,no.1,pp.3–14,Jan/Feb.2006.

[10]J.W.StruttandL.Rayleigh,TheTheoryofSound.NewYork:Dover,

1945.

[11]L.Rayleigh,“FurtherapplicationsofBessel’sfunctionsofhighorder

tothewhisperinggalleryandalliedproblems,”Philos.Mag.,vol.27,pp.100–109,1914.

[12]A.Yariv,“Criticalcouplinganditscontrolinopticalwaveguide-ring

resonatorsystems,”IEEEPhoton.Technol.Lett.,vol.14,no.4,pp.483–485,Apr.2002.

[13]Y.Xu,Y.Li,R.K.Lee,andA.Yariv,“Scattering-theoryanalysisof

waveguide-resonatorcoupling,”Phys.Rev.E,vol.62,pp.7389–7404,2000.

[14]P.Rabiei,W.H.Steier,C.Zhang,andL.R.Dalton,“Polymermicroring

ltersandmodulators,”J.Lightw.Technol.,vol.20,no.11,pp.1968–1975,Nov.2002.

[15]B.E.Little,S.T.Chu,H.A.Haus,J.Foresi,ine,“Microring

resonatorchanneldropping lters,”J.Lightw.Technol.,vol.15,no.6,pp.998–1005,Jun.1997.

[16]J.K.S.Poon,Y.Y.Huang,G.T.Paloczi,andA.Yariv,“Softlithography

replicamoldingofcriticallycoupledpolymermicroringresonators,”IEEEPhoton.Technol.Lett.,vol.16,no.11,pp.2496–2498,Nov.2004.[17]S.J.Choi,K.Djordjev,S.J.Choi,P.D.Dapkus,W.Lin,G.Griffel,

R.Menna,andJ.Connolly,“Microringresonatorsverticallycoupledtoburiedheterostructurebuswaveguides,”IEEEPhoton.Technol.Lett.,vol.16,no.3,pp.828–830,Mar.2004.

[18]P.P.Absil,J.V.Hryniewicz,B.E.Little,R.A.Wilson,L.G.Joneckis,

andP.-T.Ho,“Compactmicroringnotch lters,”IEEEPhoton.Technol.Lett.,vol.12,no.4,pp.398–400,Apr.2000.

[19]F.C.Blom,H.Kelderman,H.J.W.M.Hoekstra,A.Driessen,Th.

J.A.Popma,S.T.Chu,andB.E.Little,“Asinglechanneldropping lterbasedonacylindricalmicroresonator,”mun.,vol.167,pp.77–82,1999.

[20]O.Schwelb,“Transmission,groupdelay,anddispersioninsingle-ring

opticalresonatorsandadd/drop lters—Atutorialoverview,”J.Lightw.Technol.,vol.22,no.5,pp.1380–1394,May2004.

[21]M.Cai,G.Hunziker,andK.Vahala,“Fiber-opticadd-dropdevicebased

onasilicamicrosphere-whisperinggallerymodesystem,”IEEEPhoton.Technol.Lett.,vol.11,no.6,pp.686–687,Jun.1999.

[22]D.G.Rabus,M.Hamacher,U.Troppenz,andH.Heidrich,“High-Q

channel-dropping ltersusingringresonatorswithintegratedSOAs,”IEEEPhoton.Technol.Lett.,vol.14,no.10,pp.1442–1444,Oct.2002.[23]T.Bilici,S.Isci,A.Kurt,andA.Serpenguzel,“Microsphere-basedchan-neldropping lterwithanintegratedphotodetector,”IEEEPhoton.Tech-nol.Lett.,vol.16,no.2,pp.476–478,Feb.2004.

WGM谐振腔综述

ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS27

[24]M.Lohmeyer,“Modeexpansionmodelingofrectangularintegratedop-ticalmicroresonators,”Opt.QuantumElectron.,vol.34,pp.541–557,2002.

[25]P.Urquhart,“Compoundoptical- ber-basedresonators,”J.Opt.Soc.

Amer.A,vol.5,pp.803–812,1988.

[26]K.Oda,N.Takato,andH.Toba,“Wide-FSRwaveguidedouble-ring

resonatorforopticalFDMtransmissionsystem,”J.Lightw.Technol.,vol.9,no.6,pp.728–736,Jun.1991.

[27]J.V.Hryniewicz,P.P.Absil,B.E.Little,R.A.Wilson,andP.-T.Ho,

“Higherorder lterresponseincoupledmicroringresonators,”IEEEPhoton.Technol.Lett.,vol.12,no.3,pp.320–322,Mar.2000.

[28]S.T.Chu,B.E.Little,W.Pan,T.Kaneko,andY.Kukubun,“Cascaded

microringresonatorsforcrosstalkreductionandspectrumcleanupinadd-drop lters,”IEEEPhoton.Technol.Lett.,vol.11,no.11,pp.1423–1425,Nov.1999.[29],“Second-order lterresponsefromparallelcoupledglassmicror-ingresonators,”IEEEPhoton.Technol.Lett.,vol.11,no.11,pp.1426–

1428,Nov.1999.

[30]K.Djordjev,S.J.Choi,S.J.Choi,andP.D.Dapkus,“Microdisktunable

resonant ltersandswitches,”IEEEPhoton.Technol.Lett.,vol.14,no.6,pp.828–830,Jun.2002.

[31]O.SchwelbandI.Frigyes,“Vernieroperationofseriescoupledoptical

microringresonator lters,”Microw.Opt.Technol.Lett.,vol.39,pp.258–261,2003.

[32]A.A.Savchenkov,V.S.Ilchenko,T.Handley,andL.Maleki,“Second-order lterresponsewithseries-coupledsilicamicroresonators,”IEEEPhoton.Technol.Lett.,vol.15,no.4,pp.543–544,Apr.2003.

[33]A.A.Savchenkov,V.S.Ilchenko,A.B.Matsko,andL.Maleki,“High-ordertunable ltersbasedonachainofcoupledcrystallinewhisperinggallerymoderesonators,”IEEEPhoton.Technol.Lett.,vol.17,no.1,pp.136–138,Jan.2005.

[34]G.Griffel,“Verniereffectinasymmetricalringresonatorarrays,”IEEE

Photon.Technol.Lett.,vol.12,no.12,pp.1642–1644,Dec.2000.

[35]P.RabieiandW.H.Steier,“Tunablepolymerdoublemicro-ring lters,”

IEEEPhoton.Technol.Lett.,vol.15,no.9,pp.1255–1257,Sep.2003.[36]B.Liu,A.Shakouri,andJ.E.Bowers,“Widetunabledoubleringres-onatorcoupledlasers,”IEEEPhoton.Technol.Lett.,vol.14,no.5,pp.600–602,May2002.

[37]J.E.Heebner,R.W.Boyd,andQ.Park,“Slowlight,induceddispersion,

enhancednonlinearity,andopticalsolitonsinaresonator-arraywaveg-uide,”Phys.Rev.E,vol.65,p.036619,2002.

[38]A.Melloni,F.Morichetti,andM.Martinelli,“Linearandnonlinear

pulsepropagationincoupledresonatorslow-waveopticalstructures,”Opt.Quantum.Electron.,vol.35,pp.365–379,2003.

[39]D.D.Smith,H.Chang,andK.A.Fuller,“Whispering-gallerymode

splittingincoupledmicroresonators,”J.Opt.Soc.Amer.B,vol.20,pp.1967–1974,2003.

[40]M.F.YanikandS.Fan,“Stoppinglightalloptically,”Phys.Rev.Lett.,

vol.92,p.083901,2004.

[41]A.Yariv,Y.Xu,R.K.Lee,andA.Scherer,“Coupled-resonatoroptical

waveguide:Aproposalandanalysis,”Opt.Lett.,vol.24,pp.711–713,1999.

[42]J.Poon,J.Scheuer,S.Mookherjea,G.T.Paloczi,Y.Huang,andA.Yariv,

“Matrixanalysisofmicroringcoupledresonatoropticalwaveguides,”Opt.Express,vol.12,pp.90–103,2004.

[43]S.Z.Deng,W.Cai,andV.N.Astratov,“Numericalstudyoflight

propagationviawhisperinggallerymodesinmicrocylindercoupledresonatoropticalwaveguides,”Opt.Express,vol.12,pp.6468–6480,2004.

[44]V.N.Astratov,J.P.Franchak,andS.P.Ashili,“Opticalcoupling

andtransportphenomenainchainsofsphericaldielectricmicrores-onatorswithsizedisorder,”Appl.Phys.Lett.,vol.85,pp.5508–5510,2004.

[45]L.Maleki,A.B.Matsko,A.A.Savchenkov,andV.S.Ilchenko,“Tunable

delaylinewithinteractingwhispering-gallery-moderesonators,”Opt.Lett.,vol.29,pp.626–628,2004.

[46]A.B.Matsko,A.A.Savchenkov,D.Strekalov,V.S.Ilchenko,and

L.Maleki,“Interferenceeffectsinlossyresonatorchains,”J.Mod.Opt.,vol.51,pp.2515–2522,2004.

[47]S.T.Chu,W.Pan,S.Sato,T.Kaneko,B.E.Little,andY.Kokubun,

“Wavelengthtrimmingofamicroringresonator lterbymeansofaUVsensitivepolymeroverlay,”IEEEPhoton.Technol.Lett.,vol.11,no.6,pp.688–690,Jun.1999.

