定理

更新时间:2024-05-28 04:20:02 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1、广勾股定理:

在任一三角形中,

(1)锐角对边的平方,等于两夹边之平方和,减去某夹边和另一夹边在此边上的投影乘积的两倍.

(2)钝角对边的平方,等于两夹边的平方和,加上某夹边与另一夹边在此边延长上的投影乘积的两倍.

证明:

设△ABC中,BC是锐角A的对边(图2-4).作CH⊥AB于H, 根据勾股定理:BC^2 = BH^2 + CH^2 而 BH = AB-AH , CH^2 = AC^2 - AH^2 带入后有:BC^2 = (AB-AH)^2 + AC^2 - AH^2 简化后:BC^2 = AB^2 +AC^2 -2AB·AH 式(1) 同理: BC^2 = AB^2+AC^2 -2AC·AH 同理可证明钝角时的结论。 推广(高中余弦定理的导出): 设:CosA = AH/AC

则:AH = AC·CosA 代入式(1)则有:

BC^2 = AB^2 +AC^2 -2AB·AC·CosA 2、斯特瓦尔特(stewart)定理

设已知△ABC及其底边上B、C两点间的一点D,则有

AB²·DC+AC²·BD-AD²·BC=BC·DC·BD。

证明:在图2-6中,作AH⊥BC于H。为了明确起见,设H和C在点D的同侧,那么由广勾股定理有

AC²=AD²+DC²-2DC·DH,(1) AB²=AD²+BD²+2BD·DH。 (2) 用BD乘(1)式两边得

AC²·BD=AD²·BD+DC²·BD-2DC·DH·BD,(1)′ 用DC乘(2)式两边得

AB²·DC=AD²·DC+BD²·DC+2BD·DH·DC。(2)′ 由(1)′+(2)′得到

AC²·BD+AB²·DC=AD²(BD+DC)+DC²·BD+BD²·DC =AD²·BC+BD·DC·BC。

∴AB²·DC+AC²·BD-AD²·BC=BC·DC·BD。 或者根据余弦定理得

AB²=PB²+PA²-2PB·PA·cos∠APB AC²=PA²+PC²-2PA·PC·cos∠APC 两边同时除以PB·PA·PC得

AC²·PB+AB²·PC=(PB²+PA²)PC+(PA²+PA²)PB 化简即可(注:图中2-7A点为P点,BDC点依次为ABC) 斯特瓦尔特定理的逆定理成立 斯特瓦尔特定理的推论

斯特瓦尔特定理还有如下推论

(1)若AB=AC,则AP²=AB²-BP·PC (2)若AP为BC中线,则

AP²=½AB²+½AC²-¼BC² (3)若AP为∠A内角平分线,则AP²=AB·AC﹣BP·PC (4)若AP为∠A外角平分线,则AP²=﹣AB·AC+BP·PC (5)若BP/BC=λ,则AP²=λ·﹙λ﹣1﹚·BC²+﹙1﹣λ﹚·AB²+λ·AC²

斯特瓦尔特定理与托勒密定理和张角定理可以互化 斯特瓦尔特定理的常见应用方式 ①用于得到线段倍份关系

②用于求解三角形问题

(诀窍是选则适当的三角形及其边上的点;灵活运用推论)

3、塞瓦定理

在△ABC内任取一点O,

直线AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1 证法简介

(Ⅰ)本题可利用梅涅劳斯定理证明: ∵△ADC被直线BOE所截,

∴ (CB/BD)*(DO/OA)*(AE/EC)=1 ①

而由△ABD被直线COF所截,∴ (BC/CD)*(DO/OA)*(AF/FB)=1② ②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1

(Ⅱ)也可以利用面积关系证明

∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③

同理 CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤ ③×④×⑤得BD/DC*CE/EA*AF/FB=1

利用塞瓦定理证明三角形三条高线必交于一点: 设三边AB、BC、AC的垂足分别为D、E、F,

根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)

/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(BF*ctgA)]=1,所以三条高CD、AE、BF交于一点。

可用塞瓦定理证明的其他定理;

三角形三条中线交于一点(重心):如图5 D , E分别为BC , AC 中点 所以BD=DC AE=EC 所以BD/DC=1 CE/EA=1

且因为AF=BF 所以 AF/FB必等于1 所以AF=FB 所以三角形三条中线交于一点 此外,可用定比分点来定义塞瓦定理:

