大学物理习题精选

更新时间:2023-09-17 02:12:01 阅读量: 高中教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第一章 质点运动学

21. 一质点沿半径R?2m的圆周运动,其速率是时间的函数v?2t?2t

(t以“秒”计,v以“米/秒”计),则它在1秒末时加速度a的大小 为_______(m.s-2)。

2. 两条直路交叉成?角,两辆汽车以速率v1和v2沿两条路行驶,则一车相对于另一车的速度的大小为____________________。

???3. 一质点的运动方程为??Rcos?ti?Rsin?tj,式中R,?为正的常量。在

?t1=??/?到t2=2?/?时间内,质点的位移?r为 [ ]

??? A. -2Ri B. 2Ri C. -2Rj D. 0

4. 一质点作任意的曲线运动,在一般情况下,下列各组量中相等的是 [ ] (注:其中v是速率,s是路程)

?A.?rC. v 与

?与?r?dvdv B . 与

dtdtds? D. v与 dt??v1?v22

dv5. 质点的速率对时间的一次导数等于 [ ]

dtA.切向加速度的大小(即at) B.法向加速度的大小(即an) C. 总加速度的大小 D.切向加速度在速度方向上的投影 6. 质点作匀加速圆周运动,则它的 [ ]

A.切向加速度的大小和方向都在变化 B.总加速度的方向变化,大小不变 C.切向加速度的方向变化,大小不变 D.法向加速度的方向变化,大小不变

?? 1

???7. 已知质点的运动方程为r?x(t)i?y(t)j ,有人说其速度和加速度分别为

drd2rv?,a?2

dtdt其中r?x2?y2,你说对吗?

28. 一质点沿半径R=2m的圆周运动,其速率v是时间的函数v=2t+2t(t以

“秒”计,v以“米/秒”计),求在一秒末时; (1) 它的加速度的大小; (2)

??a?与a的夹角的正切。

?19. 一球以30m?s的速率水平抛射,试求在第5s末时切向加速度和法向加速

度的大小。

10. 一物体悬挂在弹簧上作竖直振动,其加速度为a??ky,式中k为常量,

y是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y0处的速度为v0,试求速度v与坐标y的函数关系式.

第 二 、三章

(牛顿定律,运动定理和守恒定律)

4?105t(SI)1. 一颗子弹在枪筒里前进时所受合力的大小为F?400?,子3弹从枪口射出时的速率为300m.s-1。假设子弹离开枪口时合力刚好为零,则子弹走完枪筒全程的过程中所受合力的冲量的大小为_____N.S,子弹的质量m 为______kg。

2. 一质点在二恒力作用下,位移为?r?3i?8j(SI);在此过程中,动能的

??????增量为24J,已知其中一恒力F1?12i?3j(SI),则另一恒力的功为______J。

3. 如图两个质量相等的小球由一轻弹簧连接,再用一细绳悬挂于天花板上,小

2

球处于静止状态。在剪断细绳的瞬间,球1和球2的加速度

a1

a2

分别

为 [ ]

A.a1=g, a2=g B.a1=0, a2=g C.a1=g, a2=0

1

2D.a1=2g , a2=0

4. 质量为m的小球在向心力的作用下,在水平面内作半径为R,速率为v的匀速圆周运动,如图所示,小球自A点逆时针运动到B点的半周内动量的增 量为 [ ]

??A.2mvj B -2mvj

??C. 2mvi D. -2mvi

YB X

0 A5. A、B两木块质量分别为mA和mB,且mB=2 mA,两者用一弹簧连接后静止于光滑水平桌面上,如图所示,若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块的动能之比?KA/?KB为 [ ] A.1/2

B. 2 C. D.

2 2/2

mA

mB

6. 一轻弹簧竖直固定于桌面上,如图所示,小球从离桌面高为h处以初速度为

?0落下,撞击弹簧后跳回到高为h处时速度仍为?0,则在整个过程中小球的

[ ]

3

?A.动能不守恒,动量不守恒 B。动能守恒,动量不守恒

?v0h

C.机械能不守恒,动能守恒 D。机械能守恒,动能守恒

7. 质量为m的子弹以速率为vo水平射入沙土中,子弹所受的阻力与速度方向相反,其大小与速率成正比,比例系数为K(K>0)。设子弹在沙土中保持水平方向的运动。求子弹在射入沙土后,速率随时间变化的函数式。 8.(上册P55: 2—16)

