应用数学毕业论文

更新时间:2024-04-11 12:50:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

具适应性的人口疏散模型的整体解

具适应性的人口疏散模型的整体解

摘要

在人口疏散中,采取怎样的方式疏散(扩散)人口更为有效是一个非常重要的

问题。具适应性表示人口向着资源密集的地方移动(迁移)。这里的疏散不仅仅指人口疏散,还可以表示生物种群的扩散演化。对这些问题的研究在生物学、社会学上有着广泛的应用。

本文考虑了两种完全相同的种群在相同的环境下采取不同的策略——一种

采取随机自由扩散策略,另一种采取具适应性的扩散策略——竞争演化模型,并证明其在整个时间区间上的古典解的存在唯一性。

关键词:扩散,偏微分方程,适应性,整体解存在性

1

具适应性的人口疏散模型的整体解

Global Existence for Population Evacuation Model

with Adaptability

Abstract

In the evacuation of the population, how to evacuate(diffusion) population more

effectively is a very important question. Adaptive is defined as follows: population move(migration) toward the place where resource is intensive. The evacuation here not only refers to evacuation of population, also can say the diffusion of species evolution. Research on these problems is widely used in biology, sociology.

In this paper we consider two identical population that take different strategies in

the same environment—one taking a random free diffusion strategy, another taking diffusion strategy with adaptability –competition evolution model, and prove that the time interval of the classical solution existence uniqueness.

Key words: diffusion, partial differential equations, adaptability, existence of global solution

2

具适应性的人口疏散模型的整体解

目 录

1. 引言-------------------------------------------------------- 4 1.1 研究背景------------------------------------------------ 4 1.2 研究问题------------------------------------------------ 5 2. 理论准备---------------------------------------------------- 9

3.1 极值原理------------------------------------------------ 9 3.2 比较原理------------------------------------------------ 9 3.3 Holder空间---------------------------------------------- 9 3.4 LP(?),LP(QT),Wp2(?)与Wp2,1???(0,T)?空间(P?1)----------11 3. 局部解的存在性---------------------------------------------- 13 4. 整体解的存在性---------------------------------------------- 14 5. 小结-------------------------------------------------------- 21 参考文献------------------------------------------------------ 22 致谢---------------------------------------------------------- 25 原文及译文---------------------------------------------------- 26

3

具适应性的人口疏散模型的整体解

1. 引言

1.1 研究背景

大多数生物种群的一个明显特征是:它们有着空间分布。所以很自然的要问,种群的扩散过程是如何导致空间分布的模式的,什么样的模式产生怎样的过程,以及为什么生物可以进化到这样的扩散方式。在这方面已经作出了相当大的努力,利用空间模型来解决这些问题。在本文中,我们将探讨空间明确的种群模型,该模型与一个特定的模式,理想自由分布有关。在最初的形式中,理想自由分布是简单的描述生物怎样定位他们自己,如果他们能自由的移动到最合适他们的适应性。一个版本的理想自由分布连续空间可以源自于一种平流分布方程,该方程基于假定生物向上层局部适应性梯度移动,并且这个适应性随着空间变化、随着拥挤现象下降。我们考虑一个在这个模型中同样包括随机扩散的分布部分的变化。我们将表明随着比率向上层适应性梯度移动变得更大和或扩散比率变小,这个生物的扩散被我们的模型预测接近于期望的理想自由栖息地的选择。其他的生物模型中生物被假设成沿着适应性梯度向上扩散已经在[3] P.R. Armsworth, J.E. Roughgarden, The impact of directed versus random movement on population dynamics and biodiversity patterns, Am. Nat. 165 (2005) 449–465.中研究了。【3,4】中两个种群模型被用来代替反应移流分布模型。在【19】中的分析方法和问题中,通过模型和分析解决问题是两种不同的方法----从以前那些文本中可以看出。