[48]A.L.HustonandJ.D.Eversole,“Strain-sensitiveelasticscatteringfrom

cylinders,”Opt.Lett.,vol.18,pp.1104–1106,1993.[49]V.S.Ilchenko,P.S.Volikov,V.L.Velichansky,F.Treussart,V.Lefevre-Seguin,J.-M.Raimond,andS.Haroche,“Strain-tunablehigh-Qopticalmicrosphereresonator,”mun.,vol.145,pp.86–90,1998.

[50]W.vonKlitzing,R.Long,V.S.Ilchenko,J.Hare,andV.Lefevre-Seguin,“Frequencytuningofthewhispering-gallerymodesofsilicamicrospheresforcavityquantumelectrodynamicsandspectroscopy,”Opt.Lett.,vol.26,pp.166–168,2001.

[51]H.C.Tapalian,ine,ne,“Thermoopticalswitchesusing

coatedmicrosphereresonators,”IEEEPhoton.Technol.Lett.,vol.14,no.8,pp.1118–1120,Aug.2002.

[52]A.Chiba,H.Fujiwara,J.I.Hotta,S.Takeuchi,andK.Sasaki,“Resonant

frequencycontrolofamicrosphericalcavitybytemperatureadjustment,”Jpn.J.Appl.Phys.I,vol.43,pp.6138–6141,2004.

[53]O.SchwelbandI.Frigyes,“All-opticaltunable ltersbuiltwith

discontinuity-assistedringresonators,”J.Lighw.Technol.,vol.19,no.3,pp.380–386,Mar.2001.

[54]J.K.S.Poon,Y.Y.Huang,G.T.Paloczi,andA.Yariv,“Wide-range

tuningofpolymermicroringresonatorsbythephotobleachingofCLD-1chromophores,”Opt.Lett.,vol.29,pp.2584–2586,2004.

[55]A.A.Savchenkov,V.S.Ilchenko,T.Handley,andL.Maleki,

“Ultraviolet-assistedfrequencytrimmingofopticalmicrosphereres-onators,”Opt.Lett.,vol.28,pp.649–650,2003.

[56]V.S.Ilchenko,A.A.Savchenkov,A.B.Matsko,andL.Maleki,

“Tunabilityandsyntheticlineshapesinhigh-Qopticalwhisperinggallerymodes,”Proc.SPIEInt.Soc.Opt.Eng.,vol.4969,pp.195–206,2003.[57]“Nonlinearopticsandcrystallinewhisperinggallerymodecavi-ties,”Phys.Rev.Lett.,vol.92,p.043903,2004.

[58]A.A.Savchenkov,V.S.Ilchenko,A.B.Matsko,andL.Maleki,“Tun-able lterbasedonwhisperinggallerymodes,”Elelctron.Lett.,vol.39,pp.389–391,2003.

[59]R.W.Boyd,NonlinearOptics.NewYork:Academic,1992.

[60]J.-L.GheormaandR.M.Osgood,“Fundamentallimitationsofoptical

resonatorbasedhigh-speedEOmodulators,”IEEEPhoton.Technol.Lett.,vol.14,no.6,pp.795–797,Jun.2002.

[61]A.A.Savchenkov,V.S.Ilchenko,A.B.Matsko,andL.Maleki,“Kilo-Hertzopticalresonancesindielectriccrystalcavities,”Phys.Rev.A,vol.70,p.051804,2004.

[62]X.S.YaoandL.Maleki,“Optoelectronicmicrowaveoscillator,”J.Opt.

Soc.Amer.B,vol.70,pp.1725–1735,2004.

[63]M.Mohageg,A.Savchenkov,D.Strekalov,A.Matsko,V.Ilchenko,and

L.Maleki,“Recon gurableoptical lter,”Electron.Lett.,2005,tobepublished.

[64]Y.Ji,X.S.Yao,andL.Maleki,“Compactoptoelectronicoscillatorwith

ultralowphasenoiseperformance,”Electron.Lett.,vol.35,pp.1554–1555,1999.

[65]T.Davidson,P.Goldgeier,G.Eisenstein,andM.Orenstein,“High

spectralpurityCWoscillationandpulsegenerationinoptoelec-tronicmicrowaveoscillator,”Electron.Lett.,vol.35,pp.1260–1261,1999.

[66]S.Romisch,J.Kitching,E.Ferre-Pikal,L.Hollberg,andF.L.Walls,

“Performanceevaluationofanoptoelectronicoscillator,”IEEETrans.Ultrason.,Ferroelectr.,Freq.Control,vol.47,no.5,pp.1159–1165,Sep.2000.

[67]X.S.YaoandL.Maleki,“Multiloopoptoelectronicoscillator,”IEEEJ.

QuantumElectron.,vol.36,no.1,pp.79–84,Jan.2000.

[68]S.Poinsot,H.Porte,J.P.Goedgebuer,W.T.Rhodes,andB.Boussert,

“Multiloopoptoelectronicoscillator,”Opt.Lett.,vol.27,pp.1300–1302,2002.

[69]D.H.Chang,H.R.Fetterman,H.Erlig,H.Zhang,M.C.Oh,C.Zhang,

andW.H.Steier,“39-GHzoptoelectronicoscillatorusingbroad-bandpolymerelectroopticmodulator,”IEEEPhoton.Technol.Lett.,vol.14,no.2,pp.191–193,Feb.2002.

[70]J.K.PlourdeandC.L.Ren,“Applicationofdielectricresonatorsin

microwavecomponents,”IEEETrans.Microw.TheoryTech.,vol.29,no.8,pp.754–770,Aug.1981.

[71]S.J.Fiedziuszko,I.C.Hunter,T.Itoh,Y.Kobayashi,T.Nishikawa,S.

N.Stitzer,andK.Wakino,“Dielectricmaterials,devices,andcircuits,”IEEETrans.Microw.TheoryTech.,vol.50,no.3,pp.706–720,Mar.2002.

[72]D.Strekalov,D.Aveline,N.Yu,R.Thompson,A.B.Matsko,and

L.Maleki,“Stabilizinganoptoelectronicmicrowaveoscillatorwithpho-tonic lters,”J.Lightw.Technol.,vol.21,no.12,pp.3052–3061,Dec.2003.

WGM谐振腔综述

28IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006

[73]V.V.Vassiliev,S.M.Ilina,andV.L.Velichansky,“Diodelasercoupledto

ahigh-QmicrocavityviaaGRINlens,”Appl.Phys.B,vol.76,pp.521–523,2003.

[74]V.V.Vassiliev,V.L.Velichansky,V.S.Ilchenko,M.L.Gorodetsky,

L.Hollberg,andA.V.Yarovitsky,“Narrow-line-widthdiodelaserwithahigh-Qmicrosphereresonator,”mun.,vol.158,pp.305–312,1998.

[75]A.N.Oraevskii,A.V.Yarovitskii,andV.L.Velichansky,“Frequency

stabilisationofadiodelaserbyawhispering-gallerymode,”Quantum.Electron.,vol.31,pp.897–903,2001.

[76]J.P.RezacandA.T.Rosenberger,“Lockingamicrospherewhispering-gallerymodetoalaser,”Opt.Express.,vol.8,pp.605–610,2001.

[77]R.Symes,R.M.Sayer,andJ.P.Reid,“Cavityenhanceddropletspec-troscopy:Principles,perspectives,andprospects,”Phys.Chem.Chem.Phys.,vol.6,pp.474–487,2004.

[78]D.W.Vernooy,A.Furusawa,N.P.Georgiades,V.S.Ilchenko,andH.

J.Kimble,“CavityQEDwithhigh-Qwhisperinggallerymodes,”Phys.Rev.A,vol.57,pp.R2293–R2296,1998.

[79]W.vonKlitzing,R.Long,V.S.Ilchenko,J.Hare,andV.Lefevre-Seguin,“TunablewhisperinggallerymodesforspectroscopyandCQEDexperiments,”NewJ.Phys.,vol.3,pp.141–144,2001.

[80]V.S.Ilchenko,X.S.Yao,andL.Maleki,“Microsphereintegrationin

activeandpassivephotonicsdevices,”Proc.SPIE-Int.Soc.Opt.Eng.,vol.3930,pp.154–162,2000.

[81]V.S.IlchenkoandL.Maleki,“Novelwhispering-galleryresonators

forlasers,modulators,andsensors,”Proc.SPIE-Int.Soc.Opt.Eng.,vol.4270,pp.120–130,2001.

[82]J.L.Nadeau,V.S.Ilchenko,D.Kossakovski,G.H.Bearman,and

L.Maleki,“High-Qwhispering-gallerymodesensorinliquids,”Proc.SPIE-Int.Soc.Opt.Eng.,vol.4629,pp.172–180,2002.

[83]W.Lukosz,“Integratedopticalchemicalanddirectbiochemicalsensors,”

Sens.ActuatorsB,vol.29,pp.37–50,1995.

[84]K.Schult,A.Katerkamp,D.Trau,F.Grawe,K.Cammann,and

M.Meusel,“Disposableopticalsensorchipformedicaldiagnostics:Newwaysinbioanalysis,”Anal.Chem.,vol.71,pp.5430–5435,1999.[85]M.W.Foster,D.J.Ferrell,andR.A.Lieberman,“Surfaceplasmon

resonancebiosensorminiaturization,”Proc.SPIE-Int.Soc.Opt.Eng.,vol.2293,pp.122–131,1995.

[86]M.Weisser,G.Tovar,S.Mittler-Neher,W.Knoll,F.Brosinger,

H.Freimuth,cher,andW.Ehrfeld,“Speci cbio-recognitionreac-tionsobservedwithanintegratedMach-Zehnderinterferometer,”Biosen-sorsBioelectron.,vol.14,pp.405–411,1999.