9. 一质量为10Kg的质点,在力F=(120t+40)N的作用下,沿x轴正方向运动。在t=0时,质点位于x0=5m其速度为v0?6m.S-1,求质点在以后任意时刻的速度和位置。

10. 一停在空气中的质量为M的气球上挂有一质量可以忽略不计的绳梯,在绳梯上有一质量为m的人,整个系统在空中处于静止状态。当人相对绳梯以速度u向上运动时,求从地面上观察到的气球的速度v的大小

11. 有一倔强系数为k的轻弹簧,原长l0,将它吊在天花板上,当它下端挂一托盘平衡时,其长度为l1。然后在托盘中放一重物,使弹簧长度变为l2。求弹簧长度从l1到l2的过程中,弹性力所做的功。

12. 劲度系数为k的轻弹簧,一端固定,另一端与桌面上的质量为m的小球B

相连接.用外力推动小球,将弹簧压缩一段距离L后放开.假定小球所受的滑动摩擦力大小为F且恒定不变,滑动摩擦系数与静摩擦系数可视为相等.试求L必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.

? 4

k B L O

13. 一链条总长为l,质量为m,放在桌面上,并使其部分下垂,下垂一段的长度为a.设链条与桌面之间的滑动摩擦系数为?.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功? (2)链条刚离开桌面时的速率是多少?

l?a a 14. 一质量为10 Kg的物体沿x轴无摩擦地运动,在t=0时,物体位于原点(即

x=0m ),速度为零(即vo=0),问

(1)设物体在力F?(3?4t)i(N)的作用下移动了3秒,求:在此过程

中物体所受冲量的大小,并求在第3秒末物体的速度和加速度的大小。

????(2)设物体在力F?(3?4x)i(N)的作用下移动了3米,求:在此过

程中力F的的功,并求在x=3m时物体的速度和加速度的大小。

第 四 章(

1. 质量为m的质点以速率v沿直线向右运动,则它对距离该直线为d的z轴

(z轴垂直于纸平面向内)的角动量为________。 2.

5

C. 不违反热力学第一定律 ,也不违反热力学第二定律 D. 违反热力学第一定律,也违反热力学第二定律

7. 一定量的某种理想气体进行如图所示的循环过程.已知气体在状态A的温度为TA=300 K,求 (1) 气体在状态B、C的温度; (2) 各过程中气体对外所作的功; (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和).

8. 设卡诺循环的高温热源的温度为T1,低温热源的温度为T2,求循环效率。 9. 如图,器壁与活塞都是绝热的,两者构成一个容器,中间有一隔板将容器等

分为两部分,其中左边装有1摩尔标准状态的氦气(可视为理想气体),另一边为真空,现将隔板抽掉,待气体平衡后,再缓慢推动活塞,把气体压缩到原来的体积,求氦气的温度改变多少?(是指末态温度与抽隔板前氦气温度之差)

300200100O1CBV (m3)23 p (Pa)A

He真空

11

第 十二 章 (气体动理论)

1.若气体分子的平均平动动能为1.06×10(玻耳兹曼常量k=1.38×10

-23

-19

J,则气体的温度为_________k。

J.k1)

2.用麦克斯韦分子速率分布函数f(v)写出平衡态下气体分子方均根速率的表

2达式v=___________________。

3.如果氢气和氖气的温度相同,摩尔数也相同,则 [ ] A.这两种气体分子的平均动能相等 B.这两种气体分子的平均平动动能相等 C.这两种气体分子的平均速率相等 D.这两种气体的内能相等

4.一定量的理想气体贮于某一容器中,达到平衡态,温度为T,气体分子的质量为m。根据理想气体分子模型和统计假设,分子速度在X方向的分量的平均值为 [ ] A. VX=

18KT8KT B. VX=. ?m3?m8KT D . VX?0 3?mC. VX?5. 在压强恒定不变的前提下,理想气体分子的平均碰撞次数Z与温度的关系为

[ ]

A. 与T 成正比 B. 与T 成反比 C. 与T成正比 D. 与T成反比

6. 汽缸内盛有一定量的氢气(可视为理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞次数z(又称:平均碰撞频率)和平均自由程?变化的情

12

况是 [ ] A. z和?都增大一倍 B. z和?都减为原来的一半 C. z增大一倍而?减为原来的一半 D. z减为原来的一半而?增大一倍

7. 设f(V)是理想气体在平衡态下的麦克斯韦速率分布函数,总分子数为N,试写出:

(1)速率在V1~V2之间的相对分子数; (2)速率大于V2的总分子数;