在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。于是AL、BM、CN三线交于一点的充要条件是λμν=1。(注意与梅涅劳斯定理相区分,那里是λμν=-1)

塞瓦定理推论

1.设E是△ABD内任意一点,AE、BE、DE分别交对边于C、G、F,则(BD/BC)·(CE/AE)·(GA/DG)=1

因为(BC/CD)*(DG/GA)*(AF/FB)=1,(塞瓦定理)所以

(BD/CD)·(CE/AE)·(AF/FB)=K(K为未知参数)且(BD/BC)*(CE/AE)*(GA/DG)=K(K为未知参数)又由梅涅劳斯定理得:(BD/CD)*(CE/AE)*(AF/FB)=1 所以(BD/BC)*(CE/AE)*(GA/DG)=1 2.塞瓦定理角元形式

AD,BE,CF交于一点的充分必要条件是:

(sin∠BAD/sin∠DAC)*(sin∠ACF/sin∠FCB)*(sin∠CBE/sin∠EBA)=1 由正弦定理及三角形面积公式易证

3.如图,对于圆周上顺次6点A,B,C,D,E,F,直线AD,BE,CF交于一点的充分必要条件是:

(AB/BC)*(CD/DE)*(EF/FA)=1

由塞瓦定理的角元形式,正弦定理及圆弦长与所对圆周角关系易证。 4.还能利用塞瓦定理证三角形三条高交于一点

设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定 理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(AE*ctgB)]=1,所以三条高CD、AE、BF交于一点。

数学意义

使用塞瓦定理可以进行直线形中线段长度比例的计算,其逆定理还可以用来进行三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的作用。梅涅劳斯定理的对偶定理是梅涅劳斯定理。

4、托勒密(Ptolemy)定理

指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。 原文:圆的内接四边形中,两对角线所包矩形的面积等于 一组对边所包矩形的面积与另一组对边所包矩形的面积之和。 从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.

广义托勒密定理:设四边形ABCD四边长分别为a,b,c,d,两条对角线长分别为m,n,则有:

m^2*n^2=a^2*c^2+b^2*d^2-2abcd*cos(A+C)

5、西姆松定理

西姆松定理是一个几何定理。表述为:过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线)。西姆松定理的逆定理为:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。

西姆松定理说明 相关的结果有:

(1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。

(2)两点的西姆松线的交角等于该两点的圆周角。

(3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。

(4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。

证明一: △ABC外接圆上有点P,且PE⊥AC于E,

PF⊥AB于F,PD⊥BC于D,分别连DE、DF. 易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于是∠FDP=∠ACP ①,(∵都是∠ABP的补角) 且∠PDE=∠PCE ② 而∠ACP+∠PCE=180° ③ ∴∠FDP+∠PDE=180°

④ 即F、D、E共线. 反之,当F、D、E共线时,由④→②→③→①可见A、B、P、C共圆.

证明二: 如图,若L、M、N三点共线,连结BP,CP,则因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N和 M、P、L、C分别四点共圆,有

∠PBN = ∠PLN = ∠PLM = ∠PCM. 故A、B、P、C四点共圆。

若A、B、P、C四点共圆,则∠PBN = ∠PCM。因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N和M、P、L、C四点共圆,有 ∠PBN =∠PLN =∠PCM=∠PLM.

故L、M、N三点共线。

6、斐波那契数列

“斐波那契数列(Fibonacci)”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概

是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abaci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、?? 这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(见图)(又叫“比内公式”,是用无理数表示有理数的一个范例。)

有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

奇妙的属性

随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887??

从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通)

如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。

斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。

斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2??)的其他性质:

1.f(0)+f(1)+f(2)+?+f(n)=f(n+2)-1 2.f(1)+f(3)+f(5)+?+f(2n-1)=f(2n) 3.f(2)+f(4)+f(6)+?+f(2n) =f(2n+1)-1

4.[f(0)]^2+[f(1)]^2+?+[f(n)]^2=f(n)·f(n+1)

5.f(0)-f(1)+f(2)-?+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+1 6.f(m+n)=f(m-1)·f(n-1)+f(m)·f(n)

利用这一点,可以用程序编出时间复杂度仅为O(log n)的程序。

7.[f(n)]^2=(-1)^(n-1)+f(n-1)·f(n+1)

8.f(2n-1)=[f(n)]^2-[f(n-2)]^2 9.3f(n)=f(n+2)+f(n-2)

10.f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且

n≥1]

在杨辉三角中隐藏着斐波那契数列 1 1 1 1 2 1

1 3 3 1 1 4 6 4 1 ??