[87]S.BlairandY.Chen,“Resonant-enhancedevanescent-wave uorescence

biosensingwithcylindricalopticalcavities,”Appl.Opt.,vol.40,pp.570–582,2001.

[88]R.W.BoydandJ.E.Heebner,“Sensitivediskresonatorphotonicbiosen-sor,”Appl.Opt.,vol.40,pp.5742–5747,2001.

[89]E.Krioukov,D.J.W.Klunder,A.Driessen,J.Greve,andC.Otto,

“Sensorbasedonanintegratedopticalmicrocavity,”Opt.Lett.,vol.27,pp.512–514,2002.

[90]E.Krioukov,J.Greve,andC.Otto,“Performanceofintegratedopti-calmicrocavitiesforrefractiveindexand uorescencesensing,”Sens.ActuatorsB,vol.90,pp.58–67,2003.

[91]F.Vollmer,D.Braun,A.Libchaber,M.Khoshsima,I.Teraoka,and

S.Arnold,“Proteindetectionbyopticalshiftofaresonantmicrocavity,”Appl.Phys.Lett.,vol.80,pp.4057–4059,2002.

[92]R.W.Boyd,J.E.Heebner,N.N.Lepeshkin,Q.-H.Park,A.Schweins-berg,G.W.Wicks,A.S.Baca,J.E.Fajardo,R.R.Hancock,M.A.Lewis,R.M.Boysel,M.Quesada,R.Welty,A.R.Bleier,J.Tre-ichler,andR.E.Slusher,“Nanofabricationofopticalstructuresandde-vicesforphotonicsandbiophotonics,”J.Mod.Opt.,vol.50,pp.2543–2550,2003.

[93]F.Vollmer,S.Arnold,D.Braun,I.Teraoka,andA.Libchaber,“Mul-tiplexedDNAquanti cationbyspectroscopicshiftoftwomicrospherecavities,”Biophys.J.,vol.85,pp.1974–1979,2003.

[94]S.Arnold,M.Khoshsima,I.Teraoka,S.Holler,andF.Vollmer,“Shiftof

whispering-gallerymodesinmicrospheresbyproteinadsorption,”Opt.Lett.,vol.28,pp.272–274,2003.

[95]I.Teraoka,S.Arnold,andF.Vollmer,“Perturbationapproachtores-onanceshiftsofwhispering-gallerymodesinadielectricmicrosphereasaprobeofasurroundingmedium,”J.Opt.Soc.Amer.B,vol.20,pp.1937–1946,2003.

[96]W.FangW,D.B.Buchholz,R.C.Bailey,J.T.Hupp,R.P.H.Chang,

andH.Cao,“Detectionofchemicalspeciesusingultravioletmicrodisklasers,”Appl.Phys.Lett.,vol.85,pp.3666–3668,2004.[97]C.Y.ChaoandL.J.Guo,“Biochemicalsensorsbasedonpolymermi-croringswithsharpasymmetricalresonance,”Appl.Phys.Lett.,vol.83,pp.1527–1529,2003.

[98]G.Annino,M.Cassettari,M.Fittipaldi,L.Lenci,I.Longo,M.Mar-tinelli,C.A.Massa,andL.A.Pardi,“Whisperinggallerymodedi-electricresonatorsinEMRspectroscopyabove150GHz:Problemsandperspectives,”Appl.Magn.Reson.,vol.19,pp.495–506,2000.

[99]V.S.Ilchenko,M.L.Gorodetsky,andS.P.Vyatchanin,“Couplingand

tunabilityofopticalwhisperinggallerymodes—Abasisforcoordinatemeter,”mun.,vol.107,pp.41–48,1994.

[100]ine,C.Tapalian,B.Little,andH.Haus,“Accelerationsensor

basedonhigh-Qopticalmicrosphereresonatorandpedestalantireso-nantre ectingwaveguidecoupler,”Sens.ActuatorsA,vol.93,pp.1–7,2001.

[101]G.A.Sanders,M.G.Prentiss,andS.Ezekiel,“Passiveringresonator

methodforsensitiveinertialrotationmeasurementsingeophysicsandrelativity,”Opt.Lett.,vol.6,pp.569–571,1981.

[102]W.W.Chow,J.Gea-Banacloche,L.M.Pedrotti,V.E.Sanders,W.Schle-ich,andM.O.Scully,“Theringlasergyro,”Rev.Mod.Phys.,vol.57,pp.61–104,1985.

[103]I.A.AndronovaandG.B.Malykin,“Physicalproblemsof bergy-roscopybasedontheSagnaceffect,”PhysicsUspekhi,vol.45,pp.793–817,2002.

[104]M.N.Armenise,V.M.N.Passaro,F.DeLeonardis,andM.Armenise,

“Modelinganddesignofanovelminiaturizedintegratedopticalsensorforgyroscopesystems,”J.Lightw.Technol.,vol.19,no.10,pp.1476–1494,Oct.2001.

[105]A.B.Matsko,A.A.Savchenkov,V.S.Ilchenko,andL.Maleki,“Op-ticalgyroscopewithwhisperinggallerymodeopticalcavities,”mun.,vol.233,pp.107–112,2004.

[106]J.U.Noeckel,A.D.Stone,andR.K.Chang,“Q-spoilinganddirec-tionalityindeformedringcavities,”Opt.Lett.,vol.19,pp.1693–1695,1994.

[107]A.Mekis,J.U.Noeckel,G.Chen,A.D.Stone,andR.K.Chang,

“RaychaosandQspoilinginlasingdroplets,”Phys.Rev.Lett.,vol.75,pp.2682–2685,1995.

[108]J.U.Nockel,A.D.Stone,G.Chen,H.L.Grossman,andR.K.Chang,

“Directionalemissionfromasymmetricresonantcavities,”Opt.Lett.,vol.21,pp.1609–1611,1996.

[109]A.D.Stone,“Wave-chaoticopticalresonatorsandlasers,”Phys.Scripta,

vol.T90,pp.248–262,2001.[110]“Classicalandwavechaosinasymmetricresonantcavities,”Phys-icaA,vol.288,pp.130–151,2000.

[111]J.U.NockelandA.D.Stone,“Rayandwavechaosinasymmetric

resonantopticalcavities,”Nature,vol.385,pp.45–47,1997.

[112]B.R.Johnson,“Theoryofmorphology-dependentresonances:Shape

resonancesandwidthformulas,”J.Opt.Soc.Amer.A,vol.10,pp.343–352,1993.

[113]E.DoronandS.D.Frischat,“Semiclassicaldescriptionoftunnelingin

mixedsystems:CaseoftheAnnularBilliard,”Phys.Rev.Lett.,vol.75,pp.3661–3664,1995.

[114]G.Casati,B.V.Chirikov,I.Guarneri,andD.L.Shepelyansky,“Dynamic

stabilityofquantumchaoticmotioninahydrogenatom,”Phys.Rev.Lett.,vol.56,pp.2437–2440,1986.

[115]K.Shima,R.Omori,andA.Suzuki,“High-Qconcentrateddirectional

emissionfromegg-shapedasymmetricresonantcavities,”Opt.Lett.,vol.26,pp.795–797,2001.

[116]H.E.Tureci,H.G.L.Schwefel,A.D.Stone,andE.E.Narimanov,

“Gaussian-opticalapproachtostableperiodicorbitresonancesofpar-tiallychaoticdielectricmicro-cavities,”Opt.Express,vol.10,pp.752–776,2002.

[117]V.A.PodolskiyandE.E.Narimanov,“Chaos-assistedtunnelingin

dielectricmicrocavities,”Opt.Lett.,vol.30,pp.474–476,2005.[118]“Semiclassicaldescriptionofchaos-assistedtunneling,”Phys.Rev.

Lett.,vol.91,p.263601,2003.

[119]C.Dembowski,H.D.Graf,A.Heine,R.Hofferbert,F.Rehfeld,and

A.Richter,“Firstexperimentalevidenceforchaos-assistedtunnelinginamicrowaveannularbilliard,”Phys.Rev.Lett.,vol.84,pp.867–870,2000.

[120]ceyandH.Wang,“Directionalemissionfromwhispering-gallery

modesindeformedfused-silicamicrospheres,”Opt.Lett.,vol.26,pp.1943–1945,2001.

[121]E.Lidorikis,M.M.Sigalas,E.N.Economou,andC.M.Soukoulis,

“Tight-bindingparametrizationforphotonicbandgapmaterials,”Phys.Rev.Lett.,vol.81,pp.1405–1408,1998.

WGM谐振腔综述

ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS29

[122]S.Arnold,C.T.Liu,W.B.Whitten,andJ.M.Ramsey,“Room-temperaturemicroparticle-basedpersistentspectralholeburningmem-ory,”Opt.Lett.,vol.16,pp.420–422,1991.

[123]S.Arnold,unale,W.B.Whitten,J.M.Ramsey,andK.A.Fuller,

“Room-temperaturemicroparticle-basedpersistenthole-burningspec-troscopy,”J.Opt.Soc.Amer.B,vol.9,pp.819–824,1992.

[124]T.Mukaiyama,K.Takeda,H.Miyazaki,Y.Jimba,andM.Kuwata-Gonokami,“Tight-bindingphotonicmoleculemodesofresonantbi-spheres,”Phys.Rev.Lett.,vol.82,pp.4623–4626,1999.

[125]Y.P.Rakovich,J.F.Donegan,M.Gerlach,A.L.Bradley,T.M.Connolly,

J.J.Boland,N.Gaponik,andA.Rogach,“Finestructureofcoupledopticalmodesinphotonicmolecules,”Phys.Rev.A,vol.70,p.051801,2004.