(3)速率在V1~V2之间的那些分子的方均根速率。

8. 容积为20.0 L(升)的瓶子以速率v=200 m·s?1匀速运动,瓶子中充有质量为100g的氦气.设瓶子突然停止,且气体的全部定向运动动能都变为气体分子热运动的动能,瓶子与外界没有热量交换,求热平衡后氦气的温度、压强、内能及氦气分子的平均动能各增加多少?(摩尔气体常量R=8.31 J·mol-1·K?1,玻尔兹曼常量k=1.38×10-23 J·K?1) 9. 当氢气和氦气的压强、体积和温度都相等时,求它们的质量比能比

第 五 章 (静电场)

1.如图所示,在带电量为q的点电荷的静电场中,将一带电量为qo的点电荷从a 点沿任意路径移动倒b点,电场力所作的功w=___________________。

13

E?H2?.(将氢气视为刚性双原子分子气体)

??EHeM?H2?和内

M?He?

raq。aq0。。rb。b2. 如在一个立方体的中心放置一电点荷q,则它在其一个侧面上产生的电通量 为________。

3.点电荷Q被曲面S所包围,从无穷远处引入另一点电荷q至曲面外一点,如图 所示,则引入前后 [ ] A.曲面S上的电通量不变,曲面上各点场强不变 B.曲面S上的电通量变化,曲面上各点场强不变 C.曲面S上的电通量变化,曲面上各点场强变化 D.曲面S上的电通量不变,曲面上各点场强变化

4. 电荷面密度分别为+?和-?的两块无限大均匀带电的平行平面(?>0),如右 下图所示,则其周围空间各点电场强度? 随位置坐标X变化的关系曲线为:

(设场强方向右向为正,向左为负) [ ]

Q.q.S?E E? _

???0 2?0

?aoa(A)X?aoa(B)X?ao.aE???0E?2?0 2?0?aoa(C)X??o2?0aX

(D)

14

5.在匀强电场中,将一负电荷从A移动到B,如图所示,则 [ ] A. 电场力作正功,负电荷的电势能减少

B.B. 电场力作正功,负电荷的电势能增加

C. 电场力作负功,负电荷的电势能减少 D. 电场力作负功,负电荷的电势能增加

?E

A.6. 在点电荷q的电场中,选取以q为球心,R为半径的球面上一点P处作电势

零点,则与点电q距离r的A点的电势为 [ ]

11A. B. (?) 4??0r4??0rRC.

qqPqr A

qq11 D. (?) 4??0(r?R)4??0Rr7.图示一厚度为d的“无限大”均匀带电平板,电荷体密度为?,试求板内

外的场强分布,并画出场强X轴的投影值随坐标x变化的图线,即?x— x图线(设原点在带电平板的中央平面上,OX轴垂直于平板)。

OXd8.电量q均匀分布在长为2l的细杆上,求在杆外延长线与杆端距离为a的P

点的电势。(设无穷远处为电势零点 )

9.真空中有一带电量为Q,半径为R的半圆环,设无穷远为电势为零点。 (1)求圆心处的电势;

15

(2)若将一带电量为q的点电荷从无穷远处移到圆心,求电场力所做的功。

第 六 章

(静电场中的导体和电介质)

1.如图所示,A、B为靠得很近的两块平行的大金属板,两板的面积均为S,板间距离为d,A板带电量qA,B板带电量qB,两者均大于零,且qA>qB,则A板内侧带电量为___________________;两板间电势差UAB=_______________。

2.平行板电容器两极板间距离为d,若插入一面积与极板相同,厚度为d/2,相对电容率为?r的各向同性、均匀的电介质,则插入介质后的电容与原来电容之比为________________。

3.三块相互平行的导体板,相互之间的距离为d1和d2比板面积线度小的多,外面二板用导线连接,中间板上带电,设该板左右两侧面上电荷面密度为?1和

ABSd?2,如图所示则比值?1/?2为 [ ]

A.d1/d2 B. d2/d1 C. 1 D.d2/ d1

16

2

2 d1?1?2d24.如果在空气平行板电容器的上、下两极板间,平行地插入一块与极板面积相同的、有一定厚度的金属板,则由于金属板的插入及其相对极板在上、下方向上所放位置的不同,对电容器的影响为 [ ] A. 使电容减少,但与金属板相对极板的位置无关。 B. 使电容减少,但与金属板相对极板的位置有关。 C. 使电容增大,但与金属板相对极板的位置无关。 D. 使电容增大,但与金属板相对极板的位置有关。

5. 一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性的,均匀的电介质,则电场强度的大小为E,电容C,电压U,电场能量W四个量 各自与充入介质前相比较,增大( ? )或( ? )的情形为 [ ] A.E? ,C? ,U? ,W? B. E? ,C? ,U? ,W? C. E? ,C? ,U? ,W? D. E? ,C? ,U? ,W? 6.如图所示,两平行板电容器的面积S,距离d均相等,但一个电容器两极板间充满均匀的电介质,而另一个电容器极板间为真空,则两者相等的量是 [ ] A. 场强??