我们分析的部分动机是一种对理解在空间变化但时间不变的环境下演变的扩散的兴趣。在那种情况下它遵循McPeek和Holt【22】和区分非条件、有条件扩散之间的区别是有用的。无条件扩散是指扩散而不考虑环境或其他生物的存在。纯扩散和与物质的移流相关的扩散(例如由于转动和流动)都是无条件扩散。有条件扩散是指受环境或其他生物的存在影响的。它已经表明,在这个空间框架下明确的种群模型在空间变化看时间不变的环境下,只有无条件的扩散演化偏向缓

4

具适应性的人口疏散模型的整体解

慢的扩散。为什么无条件扩散室不利的是因为它导致了种群的分布和资源的分布的不匹配。但是,对于某些有条件的扩散类型,演化又是能够有利于更快的扩散如果他允许种群沿着资源更有效的方向扩散。这些结论考虑两个竞争对手的模型,它们采用不用的扩散策略,但其他生态相同,并且考察就入侵而言演化的稳定性。(一个策略被认为是进化上稳定的,如果这个种群用那种策略不能被一个使用不同策略的小种群入侵)。我们计划,在今后的工作中,从这个观点考虑理想自由分布。要做到这一点,我们需要理解一个单一种群使用理想自由扩散的行为;发展这个理解是本文的目标;进一步是的注意的是,导致了包含某些理想自由分布的特征的扩散过程已经被证明在离散扩散模型中是进化稳定的,见【10,25】。然而,同样应该被注意的是,在时间变化的模型中的系数或复杂的动态,更快的无条件扩散有时可能会更有利。其中一些现象和其他生态的部分,定向对抗随机移动和演化的扩散的影响,在两个种群的模型【3,4】中被研究。

1.2 研究问题

一个理想自由分布的关键想法是,个体们用这样一个方式—为了优化他们

的适应性,将它们定位。因此,在平衡水平上,在栖息地被占领的部分,所有生物将有相同的适应性并且这里讲没有个体的净运动,种群是恒定的。一个连续捕获这些特点的模型在【23】中被引进。假设一个种群有一个固有的人均增长率,m(x),该m在空间上不同但是经历增加的死亡率和或减少的繁殖成功率由于拥挤在整个环境一致得变化。如果种群密度被适当的缩放,个体的本地生殖适应性在x处,在同一密度u(x)的个体面前,是由

f(x,u)=m(x)-u(x)

给出的。

让F表示生物在占用栖息地Ω的部分的适应性。对一个固定总人口数U,种群的分布将由

u = ? _m(x)? F if m(x) > F ;

0 otherwise, 给出。其中F是尽可能符合条件的大。

5

具适应性的人口疏散模型的整体解

???u(x)dx?U;

?x??:u(x)?0?x??:u(x)?0??F?)dx?U ?m(x?这些条件的第一只要总人口是守恒的。第二条件是通过,结合以前的密度公式u(x).他能够被用于定义F并且在u(x)>0的部分,通过观察它作为一个约束和最大F约束。在简单情况下,他可能找到F的显示的公式和u(x)>0的部分的U;见【23】。一个动态模型,支持平衡解,与这个在【14】中被引入的构想一致。这个模型有如下形式

ut??????u?f?x,u?? on???0,??,

与无通量边界条件

?f?x,u?u?0 on????0,??,

?n定义域?是R中的有界域,有光滑边界?Ω,n是在?Ω上的外向单位法向量,α是正

N常数,用以衡量扩散强度的适应性梯度。

单一物种模型

在本文中,我们将考虑对上述模型的变化,包括人口的增长和沿着定向的适应性梯度运动的扩散。自然要问,人口增长和扩散怎样相互作用。这是合理的假设:评定适应性梯度的过程,有瑕疵的梯度的跟踪,和对其他环境方面的反应可能造成一定量的随机运动。同时,通过将分布和人口动态包含进模型,我们能够把它放进一个框架,允许我们将它与其他已经在扩散演化【11-13,16,25】背景下研究过的模型相比较。在人口动态面前,纯理想自由扩散将预计导致一个平衡的人口分布,该分布中每个个体的适应性是0,因此,将没有进一步的人口增长。这相当于人口密度u(x)=m+(x),这里m+(x)表示m(x)的正向部分。如果m(x)被解释为描述资源的分布,那么有u=m+(x)意味着人口完全符合资源密度。我们将看到,随着生物向适应性梯度移动的趋势变大,这样的分布近似于对应的扩散模型的平衡。这将与包含运动梯度m(x)但不反应拥挤的模型的行为相对比。在这些模型中,生物的分布随着向梯度的移动速率变大,而趋向于变得集中在m(x)的局部最大值附近,见【12,13】

6

具适应性的人口疏散模型的整体解

这个模型有如下形式

ut??????u??u?f(x,u)??uf(x,u)

in???0,??.