[126]S.HarocheandD.Kleppner,“Cavityquantumelectrodynamics,”Phys.

Today,vol.42,pp.24–30,1989.

[127]H.Walther,“Experimentsoncavityquantumelectrodynamics,”Phys.

Rep.,vol.219,pp.263–281,1992.

[128]G.Rempe,“Atomsinanopticalcavity—Quantumelectrodynamicsin

con nedspace,”Contemp.Phys.,vol.34,pp.119–129,1993.

[129]P.R.Berman,Ed.,CavityQuantumElectrodynamics,Advancesin

Atomic,Molecular,andOpticalPhysics.NewYork:Academic,1994.[130]H.J.Kimble,“Stronginteractionsofsingleatomsandphotonsincavity

QED,”Phys.Scripta,vol.T76,pp.127–137,1998.

[131]E.M.Purcell,“Spontaneousemissionprobabilitiesatradiofrequencies,”

Phys.Rev.,vol.69,pp.681–681,1946.

[132]D.Kleppner,“Inhibitedspontaneousemission,”Phys.Rev.Lett.,vol.47,

pp.233–236,1981.

[133]S.C.Ching,i,andK.Young,“Dielectricmicrospheresasoptical

cavities:Thermalspectrumanddensityofstates,”J.Opt.Soc.Amer.B,vol.4,pp.1995–2003,1987.

[134]S.C.Ching,i,andK.Young,“Dielectricmicrospheresasoptical

cavities:EinsteinAandBcoef cientsandlevelshift,”J.Opt.Soc.Amer.B,vol.4,pp.2004–2009,1987.

[135]i,P.T.Leung,andK.Young,“Electromagneticdecayintoa

narrowresonanceinanopticalcavity,”Phys.Rev.A,vol.37,pp.1597–1606,1988.

[136]A.J.Campillo,J.D.Eversole,andH.B.Lin,“Cavityquantumelectro-dynamicenhancementofstimulatedemissioninmicrodroplets,”Phys.Rev.Lett.,vol.67,pp.437–440,1991.

[137]H.B.Lin,J.D.Eversole,C.D.Merritt,andA.J.Campillo,“Cavity-modi edspontaneous-emissionratesinliquidmicrodroplets,”Phys.Rev.A.,vol.45,pp.6756–6760,1992.

[138]G.Kurizki,A.G.Kofman,A.Kozhekin,andG.Harel,“Controlof

atomicstatedecayincavitiesandmicrospheres,”NewJ.Phys.,vol.2,pp.28.1–28.21,2000.

[139]B.J.Dalton,S.M.Barnett,andB.M.Garraway,“Theoryofpseudo-modesinquantumopticalprocesses,”Phys.Rev.A.,vol.64,p.053813,2001.

[140]D.W.VernooyandH.J.Kimble,“Quantumstructureanddynamicsfor

atomgalleries,”Phys.Rev.A,vol.55,pp.1239–1261,1997.

[141]V.Klimov,V.S.Letokhov,andM.Ducloy,“Quasiorbitalmotionof

ultracoldexcitedatomicdipoleneardielectricmicrosphere,”Eur.Phys.J.D,vol.5,pp.345–350,1999.

[142]V.I.Balykin,V.G.Minogin,andV.S.Letokhov,“Electromag-netictrappingofcoldatoms,”Rep.Prog.Phys.,vol.63,pp.1429–1510,2000.

[143]H.MabuchiandH.J.Kimble,“Atomgalleriesforwhisperingatoms—

Bindingatomsinstableorbitsaroundanopticalresonator,”Opt.Lett.,vol.19,pp.749–751,1994.

[144]P.DomokosandH.Ritsch,“Mechanicaleffectsoflightinopticalres-onators,”J.Opt.Soc.Amer.B,vol.20,pp.1098–1130,2003.

[145]A.B.Matsko,S.P.Vyatchanin,H.Mabuchi,andH.J.Kimble,

“Quantum-nondemolitiondetectionofsinglephotonsinanopenres-onatorbyatomic-beamde ection,”Phys.Lett.A,vol.192,pp.175–179,1994.

[146]F.Treussart,J.Hare,L.Collot,V.Lefevre,D.S.Weiss,V.Sandoghdar,J.

M.Raimond,andS.Haroche,“Quantizedatom- eldforceatthesurfaceofamicrosphere,”Opt.Lett.,vol.19,pp.1651–1653,1994.

[147]A.B.MatskoandY.V.Rostovtsev,“Quantumnondemolitionmeasure-mentofthephotonnumberusingLambda-typeatoms,”J.Opt.B,vol.4,pp.179–183,2002.

[148]S.P.VyatchaninandA.B.Matsko,“Quantumnondisturbingmeasure-mentofthenumberofphotonsandthevacuumstateenergyintheschemeofquadraticelectronscattering,”MoscowUniv.Phys.Bull.,vol.48,pp.32–36,1993.[149]S.P.Vyatchanin,“Quantumnondemolitionmeasurementofphotonen-ergyinthequadraticelectronscatteringscheme,”MoscowUniv.Phys.Bull.,vol.45,pp.40–45,1990.

[150]S.Gotzinger,O.Benson,andV.Sandoghdar,“Towardscontrolledcou-plingbetweenahigh-Qwhispering-gallerymodeandasinglenanopar-ticle,”Appl.Phys.B,vol.73,pp.825–828,2001.

[151]S.Gotzinger,L.D.Menezes,O.Benson,D.V.Talapin,N.Gaponik,

H.Weller,A.L.Rogach,andV.Sandoghdar,“Confocalmicroscopyandspectroscopyofnanocrystalsonahigh-Qmicrosphereresonator,”J.Opt.B.,vol.6,pp.154–158,2004.

[152]G.S.Agarwal,“Spectroscopyofstronglycoupledatom-cavitysystems:

Atopicalreview,”J.Mod.Opt.,vol.45,pp.449–470,1998.

[153]D.Lenstra,G.Kurizki,L.D.Bakalis,andK.Banaszek,“Strong-coupling

QEDinasphere:Degeneracyeffects,”Phys.Rev.A,vol.54,pp.2690–2697,1996.

[154]V.V.Klimov,M.Ducloy,andV.S.Letokhov,“Stronginteractionbe-tweenatwo-levelatomandthewhispering-gallerymodesofadielectricmicrosphere:Quantum-mechanicalconsideration,”Phys.Rev.A,vol.59,pp.2996–3014,1999.

[155]J.R.BuckandH.J.Kimble,“Optimalsizesofdielectricmicrospheres

forcavityQEDwithstrongcoupling,”Phys.Rev.A,vol.67,p.033806,2003.

[156]M.Rosenblit,P.Horak,S.Helsby,andR.Folman,“Single-atomdetection

usingwhispering-gallerymodesofmicrodiskresonators,”Phys.Rev.A,vol.70,p.053808,2004.

[157]X.Fan,A.Doran,andH.Wang,“High-Qwhisperinggallerymodesfrom

acompositesystemofGaAsquantumwellandfusedsilicamicrosphere,”Appl.Phys.Lett.,vol.73,pp.3190–3192,1998.

[158]X.Fan,P.Palinginis,cey,H.Wang,andM.C.Lonergan,“Coupling

semiconductornanocrystalstoafused-silicamicrosphere:Aquantum-dotmicrocavitywithextremelyhighQfactors,”Opt.Lett.,vol.25,pp.1600–1602,2000.

[159]M.V.ArtemyevandU.Woggon,“Quantumdotsinphotonicdots,”Appl.

Phys.Lett.,vol.76,pp.1353–1355,2000.

[160]U.Woggon,R.Wannemacher,M.V.Artemyev,B.Moller1,N.Le

Thomas,V.Anikeyev,andO.Schops,“Dot-in-a-dot:Electronicandphotoniccon nementinallthreedimensions,”Appl.Phys.B,vol.77,pp.469–484,2003.

[161]C.G.B.Garrett,W.Kaiser,andW.L.Bond,“Stimulatedemission

intoopticalwhisperinggallerymodesofspheres,”Phys.Rev.,vol.124,pp.1807–1809,1961.

[162]P.WalshandG.Kemeny,“Laseroperationwithoutspikesinarubyring,”

J.Appl.Phys.,vol.34,pp.956–957,1963.

[163]D.RoessandG.Gehrer,“Selectionofdiscretemodesintoroidallasers,”

Proc.IEEE,vol.52,no.11,pp.1359–1360,Nov.1964.

[164]H.M.Tzeng,K.F.Wall,M.B.Long,andR.K.Chang,“Laseremission

fromindividualdropletsatwavelengthscorrespondingtomorphology-dependentresonances,”Opt.Lett.,vol.9,pp.499–501,1984.

[165]ti ,A.Biswas,R.L.Armstrong,andR.G.Pinnick,“Lasingand

stimulatedRamanscatteringinsphericaldroplets—Time,irradiance,andwavelengthdependence,”Appl.Opt.,vol.29,pp.5387–5392,1990.[166]R.L.Armstrong,J.-G.Xie,T.E.Ruekgauer,andR.G.Pinnick,“Energy

transferassistedlasingfrommicrodropletsseededwith uorescentsol,”Opt.Lett.,vol.17,pp.943–945,1992.

[167]H.-B.Lin,J.D.Eversole,andA.J.Campillo,“Spectralpropertiesof

lasingmicrodroplets,”J.Opt.Soc.Amer.B,vol.9,pp.43–50,1992.[168]H.TaniguchiandS.Tanosaki,“3-colorwhisperinggallerymodedye

lasersusingdye-dopedliquidspheres,”Jpn.J.Appl.Phys.II,vol.32,pp.L1421–L1424,1993.