过第一行的“1”向左下方做45度斜线,之后做直线的平行线,将每条直线所过的数加起来,即得一数列1、1、2、3、5、8、?? 斐波那契数与植物花瓣

3?????????百合和蝴蝶花

5?????????蓝花耧斗菜、金凤花、飞燕草 8?????????翠雀花

13?????????金盏 21?????????紫宛 34、55、89?????雏菊

斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。

斐波那契数列与黄金比

1/1=1,2/1=2,3/2=1.5,5/3=1.6?8/5=1.6,????89/55=1.61818?,????233/144=1.618055? 7、海伦公式

我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。

假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长: p=(a+b+c)/2

注1:\《度量论》)手抄本中用s作为半周长,所以

S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。

由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。

证明过程

证明(1)

与海伦在他的著作\《度量论》)中的原始证明不同,在此我们用三角公

式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为

cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C)

=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]

=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2

则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)]

所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]

证明(2)

我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家秦九韶提出了“三斜求积术”。

秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。

所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以 q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2} 当P=1时,△ 2=q,

△=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2} 因式分解得

△ ^2=1/16[4a^2c^2-(a^2+c^2-b^2)^2] =1/16[(c+a) ^2-b ^2][b^ 2-(c-a)^ 2] =1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)

=1/16(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c) =1/16 [2p(2p-2a)(2p-2b)(2p-2c)] =p(p-a)(p-b)(p-c) 由此可得:

S△=√[p(p-a)(p-b)(p-c)] 其中p=1/2(a+b+c)

这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。 S=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2} .其中c>b>a.

根据海伦公式,我们可以将其继续推广至四边形的面积运算。如下题: 已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积

这里用海伦公式的推广

S圆内接四边形= 根号下(p-a)(p-b)(p-c)(p-d) (其中p为周长一半,a,b,c,d,为4边)

代入解得s=8√ 3

证明(3)

在△ABC中∠A、∠B、∠C对应边a、b、c

O为其内切圆圆心,r为其内切圆半径,p为其半周长 有tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1 r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=r ∵r=(p-a)tanA/2=(p-b)tanB/2=(p-c)tanC/2 ∴ r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2) =[(p-a)+(p-b)+(p-c)]tanA/2tanB/2tanC/2 =ptanA/2tanB/2tanC/2 =r

∴p^2r^2tanA/2tanB/2tanC/2=pr^3

∴S^2=p^2r^2=(pr^3)/(tanA/2tanB/2tanC/2) =p(p-a)(p-b)(p-c) ∴S=√p(p-a)(p-b)(p-c) 证明(4)

通过正弦定理:和余弦定理的结合证明 (具体可以参考证明方法1)

推广

关于三角形的面积计算公式在解题中主要应用的有:

设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p = (a+b+c)/2,则 S△ABC =1/2 aha =1/2 ab×sinC = r p

= 2RsinAsinBsinC

= √[p(p-a)(p-b)(p-c)]

其中,S△ABC =√[p(p-a)(p-b)(p-c)] 就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。

二、 海伦公式的推广

由于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广。由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD中,设p= ,则S四边形= 现根据猜想进行证明。

证明:如图,延长DA,CB交于点E。 设EA = e EB = f

∵∠1+∠2 =180○ ∠2+∠3 =180○ ∴∠1 =∠3 ∴△EAB~△ECD ∴ = = =

解得: e = ① f = ②

由于S四边形ABCD = S△EAB

将①,②跟b = 代入公式变形④,得到: ∴S四边形ABCD =

所以,海伦公式的推广得证。 8、欧拉线 定义

三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。 莱昂哈德·欧拉于1765年在它的著作《三角形的几何学》中首次提出定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线。他证明了在任意三角形中,以上四点共线。欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。

9、共角比例定理

若两个三角形ABC与A1B1C1满足角CAB=角C1A1B1,则ABC面积/A1B1C1面积=AC*AB/A1C1*A1B1

证明可直接由面积公式S(ABC)=1/2*a*b*sinC得到 10、四边形蝴蝶定理

若四边形一条对角线平分另一对角线,则过其交点的两条直线,以四边交点(邻边)的连线,与被平分的对角线的两个交点到对角线焦点距离相等。 证明过程中用到共边比例定理、共角比例定理。 如图:BG=CG,求证:EG=FG 连接CP,BS,BR,CQ