?DB. 电位移

C. 电场能We D. 电量Q

7. 厚度为d的“无限大”均匀带电导体板两表面单位面积上电荷之和为? .试求图示离左板面距离为a的一点与离右板面距离为b的一点之间的电势差.

1ad?b2

17

8. 一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R1 = 2 cm,R2 = 5 cm,其间充满相对介电常量为?r 的各向同性、均匀电介质.电容器接在电压U = 32 V的电源上,(如图所示),试求距离轴线R = 3.5 cm处的A点的电场强度和A点与外筒间的电势差.

R2?rR1RAU

9. 两金属球的半径之比为1∶4,带等量的同号电荷.当两者的距离远大于两球半径时,有一定的电势能.若将两球接触一下再移回原处,则电势能变为原来的多少倍?

10. 一圆柱形电容器,外柱的直径为4 cm,内柱的直径可以适当选择,若其间

充满各向同性的均匀电介质,该介质的击穿电场强度的大小为E0= 200 KV/cm.试求该电容器可能承受的最高电压. (自然对数的底e = 2.7183)

11. 两电容器的电容之比为C1:C2=1:2

(1) 把它们串联后接到电压一定的电源上充电,它们的电场能之比是多? (2)如果是并联充电,电场能之比是多少?

(3)在上述两种情形下,两电容器所组成的系统的总电场能之比又是多? 12. 如图所示,一内半径为a、外半径为b的金属球壳,带有电荷Q,在球壳空腔内距离球心r处有一点电荷q.设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O点处,由球壳内表面上电荷产生的电势. (3) 球心O点处的总电势.

18

13. 半径分别为R1和R2 (R2 > R1 )的两个同心导体薄球壳,分别带有电荷Q1和Q2,今将内球壳用细导线与远处半径为r的导体球相联,如图所示, 导体球原来不带电,试求相联后导体球所带电荷q.

R2OR1r

14. 一球形电容器,内球半径为R1,外球壳的内半径为R2两者充满了相对电容率为?r的各向同性、均匀的电介质。求: (1)电容器的电容;

(2)设内球与外球壳之间的电势差为U12,求电容器中储存的电场能。

第七章(恒定磁场)

1. 图中实线所示的闭合回路ABCD中,通有电流10A,两弧在同一圆周上,且

?AC?BD,圆半径R=0.5m,则O点处磁感应强度B的大小为____________T,

方向___________________, 在O点处放置一个正方形小线圈,线圈边长为5mm,通有电流0.1A,则线圈可能所受最大磁力矩的值为______________N.m。

BRAOCD2. 在国际单位制中,磁场强度H的单位是_________,真空磁导率?0的单位 是_____________。

3. 取一闭合的积分回路L,使三根载流导线穿过它所围成的面,现改变三根导线 之间的相互隔,但不越出积分回路,则 [ ]

19

A. 回路L内的∑I不变,L上各点的?不变

??B. 回路L内的∑I不变,L上各点的?改变 ?C. 回路L内的∑I改变,L上各点的?不变

D.回路L内的∑I改变,L上各点的?改变

4. 如图所示,在一圆形电流I的平面内,选取一个同心圆闭合回路L,则由安培

环路定理可知 [ ]

???A.?B?dl?0,且环路上任一点B=0

L L??B.?B?dl?0,但环路上任一点B≠0 OL??C.?B?dl?0, 且环路上任一点B=0

L. I

??D.?B?dl?0, 但环路上任一点B≠0

L5. 有两根平行直导线,通以方向相反的电流,那么两根通电导线将 [ ]

A. 相互吸引 B. 相互排斥 C. 无相互作用

D. 上面的几种说法均不对

6. 有一个由细导线绕成的正三角形线圈cde,其边长为a,通有电流I,置于均匀

???的磁场B中,且B的方向平行于cd边,则线圈受的磁力矩MA. B. C.