[169]H.Taniguchi,H.Tomisawa,andSarjono,“Morphology-dependentdye

lasingfromasinglemicrodropletwithdouble-layereddyedoping,”Opt.Lett.,vol.19,pp.366–368,1994.

[170]J.C.Knight,H.S.T.Driver,R.J.Hutcheon,andG.N.Robertson,

“Coreresonancecapillary berwhisperinggallerymodelaser,”Opt.Lett.,vol.17,pp.1280–1282,1992.

[171]A.V.Malko,A.A.Mikhailovsky,M.A.Petruska,J.A.Hollingsworth,

H.Htoon,M.G.Bawendi,andV.I.Klimov,“Fromampli edspon-taneousemissiontomicroringlasingusingnanocrystalquantumdotsolids,”Appl.Phys.Lett.,vol.81,pp.1303–1305,2002.

[172]H.J.MoonandK.An,“Interferentialcouplingeffectonthewhispering-gallerymodelasinginadouble-layeredmicrocylinder,”Appl.Phys.Lett.,vol.80,pp.3250–3252,2002.

[173]H.J.MoonandK.An,“Observationofrelativelyhigh-Qcoupledmodes

inalayeredcylindricalmicrocavitylaser,”Jpn.J.Appl.Phys.I,vol.42,pp.3409–3414,2003.

WGM谐振腔综述

30IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006

[174]H.J.Moon,G.W.Park,S.B.Lee,A.Kyungwon,andJ.H.Lee,“Laser

oscillationsofresonancemodesinathingain-dopedring-typecylindricalmicrocavity,”mun.,vol.235,pp.401–407,2004.

[175]A.Shevchenko,K.Lindfors,S.C.Buchter,andM.Kaivola,“Evanescent-wavepumpedcylindricalmicrocavitylaserwithintenseoutputradia-tion,”mun.,vol.245,pp.349–353,2005.

[176]V.Sandoghdar,F.Treussart,J.Hare,V.Lefevre-Seguin,J.M.Raimond,

andS.Haroche,“Verylowthresholdwhispering-gallery-modemicro-spherelaser,”Phys.Rev.A,vol.54,pp.R1777–R1780,1996.

[177]F.Treussart,V.S.Ilchenko,J.F.Roch,P.Domokos,J.Hare,V.Lefevre,

J.M.Raimond,andS.Haroche,“WhisperinggallerymodemicrolaseratliquidHeliumtemperature,”J.Lumin.,vol.76,pp.670–673,1998.[178]K.4Miura,K.Tanaka,andK.Hirao,“CWlaseroscillationonboththethe

F3/2→4I11/2and4F3/2→4I13/2transitionsofNd

3+ionsusinga uorideglassmicrosphere,”J.Non-CrystallineSolids,vol.213,pp.276–280,1997.

[179]K.Sasagawa,K.Kusawake,J.Ohta,andM.Nunoshita,“Nd-doped

telluriteglassmicrospherelaser,”Electron.Lett.,vol.38,pp.1355–1357,2002.

[180]M.Cai,O.Painter,K.J.Vahala,andP.C.Sercel,“Fiber-coupledmicro-spherelaser,”Opt.Lett.,vol.25,pp.1430–1432,2000.

[181]X.Peng,F.Song,S.B.Jiang,N.Peyghambarian,M.Kuwata-Gonokami,

andL.Xu,“Fiber-taper-coupledL-bandEr3+-dopedtelluriteglassmi-crospherelaser,”Appl.Phys.Lett.,vol.82,pp.1497–1499,2003.

[182]W.vonKlitzing,E.Jahier,R.Long,F.Lissillour,V.Lefevre-Seguin,

J.Hare,J.M.Raimond,andS.Haroche,“VerylowthresholdlasinginEr3+dopedZBLANmicrosphere,”Electron.Lett.,vol.35,pp.1745–1746,1999.

[183]W.vonKlitzing,E.Jahier,R.Long,F.Lissillour,V.Lefevre-Seguin,

J.Hare,J.M.Raimond,andS.Haroche,“Verylowthresholdgreenlasinginmicrospheresbyup-conversionofIRphotons,”J.Opt.B,vol.2,pp.204–206,2000.

[184]F.Lissillour,P.Feron,N.Dubreuil,P.Dupriez,M.Poulain,andG.

M.Stephan,“Erbium-dopedmicrosphericallasersat1.56µm,”Electron.Lett.,vol.36,pp.1382–1384,2000.

[185]F.Lissillour,D.Messager,G.Stephan,andP.Ferron,“Whispering-gallery-modelaserat1.56µmexcitedbya bertaper,”Opt.Lett.,vol.26,pp.1051–1053,2001.

[186]H.FujiwaraandK.Sasaki,“Microsphericallasingofanerbium-ion-dopedglassparticle,”Jpn.J.Appl.Phys.II.,vol.41,pp.L46–L48,2002.[187]A.Polman,B.Min,J.Kalkman,T.J.Kippenberg,andK.J.Vahala,

“Ultralow-thresholderbium-implantedtoroidalmicrolaseronsilicon,”Appl.Phys.Lett.,vol.84,pp.1037–1039,2004.

[188]B.Min,T.J.Kippenberg,L.Yang,K.J.Vahala,J.Kalkman,andA.Pol-man,“Erbium-implantedhigh-Qsilicatoroidalmicrocavitylaseronasiliconchip,”Phys.Rev.A.,vol.70,p.033803,2004.

[189]K.Sasagawa,3+Z.Yonezawa,R.Iwai,J.Ohta,andM.Nunoshita,“S-band

Tm-dopedtelluriteglassmicrospherelaserviaacascadeprocess,”Appl.Phys.Lett.,vol.85,pp.4325–4327,2004.

[190]M.Nakielska,A.Mossakowska-Wyszyska,M.Malinowski,and

P.Szczepaski,“Nd:YAGmicrodisklasergeneratinginthefundamen-talmode,”mun.,vol.235,pp.435–443,2004.

[191]S.Sunada,T.Harayama,andK.S.Ikeda,“Nonlinearwhispering-gallery

modesinamicroellipsecavity,”Opt.Lett.,vol.29,pp.718–720,2004.[192]L.YangandK.J.Vahala,“Gainfunctionalizationofsilicamicrores-onators,”Opt.Lett.,vol.28,pp.592–594,2003.

[193]K.AnandH.J.Moon,“Laseroscillationswithpumping-independent

ultrahighcavityqualityfactorsinevanescent-wave-coupled-gainmicro-spheredyelasers,”J.Phys.Soc.Jpn.,vol.72,pp.773–776,2003.

[194]H.-J.Moon,S.-P.Sun,G.-W.Park,J.-H.Lee,andK.An,“Whispering

gallerymodelasinginagain-coatedsquaremicrocavitywithroundcorners,”Jpn.J.Appl.Phys.II,vol.42,pp.L652–L654,2003.

[195]X.Liu,W.Fang,Y.Huang,X.H.Wu,S.T.Ho,H.Cao,andR.P.

H.Chang,“Opticallypumpedultravioletmicrodisklaseronasiliconsubstrate,”Appl.Phys.Lett.,vol.84,pp.2488–2490,2004.

[196]P.G.SchiroandA.S.Kwok,“Cavity-enhancedemissionfromadye-coatedmicrosphere,”Opt.Express,vol.12,pp.2857–2863,2004.

[197]M.PeltonandY.Yamamoto,“Ultralowthresholdlaserusingasingle

quantumdotandamicrospherecavity,”Phys.Rev.A,vol.59,pp.2418–2421,1999.

[198]O.BensonandY.Yamamoto,“Masterequationmodelofasinglequan-tumdotmicrospherelaser,”Phys.Rev.A,vol.59,pp.4756–4763,1999.[199]A.N.Oraevsky,M.O.Scully,T.V.Sarkisyan,andD.K.Bandy,“Using

whisperinggallerymodesinsemiconductormicrodevices,”LaserPhys.,vol.9,pp.990–1003,1999.[200]Y.P.Rakovich,L.Yang,E.M.McCabe,J.F.Donegan,T.Perova,

A.Moore,N.Gaponik,andA.Rogach,“Whisperinggallerymodeemis-sionfromacompositesystemofCdTenanocrystalsandasphericalmicrocavity,”Semicond.Sci.Technol.,vol.18,pp.914–918,2003.

[201]S.I.Shopova,G.Farca,A.T.Rosenberger,W.M.S.Wickramanayake,

andN.A.Kotov,“Microspherewhispering-gallery-modelaserusingHgTequantumdots,”Appl.Phys.Lett.,vol.85,pp.6101–6103,2004.[202]S.L.McCall,A.F.J.Levi,R.E.Slusher,S.J.Pearton,andR.A.Logan,

“Whispering-gallerymodemicrodisklasers,”Appl.Phys.Lett.,vol.60,pp.289–291,1992.

[203]A.F.J.Levi,R.E.Slusher,S.L.McCall,J.L.Glass,S.J.Pearton,and

R.A.Logan,“Directionallightcouplingfrommicrodisklasers,”Appl.Phys.Lett.,vol.62,pp.561–563,1993.

[204]A.F.J.Levi,S.L.McCall,S.J.Pearton,andR.A.Logan,“Room-temperatureoperationofsubmicrometerradiusdisklaser,”Electron.Lett.,vol.29,pp.1666–1668,1993.

[205]S.Chang,N.B.Rex,R.K.Chang,G.Chong,andL.J.Guido,“Stimu-latedemissionandlasinginwhispering-gallerymodesofGaNmicrodiskcavities,”Appl.Phys.Lett.,vol.75,pp.166–168,1999.