EG/BE*CF/FG=S△PGQ/S△PBQ* S△SCR/S△SGR=S△ABD/S△PBQ * S△SCR/S△ACD * S△PGQ/S△SGR

=AB*BD/BP*BQ * SC*CR/AC*DC * PG*QG/RG*SG =AB*BD/BP*BQ * SC*CR/AC*DC * PG/RG*QG/SG

=S△ABC*S△BCD/S△BCP*BCQ * S△BCS*S△BCR/S△ABC*S△BCD * S△BCP/S△BCR*S△BCQ/S△BCS =1

EG*CF=FG*BE ∵EG+BE=CF+FG

∴EG=GF

11、燕尾定理

燕尾定理,因此图类似燕尾而得名,是一个关于三角形的定理(如图△ABC,D、E、F为BC、CA、AB 上的点,AD、BE、CF 交于O点)。

S△ABC中,S△AOB:S△AOC=S△BDO:S△CDO=BD:CD; 同理,S△AOC:S△BOC=S△AFO:S△BFO=AF:BF;

S△BOC:S△BOA=S△CEO:S△AEO=EC:EA。

帕斯卡定理

定义

圆内接六边形的三双对边(所在直线)的交点共线。这条直线称为该六边形的帕斯卡线。因法国数学家帕斯卡发现而得名。 定义的推广

本定理可推广为:圆锥曲线内接六边形的三双对边(所在直线)的交点共线。

正式证明:

考察上图即得。

笛沙格定理

1、 笛沙格同调定理(同调三角形定理)

平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。

相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。 P.S:其逆定理也成立

笛沙格对偶定理Desargues' Involution Theorem

一条直线与一个完全四点形*的三双对边的交点与外接于该四点形的圆锥曲线构成一个对合的四个点偶. 一个点与一个完全四线形*的三双对顶点的连线和从该点向内切于该四线形的圆锥曲线所引的切线构成一个对合的四个射线偶合.

一个完全四点形(四线形)实际上含有四点(线)1,2,3,4和它们的六条连线交点23,14,31,24,12,34;其中23与14、31与24、12与34称为对边(对顶点).

笛沙格研究了两空间笛沙格构图成透射时的透射比问题,它是继两空间笛沙格构图成透射的条件及透射定位参数的确定问题之后,针对透射参数的研究.在过去研究工作基础上,运用几何分析方法,得到了求两空间笛沙格构图成透射时的透射比的计算公式,给出精确计算结果.将两空间笛沙格构图成透射的参数补齐.得到的透射比公式中含有耦合配位三角形中的几何关系,使透射比的表达更加简明.

2、笛沙格定理(平面)

如图,从O引射线A1A2、B1B2、C1C2。则B1A1与B2A2交于X,B1C1与B2C2交于Y,A1C1与A2C2交于Z,则X、Y、Z共线。可以用梅涅劳斯定理证明。

圆幂定理

圆幂定理是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论统一归纳的结果。 定义

圆幂=|PO^2-R^2|(该结论为欧拉公式)

所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有

PA·PB=PC·PD。

统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。 进一步升华(推论)

过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值) 若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2|

故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差,而过这一点引任意直线交圆于A、B,那么PA·PB等于圆幂的绝对值。(这就是“圆幂”的由来)

巴斯加线定理

1 巴斯加线性质1 1.1 性质

在一个二次点列上任意给定6个点所作的60条巴斯加线中,每4条巴斯加线交于一个点——对边交点。

圆内接六边形ABCDEF(不论其六顶点排列次序如何),

其三组对边AB与DE、BC与EF、CD与FA的交点P、Q、R共线。

角平分线的 --- 库斯顿定理

定理:在三角形中,其中一个角的角平分线的平方等于夹这个角的两边的乘积与截对边的两条线段的乘积之差。

如图,在△ABC中,AD为∠BAC的角平分线交BC于D 则有 AD^2=AB*AC-BD*CD

内角平分线定理

内角平分线定理

角平分线的性质定理.其内容是

性质1 在角平分线上的点到这个角的两边的距离相等.

性质2 到一个角的两边的距离相等的点,在这个角的平分线上. 综合定理1,2可得如下结论:

角的平分线是到角的两边距离相等的所有点的集合.