的大小为 [ ]

3a2IB/2 3a2IB/4 3a2IBSin600

dIce?BD. 0

7. 如图所示,设有一载流直导线放在真空中,导线中电流为I,其长度为L,试求其

20

?垂直平分线上,相距为a的P点处的磁感应强度B.(用毕-萨定律进行计算)

8. 一圆环状电流, 半径为R, 电流强度为I, 圆心为O, 在其轴线上有一点P,

x

z

O IaP.

y

?OP=d, 求P点处磁感应强度B的大小.(用毕-萨定律进行计算)

9.如图所示,电流cdefg是空间曲线电流,其电流强度为I, 从x轴正方向无穷远处流来,向y轴正方向无穷远处流去。曲线def是oyz面上半圆弧,半径为a,

?直线cd平行于x轴,两者相距为a,求圆心O点处磁感应强度矢量B.

Z

dIacXeaofgY

10. 将N根很长的相互绝缘的细直导线平行地,紧密地排成一圆筒形,筒的半

径R ,每根导线都通以方向相同,大小相等的电流,总电流为I,求每根导线单位长度上所受的力的小和方向。

11. 如图所示,一无限长直导线通有电流I =10 A,在一处折成夹角??=60°的折线,求角平分线上与导线的垂直距离均为r =0.1 cm的P点处的磁感强度.(?0 =4?×107 H·m1)

--

21

rP?r 12. 如图所示,一半径为R的均匀带电无限长直圆筒,面电荷密度为?.该筒

以角速度?绕其轴线匀速旋转.试求圆筒内部的磁感强度.

??R

第 八 章 电磁感应

1. 自感系数L=0.3H的螺线管中通以I=8A的电流时,在其中存储的磁场能量 W=________________J。

2. 引起动生电动势的非静电力是_____________,其非静电场场强Ek=________; 引起感生电动势的非静电力是_____________,其相应的非静电场是___________ 激发的。

3. 磁介质有三种,用相对磁导率?r表征它们各自的特征时 [ ] A. 顺磁质?r>0,抗磁质?r<0,铁磁质?r>>1

B. 顺磁质?r>1,抗磁质?r=1,铁磁质?r>>1 C. 顺磁质?r>1,抗磁质?r<1,铁磁质?r>>1 D. 顺磁质?r>0,抗磁质?r<0,铁磁质?r>1

?4. 关于稳恒磁场的磁场强度?的下列几种说法中正确的是 [ ]

?A. ?仅与传导电流有关。

?B. 若闭合曲线内没有包围传导电流,则曲线上各点的?必为零。

?C. 若闭合曲线上各点?均为零,则该曲线所包围传导电流的代数和为零。

??D. 以闭合曲线L为边缘的任意曲面的通量均为零。

22

5. 图中长l的金属OA绕O点的竖直轴以角速度? 旋转,OA与oy轴的夹角

?=300,则OA金属棒动生电动势和电势高低情况是 [ ]

A.

1y8l2?B,A点电势高

B. 14l2?B,A点电势高

B?

A C. 12?2l?B,O点电势高

oD. 14l2?B,O点电势高

6. 关于位移电流的下列几种说法中正确的是 [ ]

A. 位移电流由电荷作定向运动而产生的 B. 位移电流只能在导体中通过 C. 位移电流的大小与变化的电场有关 D. 位移电流是虚拟的电流,不能激发磁场

7. 无限长直线电流MN上电流强度为I,长度为L的导体棒绕O点在MN与O点所决定的平面内顺时针旋转,旋转的角速度为? ,OC? MN,OC=r。,求当棒在图示位置(即OA与CO延长线夹角为? )时动生电动势的大小。 N A I?CO?

r0 M

8. 载有电流的I长直导线附近,放一导体半圆环MeN与长直导线共

面,且端点MN的连线与长直导线垂直.半圆环的半径为b,环

心O与导线相距a.设半圆环以速度 v?平行导线平移,求半圆环

23

内感应电动势的大小和方向以及MN两端的电压UM ? UN .

v e I M a

?b O N 9. 两相互平行无限长的直导线载有大小相等方向相反的电流,长度为b的金属杆CD与两导线共面且垂直,相对位置如图.CD杆以速度v平行直线电流运动,求CD杆中的感应电动势,并判断C、D两端哪端电势较高?

a a b I I C??v D

24

本文来源:https://www.bwwdw.com/article/dmoh.html

Top