[206]C.Gmachl,J.Faist,F.Capasso,C.Sirtori,D.L.Sivco,andA.

Y.Cho,“Long-wavelength(9.5–11.5µm)microdiskquantum-cascadelasers,”IEEEJ.QuantumElectron.,vol.33,no.9,pp.1567–1573,Sep.1997.

[207]M.FujitaandT.Baba,“Microgearlaser,”Appl.Phys.Lett.,vol.80,

pp.2051–2053,2002.

[208]E.D.Haberer,R.Sharma,C.Meier,A.R.Stonas,S.Nakamura,S.P.Den-Baars,andE.L.Hu,“Free-standing,opticallypumped,GaN/InGaNmi-crodisklasersfabricatedbyphotoelectrochemicaletching,”Appl.Phys.Lett.,vol.85,pp.5179–5181,2004.

[209]J.-Z.ZhangandR.K.Chang,“Generationandsuppressionofstimulated

Brillouinscatteringinsingleliquiddroplets,”J.Opt.Soc.Amer.B.,vol.6,pp.151–153,1989.

[210]J.-Z.Zhang,G.Chen,andR.K.Chang,“PumpingofstimulatedRa-manscatteringbystimulatedBrillouinscatteringwithinasingleliquiddroplet:Inputlaserlinewidtheffects,”J.Opt.Soc.Amer.B.,vol.7,pp.108–115,1989.

[211]S.M.ChitanvisandC.D.Cantrell,“Simpleapproachtostimulated

Brillouinscatteringinglassaerosols,”J.Opt.Soc.Amer.B,vol.6,pp.1326–1331,1989.

[212]A.L.Huston,H.-B.Lin,J.D.Eversole,andA.J.Campillo,“Nonlin-earMiescattering:Electrostrictivecouplingoflighttodropletacousticmodes,”Opt.Lett.,vol.15,pp.1176–1178,1990.

[213]J.-Z.Zhang,G.Chen,andR.K.Chang,“PumpingofstimulatedRa-manscatteringbystimulatedBrillouinscatteringwithinasingleliquiddroplet:Inputlaserlinewidtheffects,”J.Opt.Soc.Amer.B.,vol.7,pp.108–115,1990.

[214]S.C.Ching,P.T.Leung,andK.Young,“SpontaneousBrillouinscattering

inamicrodroplet,”Phys.Rev.A.,vol.41,pp.5026–5038,1990.

[215]P.T.LeungandK.Young,“DoublyresonantstimulatedBrillouinscat-teringinamicrodroplet,”Phys.Rev.A.,vol.44,pp.593–607,1991.[216]C.D.Cantrell,“Theoryofnonlinearopticsindielectricspheres.II.

Coupled-partial-wavetheoryofresonant,resonantlypumpedstimulatedBrillouinscattering,”J.Opt.Soc.Amer.B,vol.8,pp.2158–2180,1991.[217]C.D.Cantrell,“Theoryofnonlinearopticsindielectricspheres.III.

Partial-wave-indexdependenceofthegainforstimulatedBrillouinscat-tering,”J.Opt.Soc.Amer.B,vol.8,pp.2181–2189,1991.

[218]i,P.T.Leung,C.K.Ng,andK.Young,“Nonlinearelas-ticscatteringoflightfromamicrodroplet:Roleofelectrostrictivelygeneratedacousticvibrations,”J.Opt.Soc.Amer.B,vol.10,pp.924–932,1993.

[219]M.L.Gorodetsky,A.D.Pryamikov,andV.S.Ilchenko,“Rayleighscat-teringinhigh-Qmicrospheres,”J.Opt.Soc.Amer.B,vol.17,pp.1051–1057,2000.

[220]T.J.Kippenberg,S.M.Spillane,andK.J.Vahala,“Modalcouplingin

traveling-waveresonators,”Opt.Lett.,vol.27,pp.1669–1671,2002.[221]M.L.GorodetskyandV.S.Ilchenko,“Thermalnonlineareffectsinopti-calwhispering-gallerymicroresonators,”LaserPhys.,vol.2,pp.1004–1009,1992.

[222]D.S.Weiss,V.Sandoghbar,J.Hare,V.Lefevre-Seguin,J.-M.Rai-mond,andS.Haroche,“Splittingofhigh-QMiemodesinducedbylightbackscatteringinsilicamicrospheres,”Opt.Lett.,vol.20,pp.1835–1837,1995.

[223]M.Borselli,K.Srinivasan,P.E.Barclay,andO.Painter,“Rayleigh

scattering,modecoupling,andopticallossinsiliconmicrodisks,”Appl.Phys.Lett.,vol.85,pp.3693–3695,2004.

WGM谐振腔综述

ILCHENKOANDMATSKO:OPTICALRESONATORSWITHWGMs—PARTII:APPLICATIONS31

[224]M.Borselli,T.J.Johnson,andO.Painter,“BeyondtheRayleighscat-teringlimitinhigh-Qsiliconmicrodisks:Theoryandexperiment,”Opt.Express,vol.13,pp.1515–1530,2005.

[225]L.S.Meng,P.A.Roos,K.S.Repasky,andJ.L.Carlsten,“Highcon-versionef ciency,diodepumpedcontinuouswaveRamanlaser,”Opt.Lett.,vol.26,pp.426–428,2001.

[226]L.S.Meng,P.A.Roos,andJ.L.Carlsten,“High-ef ciencycontinuous-waveRamanlaserpumpedbyaninjection-lockedbroad-areadiodelaser,”IEEEJ.Quantum.Electron.,vol.40,no.4,pp.390–393,Apr.2004.

[227]S.-X.QianandR.K.Chang,“Multiorderstokesemissionfrom

micrometer-sizedroplets,”Phys.Rev.Lett.,vol.56,pp.926–929,1986.

[228]S.-X.Qian,J.B.Snow,andR.K.Chang,“CoherentRamanmixingand

coherentanti-StokesRamanscatteringfromindividualmicrometer-sizedroplets,”Opt.Lett.,vol.10,pp.499–501,1985.

[229]J.B.Snow,S.-X.Qian,andR.K.Chang,“StimulatedRamanscattering

fromindividualwaterandethanoldropletsatmorpholody-dependentresonances,”Opt.Lett.,vol.10,pp.37–39,1985.

[230]A.Biswas,ti ,R.L.Armstrong,andR.G.Pinnick,“Double-resonancestimulatedRamanscatteringfromopticallylevitatedglyceroldroplets,”Phys.Rev.A.,vol.40,pp.7413–7416,1989.

[231]J.-Z.Zhang,D.H.Leach,andR.K.Chang,“Photonlifetimewithina

droplet:Temporaldeterminationofelasticandstimulatedscattering,”Opt.Lett.,vol.13,pp.270–272,1988.

[232]W.-F.Hsieh,J.-B.Zheng,andR.K.Chang,“Timedependenceofmul-tiorderstimulatedRamanscatteringfromsingledroplets,”Opt.Lett.,vol.30,pp.497–499,1988.

[233]G.Schweiger,“Observationofmorphologydependentresonances

causedbytheinput eldintheRamanspectrumofmicrodroplets,”J.RamanSpectr.,vol.21,pp.165–168,1990.

[234]H.-B.LinandA.J.Campillo,“CWnonlinearopticsindropletmicrocav-itiesdisplayingenhancedgain,”Phys.Rev.Lett.,vol.73,pp.2440–2443,1994.

[235]H.-B.LinandA.J.Campillo,“MicrocavityenhancedRamangain,”Opt.

Commun.,vol.133,pp.287–292,1997.

[236]G.KurizkiandA.Nitzan,“Theoryofstimulatedemissionpro-cessesinsphericalmicroparticles,”Phys.Rev.A,vol.38,pp.267–270,1988.

[237]A.Serpenguzel,G.Chen,R.K.Chang,andW.-F.Hsieh,“Heuristic

modelforthegrowthandcouplingofnonlinearprocessesindroplets,”J.Opt.Soc.Amer.B,vol.9,pp.871–883,1992.

[238]D.Braunstein,A.M.Khazanov,G.A.Koganov,andR.Shuker,“Lower-ingofthresholdconditionsfornonlineareffectsinamicrosphere,”Phys.Rev.A,vol.53,pp.3565–3572,1996.

[239]M.V.JouravlevandG.Kurizki,“Uni edtheoryofRamanandpara-metricampli cationinnonlinearmicrospheres,”Phys.Rev.A,vol.70,p.053804,2004.

[240]S.Uetake,M.Katsuragawa,M.Suzuki,andK.Hakuta,“Stimulated

Ramanscatteringinaliquid-hydrogendroplet,”Phys.Rev.A,vol.61,p.011803,2000.

[241]T.J.Kippenberg,S.A.Spillane,B.Min,andK.J.Vahala,“Theoretical

andexperimentalstudyofstimulatedandcascadedRamanscatteringinultrahigh-Qopticalmicrocavities,”IEEEJ.Sel.TopicsQuantumElec-tron.,vol.10,no.5,pp.1219–1228,Sep./Oct.2004.

[242]Y.Wu,X.Yang,andP.T.Leung,“Theoryofmicrocavity-enhanced

Ramangain,”Opt.Lett.,vol.24,pp.345–347,1999.

[243]Y.WuandP.T.Leung,“Lasingthresholdforwhisperinggallerymode

microspherelaser,”Phys.Rev.A,vol.60,pp.630–633,1999.