三角形内角平分段性质定理 三角形内角平分线分对边所成的两条线段,和两条邻边成比例. 即

在三角形ABC中,当AD是顶角A的角平分线交底边于D时,BD:CD=AB:AC. 证明:如图,过点C作CE∥AD交BA的延长线于E,则DB/DC=AB/AE。 ∵CE∥AD,

∴∠DAC=∠ACE,∠BAD=∠AEC。 ∵AD平分∠BAC,∠BAD=∠DAC, ∴∠ACE=∠AEC,AE=AC。 ∴DB/DC=AB/AE=AB/AC

中线定理(pappus定理),又称阿波罗尼奥斯定理,是欧氏几何的定理,表述三角形三边和中线长度关系。

定理内容:三角形一条中线两侧所对边平方和等于底边平方与该边中线平方和的2倍。

即,对任意三角形△ABC,设I是线段BC的中点,AI为中线,则有如下关系:

AB^2+AC^2=2BI^2+2AI^2

中线定理 目录[隐藏]定理简介 证明过程 另一个结论 中线定理 [编辑本段]定理简介 中线定理(pappus定理),又称阿波罗尼奥斯定理,是欧氏几何的定理,表述三角形三边和中线长度关系。 定理内容:三角形一条中线两侧所对边平方和等于底边平方与该边中线平方和的2倍。 即,对任意三角形ABC,设M是线段BC的中点,AM为中线,则有如下关系: AB^2+AC^2=2BM^2+2AM^2

在以上讨论中,还可以得到 |AB^2-AC^2|=2BC×IH

根轴定理

在平面上任给两不同心的圆,则对两圆圆幂相等的点的集合是一条直线,这条线称为这两个圆的根轴。

另一角度也可以称两不同心圆的等幂点的轨迹为根轴。

根轴方程

设两圆O1,O2的方程分别为:

(x-a1)^2+(y-b1)^2-(r1)^2=0(1) (x-a2)^2+(y-b2)^2-(r2)^2=0(2)

由于根轴上任意点对两圆的圆幂相等,所以根轴上任一点(x,y),有 (x-a1)^2+(y-b1)^2-(r1)^2=圆幂=(x-a2)^2+(y-b2)^2-(r2)^2 两式相减,得根轴的方程(即x,y的方程)为 2(a2-a1)x+2(b2-b1)y+f1-f2=0

其中f1=(a1)^2+(b1)^2-(r1)^2,f2类似。

解的不同可能

(1)(2)连立的解,是两圆的公共点M(x1,y1),N(x2,y2)

如果是两组不等实数解,MN不重合且两圆相交,根轴是两圆的公共弦。 如果是相等实数解,MN重合,两圆相切,方程表示两圆的内公切线。 如果是共轭虚数解,两圆相离,只有代数规律发挥作用,在坐标系内没有实质。称M,N是共轭虚点。

蒙日定理

通过四面体的每条边的中点并垂直于其对边的6个平面必交于一点。此点和那6个平面分别被称为蒙日点和蒙日平面。

(拉格朗日四平方和定理)

每个自然数均可表示成4个平方数之和。3个平方数之和不能表示形式如4k(8n+ 7)的数。 如果在一个正整数的因数分解式中,没有一个数有形式如4k+3的质数次方,该正整数可以表示成两个平方数之和。

三角形的外角平分线定理:三角形的外角平分线外分对边所成的两条线段和相邻两边对应成比例。

例.已知如图.△ABC中,∠BAC的外角平分线交BC的延长线于点 D,求证:BD︰CD=AB︰AC。

证明:过C作AD的平行线交AB于点E。 ∴BD︰CD=AB︰AE,∠1=∠AEC

∠CAD=∠ACE

∵∠1=∠CAD ∴∠AEC=∠ACE ∴AE=AC ∴BD︰CD=AB︰AC 证明2:

ACD面积=0.5xCAxADxsin(Li)=0.5xCDxh (h为BD边上的高) a b

ABD面积=0.5xBDxh=0.5xBAxADxsin(180度-L1) c d

axc=ACD面积xABD面积=bxd (左右两边均约去h,sin,0.5x0.5,AD) 得 CAxBD=CDxBA 变形得 BD︰CD=AB︰AC

本文来源:https://www.bwwdw.com/article/dn67.html

Top