[244]S.M.Spillane,T.J.Kippenberg,andK.J.Vahala,“Ultralow-threshold

Ramanlaserusingasphericaldielectricmicrocavity,”Nature,vol.415,pp.621–623,2002.

[245]A.B.Matsko,A.A.Savchenkov,R.J.LeTargat,V.S.Ilchenko,and

L.Maleki,“Oncavitymodi cationofstimulatedRamanscattering,”J.Opt.B,vol.5,pp.272–278,2003.

[246]V.B.Braginsky,M.L.Gorodetsky,andV.S.Ilchenko,“Quality-factor

andnonlinearpropertiesofopticalwhisperinggallerymodes,”Phys.Lett.A,vol.5,pp.393–397,1989.

[247]A.EschmannandC.W.Gardiner,“Stabilityandswitchinginwhispering

gallerymodemicrodisklasers,”Phys.Rev.A,vol.49,pp.2907–2913,1994.

[248]F.C.Blom,D.R.vanDijk,H.J.W.M.Hoekstra,A.Driessen,and

Th.J.A.Popma,“Experimentalstudyofintegrated-opticsmicrocavityresonators:Towardanall-opticalswitchingdevice,”Appl.Phys.Lett.,vol.71,pp.747–749,1997.[249]A.Y.Smirnov,S.N.Rashkeev,andA.M.Zagoskin,“Polarization

switchinginopticalmicrosphereresonator,”Appl.Phys.Lett.,vol.80,pp.3503–3505,2002.

[250]M.Haraguchi,M.Fukui,Y.Tamaki,andT.Okamoto,“Opticalswitching

duetowhisperinggallerymodesindielectricmicrospherescoatedbyaKerrmaterial,”J.Microscopy,vol.210,pp.229–233,2003.

[251]J.E.Heebner,P.Chak,S.Pereira,J.E.Sipe,andR.W.Boyd,“Dis-tributedandlocalizedfeedbackinmicroresonatorsequencesforlinearandnonlinearoptics,”J.Opt.Soc.Amer.B,vol.21,pp.1818–1832,2004.

[252]J.E.HeebnerandR.W.Boyd,“Enhancedall-opticalswitchingbyuseof

anonlinear berringresonator,”Opt.Lett.,vol.24,pp.847–849,1999.[253]M.Soljacic,S.G.Johnson,S.H.Fan,M.Ibanescu,E.Ippen,andJ.

D.Joannopoulos,“Photonic-crystalslow-lightenhancementofnonlinearphasesensitivity,”J.Opt.Soc.Amer.B,vol.19,pp.2052–2059,2002.[254]P.Chak,J.E.Sipe,andS.Pereira,“Lorentzianmodelfornonlin-earswitchinginamicroresonatorstructure,”mun.,vol.213,pp.163–171,2002.

[255]S.Pereira,P.Chak,andJ.E.Sipe,“Gap-solitonswitchinginshortmi-croresonatorstructures,”J.Opt.Soc.Amer.B,vol.19,pp.2191–2202,2002.

[256]S.Pereira,P.Chak,andJ.E.Sipe,“All-opticalANDgatebyuseofa

Kerrnonlinearmicroresonatorstructure,”Opt.Lett.,vol.28,pp.444–446,2003.

[257]J.Popp,M.H.Fields,andR.K.Chang,“Qswitchingbysaturable

absorptioninmicrodroplets:Elasticscatteringandlaseremission,”Opt.Lett.,vol.22,pp.1296–1298,1997.

[258]V.Van,T.A.Ibrahim,K.Ritter,P.P.Absil,F.G.Johnson,R.Grover,

J.Goldhar,andP.T.Ho,“All-opticalnonlinearswitchinginGaAs-AlGaAsmicroringresonators,”IEEEPhoton.Technol.Lett.,vol.14,no.1,pp.74–76,Jan.2002.

[259]M.T.Hill,H.J.S.Dorren,T.deVries,X.J.M.Leijtens,J.H.denBesten,

B.Smalbrugge,Y.S.Oei,H.Binsma,G.D.Khoe,andM.K.Smit,“Afastlow-poweropticalmemorybasedoncoupledmicro-ringlasers,”Nature,vol.432,pp.206–209,2004.

[260]K.Ohata,T.Inoue,M.Funabashi,A.Inoue,Y.Takimoto,T.Kuwabara,

S.Shinozaki,K.Maruhashi,K.Hosaya,andH.Nagai,“Sixty-GHz-bangultra-miniaturemonolithicT/Rmodulesformultimediawirelesscommunicationsystems,”IEEETrans.Microw.TheoryTech.,vol.44,no.12,pp.2354–2360,Dec.1996.

[261]V.S.Ilchenko,A.B.Matsko,A.A.Savchenkov,andL.Maleki,“High-ef ciencymicrowaveandmillimeter-waveelectro-opticalmodulationwithwhispering-galleryresonators,”Proc.SPIE-Int.Soc.Opt.Eng.,vol.4629,pp.158–163,2002.

[262]D.A.CohenandA.F.J.Levi,“Microphotonicmillimetre-wavereceiver

architecture,”Electron.Lett.,vol.37,pp.37–39,2001.

[263]L.Maleki,A.F.J.Levi,S.Yao,andV.Ilchenko,“LightModulationin

Whispering-Gallery-ModeResonators,”U.S.Patent6473218,2002.[264]D.A.Cohen,M.Hossein-Zadeh,andA.F.J.Levi,“Microphotonic

modulatorformicrowavereceiver,”Electron.Lett.,vol.37,pp.300–301,2001.

[265]D.A.CohenandA.F.J.Levi,“Microphotoniccomponentsforamm-wavereceiver,”SolidStateElectron.,vol.45,pp.495–505,2001.

[266]D.A.Cohen,M.Hossein-Zadeh,andA.F.J.Levi,“High-Qmicropho-tonicelectro-opticmodulator,”SolidStateElectron.,vol.45,pp.1577–1589,2001.

[267]V.S.Ilchenko,A.A.Savchenkov,A.B.Matsko,andL.Maleki,“Whis-peringgallerymodeelectro-opticmodulatorandphotonicmicrowavereceiver,”J.Opt.Soc.Amer.B,vol.20,pp.333–342,2003.

[268]V.S.Ilchenko,A.A.Savchenkov,A.B.Matsko,andL.Maleki,“Sub-microWattphotonicmicrowavereceiver,”IEEEPhoton.Technol.Lett.,vol.14,no.11,pp.1602–1604,Nov.2002.

[269]A.B.Matsko,L.Maleki,A.A.Savchenkov,andV.S.Ilchenko,“Whis-peringgallerymodebasedoptoelectronicmicrowaveoscillator,”J.Mod.Opt.,vol.50,pp.2523–2542,2003.

[270]D.Q.Chowdhury,S.C.Hill,andP.W.Barber,“Timedependenceof

internalintensityofadielectricsphereonandnearresonance,”J.Opt.Soc.Amer.B,vol.9,pp.1364–1373,1992.

[271]E.E.M.Khaled,D.Q.Chowdhury,S.C.Hill,andP.W.Barber,“Internal

andscatteredtime-dependentintensityofadielectricsphereilluminatedwithapulsedGaussianbeam,”J.Opt.Soc.Amer.B,vol.11,pp.2065–2071,1994.

[272]S.V.Frolov,M.Shkunov,Z.V.Vardeny,andK.Yoshino,“Ringmi-crolasersfromconductingpolymers,”Phys.Rev.B,vol.56,pp.R4363–R4366,1997.

WGM谐振腔综述

32IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.12,NO.1,JANUARY/FEBRUARY2006

[273]J.E.Heebner,R.W.Boyd,andQ.-H.Park,“SCISSORsolitonsandother

novelpropagationeffectsinmicroresonator-modi edwaveguides,”J.Opt.Soc.Amer.B,vol.19,pp.722–731,2002.

[274]W.B.Whitten,M.D.Barnes,andJ.M.Ramsey,“Propagationofshort

opticalpulsesinadielectricsphere,”J.Opt.Soc.Amer.B,vol.14,pp.3424–3429,1997.

[275]R.W.Shaw,W.B.Whitten,M.D.Barnes,andJ.M.Ramsey,“Time-domainobservationofopticalpulsepropagationinwhispering-gallerymodesofglassspheres,”Opt.Lett.,vol.23,pp.1301–1303,1998.

[276]J.ZhangandD.Grischkowsky,“Whispering-gallerymodeterahertz

pulses,”Opt.Lett.,vol.27,pp.661–663,2002.

[277]J.ZhangandD.Grischkowsky,“Whispering-gallery-modecavityfor

terahertzpulses,”J.Opt.Soc.Amer.B,vol.20,pp.1894–1904,2003.[278]L.Mees,G.Gouesbet,andG.Grehan,“Numericalpredictionsofmicro-cavityinternal eldscreatedbyfemtosecondpulses,withemphasisonwhisperinggallerymodes,”J.Opt.A,vol.4,pp.S150–S153,2002.[279]T.Siebert,O.Sbanski,M.Schmitt,V.Engel,W.Kiefer,andJ.Popp,

“Themechanismoflightstorageinsphericalmicrocavitiesexploredonafemtosecondtimescale,”mun.,vol.216,pp.321–327,2003.

[280]H.Gersen,D.J.W.Klunder,J.P.Korterik,A.Driessen,N.F.vanHulst,

andL.Kuipers,“Propagationofafemtosecondpulseinamicroresonatorvisualizedintime,”Opt.Lett.,vol.29,pp.1291–1293,2004.

[281]L.Maleki,A.A.Savchenkov,V.S.Ilchenko,andA.B.Matsko,“Whis-peringgallerymodelithiumniobatemicroresonatorsforphotonicsap-plications,”Proc.SPIE-Int.Soc.Opt.Eng.,vol.5104,pp.1–13,2003.[282]J.D.Kafka,T.Baer,andD.W.Hall,“Mode-lockederbium-doped ber

laserwithsolitonpulseshaping,”Opt.Lett.,vol.14,pp.1269–1271,1989.

[283]F.X.Kartner,D.Kopf,andU.Keller,“Solitary-pulsestabilizationand

shorteninginactivelymode-lockedlasers,”J.Opt.Soc.Amer.B,vol.12,pp.486–496,1995.

[284]T.F.GarruthersandI.N.DulingIII,“10-GHz,1.3-pserbium berlaser

employingsolitonpulseshortening,”Opt.Lett.,vol.21,pp.1927–1929,1996.

[285]C.M.DePriest,T.Yilmaz,P.J.Delfyett,S.Etemad,A.Braun,and

J.Abeles,“Ultralownoiseandsupermodesuppressioninanactivelymode-lockedexternal-cavitysemiconductordioderinglaser,”Opt.Lett.,vol.27,pp.719–721,2002.

[286]C.K.Madsen,G.Lenz,A.J.Bruce,M.A.Cappuzzo,L.T.Gomez,

andR.E.Scotti,“Integratedall-pass ltersfortunabledispersionanddispersionslopecompensation,”IEEEPhoton.Technol.Lett.,vol.11,no.12,pp.1623–1625,Dec.1999.

[287]K.Sato,K.Wakita,I.Kotaka,Y.Kondo,M.Yamamoto,andA.Takada,

“Monolithicstrained-InGaAsPmultiple-quantum-welllaserswithin-tegratedelectroabsorptionmodulatorsforactivemodelocking,”Appl.Phys.Lett.,vol.65,pp.1–3,1994.

[288]S.ArahiraandY.Ogawa,“480-GHzsubharmonicsynchronousmode

lockinginashort-cavitycolliding-pulsemode-lockedlaser,”IEEEPho-ton.Technol.Lett.,vol.14,no.4,pp.537–539,Apr.2002.

[289]G.T.HarveyandL.F.Mollenauer,“Harmonicallymode-locked berring

laserwithaninternalFabry-Perotstabilizerforsolitontransmission,”Opt.Lett.,vol.18,pp.187–189,1993.

[290]A.B.Matsko,V.S.Ilchenko,A.A.Savchenkov,andL.Maleki,“Active

modelockingwithwhispering-gallerymodes,”J.Opt.Soc.Amer.B,vol.20,pp.2292–2296,2003.

[291]M.Kourogi,K.Nakagawa,andM.Ohtsu,“Wide-spanopticalre-quencycombgeneratorforacurateopticalfrequencydifferencemea-surement,”IEEEJ.QuantumElectron.,vol.29,no.10,pp.2693–2701,Oct.1993.

[292]L.R.Brothers,D.Lee,andN.C.Wong,“Terahertzopticalfrequency

combgenerationandphaselockingofanopticalparametricoscillatorat665GHz,”Opt.Lett.,vol.19,pp.245–247,1994.

[293]M.Kourogi,B.Widiyatomoko,Y.Takeuchi,andM.Ohtsu,“Limitof

optical-frequencycombgenerationduetomaterialdispersion,”IEEEJ.QuantumElectron.,vol.31,no.12,pp.2120–2126,Dec.1995.

[294]G.M.Macfarlane,A.S.Bell,E.Riis,andA.I.Ferguson,“Optical

combgeneratorasanef cientshort-pulsesource,”Opt.Lett.,vol.21,pp.534–536,1996.

[295]D.N.Klyshko,PhotonsandNonlinearOptics.NewYork:Taylor&

Francis,1988.

[296]G.P.Agrawal,NonlinearFiberOptics.NewYork:Academic,1995.[297]J.Vuckovic,M.Pelton,A.Scherer,andY.Yamamoto,“Optimizationof

three-dimensionalmicropostmicrocavitiesforcavityquantumelectro-dynamics,”Phys.Rev.A,vol.66,p.023808,2002.

[298]C.Conti,A.DiFalco,andG.Assanto,“Opticalparametricoscillations

inisotropicphotoniccrystals,”Opt.Express,vol.12,pp.823–828,2004.[299]T.J.Kippenberg,S.M.Spillane,andK.J.Vahala,“Kerr-nonlinearityop-ticalparametricoscillationinanultrahigh-Qtoroidmicrocavity,”Phys.Rev.Lett.,vol.93,p.083904,2004.

[300]A.A.Savchenkov,A.B.Matsko,D.Strekalov,M.Mohageg,

V.S.Ilchenko,andL.Maleki,“LowthresholdopticaloscillationsinawhisperinggallerymodeCaF2resonator,”Phys.Rev.Lett.,vol.93,p.243905,2004.

[301]A.B.Matsko,D.Strekalov,V.S.Ilchenko,andL.Maleki,“Optical

hyper-parametricoscillationsinawhisperinggallerymoderesonator:Thresholdandphasediffusion,”Phys.Rev.A,vol.71,p.033804,2005.[302]W.H.Louisell,A.Yariv,andA.E.Siegmann,“Quantum uctuations

andnoiseinparametricprocesses,”Phys.Rev.,vol.124,pp.1646–1654,1961.

[303]J.A.Armstrong,N.Bloembergen,J.Ducuing,andP.S.Pershan,“In-teractionsbetweenlightwavesinanonlineardielectric,”Phys.Rev.,vol.127,pp.1918–1939,1962.

[304]R.GrahamandH.Haken,“Thequantum uctuationsoftheoptical

parametricoscillator,”Z.Phys.,vol.210,pp.276–302,1968.[305]SpecialIssueonOPO,J.Opt.Soc.Amer.B,vol.10,no.9,1993.

[306]L.E.Myers,R.C.Eckardt,M.M.Fejer,R.L.Byer,W.R.Bosenberg,

andJ.W.Pierce,“Quasiphase-matchedopticalparametricoscillatorsinbulkperiodicallypoledLiNbO3,”J.Opt.Soc.Amer.B,vol.12,p.2102,1995.

[307]V.S.Ilchenko,A.B.Matsko,A.A.Savchenkov,andL.Maleki,“Low

thresholdparametricnonlinearopticswithquasi-phase-matchedwhis-peringgallerymodes,”J.Opt.Soc.Amer.B,vol.20,p.1304,2003.[308]M.Martinelli,K.S.Zhang,T.Coudreau,A.Maitre,andC.Fabre,“Ultra-lowthresholdCWtriplyresonantOPOinthenearinfraredusingperiod-icallypoledlithiumniobate,”J.Opt.A,vol.3,p.300,2001.

[309]A.B.Matsko,V.S.Ilchenko,A.A.Savchenkov,andL.Maleki,“Highly

nondegenerateall-resonantopticalparametricoscillator,”Phys.Rev.A,vol.66,p.043814,2002.

[310]A.V.KozlovskyandA.N.Oraevsky,“Quantum-dotmicrolaseroperating

onthewhisperinggallerymode—Asourceofsqueezed(sub-Poissonian)light,”J.Eng.Phys.Thermophys.,vol.91,pp.938–944,2000.[311]SpecialIssueonOPO,J.Opt.Soc.Amer.B,vol.12,no.11,1995.[312]SpecialIssueonOPO,Appl.Phys.B,vol.66,no.6,

1998.

VladimirS.Ilchenko,receivedtheM.S.andPh.D.degreesfromMoscowStateUniversity,Russia,in1983and1986,respectively.

HehasbeenaSeniorMemberoftheTechnicalStaffattheNASAJetPropulsionLaboratory(JPL),CaliforniaInstituteTechnology,Pasadena,CA,since1998.HejoinedtheTimeandFrequencyGroupatJPL(currentlyQuantumSciencesandTechnologyGroup)aftera12yeartenureasResearchAssociateandAssociateProfessorinthePhysicsDepartment,MoscowStateUniversitywhere,withcolleagues,he

pioneeredtheexperimentaldemonstrationofultrahigh-Qopticalwhispering-gallerymicroresonators(microspheres).Hiscurrentresearchinterestsarefo-cusedonthedevelopmentandapplicationsofcrystallineopticalmicroresonatorswithkilohertzlinewidthsforhighspectralpurityopticalandmicrowaveoscil-lators,photonic lters,modulators,andsensors.Since2001,hehasbeenChiefScientistofOEwaves,Inc.,Pasadena,CA.

Dr.IlchenkoisamemberoftheOpticalSocietyofAmerica,

SPIE.AndreyB.MatskoreceivedtheM.S.andPh.D.de-greesfromMoscowStateUniversity,Russia,in1994and1996,respectively.

HehasbeenaSeniorMemberofTechnicalStaffwiththeQuantumSciencesandTechnologyGroupattheJetPropulsionLaboratory(JPL),CaliforniaInstituteTechnology,Pasadena,CA,since2001.Hereceivedpost-doctoraltrainingattheDepartmentofPhysics,TexasA&MUniversity(1997–2001),wherehewasawardedtheRobertA.WelchFoundationPostdoctoralFellowship.Hiscurrentresearchinter-estsinclude,butarenotrestrictedto,applicationsofwhispering-gallerymoderesonatorsinquantumandnonlinearopticsandphotonics;coherenceeffectsinresonantmedia;andquantumtheoryofmeasurements.

Dr.MatskoisamemberoftheOpticalSocietyofAmerica.HereceivedJPL’sLewAllenAwardforexcellencein2005.

本文来源:https://www.bwwdw.com/article/dqjm.html

Top