(1.1)

无通量边界条件

?u?f(x,u)???u?0

?n?n这里

f(x,u)?m(x)?u

on????0,??

(1.2)

(1.3)

方程中u(x,t)表示单一种群的密度,而随机扩散系数是?。?用来衡量种群向适应性梯度移动的倾向,用f(x,u)表示。我们假设?是正常数,?是非负常数。Ω是一个R上的有界域,边界是?Ω,n表示其上的外向单位法向量。在本文中我们假设m∈C,??,???0,1?,且m在Ω上可取正。u(x,0)是连续的,非负的 ,不衡等零的。

2N??

两物种模型

最终我们计划研究,演化稳定的理想自由扩散与其他扩散策略的比较。要做到这一点,我们会考虑双物种模型,它们生态相同但是采用不用的扩散策略。这种方法已经被用在【11,12,16,25】中。使用这种建模方法,在理想自由扩散背景下,会导致一个系统形式

ut??????u??u?f(x,u?v)??uf(x,u?v) in???0,??. vt??????v??v?g(x,u?v)??vf(x,u?v)

in???0,??.

(1.4)

无通量边界条件

?u?f(x,u?v)?v?g(x,u?v)???u????v?0 on????0,??, (1.5)

?n?n?n?n这里f同(1.3),g代表替换的扩散策略的一部分。例如,g=0,对应于通过简单扩散的无条件扩散。g=m,对应于不考虑拥挤的向资源的移流,而g=-(u+v)对应不参考资源分布的避免拥挤的扩散。要从进化稳定的观点来分析这样一个模型,我们需要研究半平凡平衡(1.4)-(1.5)的稳定性。要做到这点,需要关于平衡的详细知

~满足(1.1)(1.2)是必须的并且是本文的主题 ~,0?,这里u识。理解半平凡平衡?u

7

具适应性的人口疏散模型的整体解

本文中我们将集中考虑g=0的情况

`

?ut??????u??uf?x,u?v???uf?x,u?v?? ?vt???v?vf(x,u?v)????u??u?f?x,u?v???n??v?n?0? (1.6)

初始条件u(x,0),v(x,0)都是非负且不恒为零的在?上,?,?,?都是正常数

本文考虑模型的(1.6)的一维空间情形,我们将证明相应的一维模型存在

唯一的整体古典解

8

具适应性的人口疏散模型的整体解

2. 理论准备

为了叙述和证明的方便起见,本节对模型研究过程中所用到的一些基本定理及空间先作些说明(参考文献[1],[2]).

2.1 极值原理

设u(x,t)在区域RT???x??,0?t?T?上连续,并且在区域内部满足热传导

方程,则它在区域的两个侧边(x??及x??,0?t?T)及底边(t?0,??x??)上取到其最大值和最小值.

换言之,如果以?T表示RT的两侧边及底边所组成的边界曲线(通称为抛物边界),那么成立着:

maxu(x,t)?maxu(x,t),minu(x,t)?minu(x,t).

RT?TRT?T注:上述对热传导方程的极值原理,可推广到如下一般的抛物型方程: ut?a2?u?b(x,t)?u?c(x,t)u?0,

其中c?0.

2.2 比较原理

对一般方程来说,设u和v都是区域?内的函数,且在??上连续.如果

在?的边界?上成立着不等式u?v,那么在?内上述不等式也成立;并且只有在u?v时,在?内才会有等号成立的可能.

2.3 Holder空间

设?是Rn的有界区域,对于非负整数k,Ck(?)表示所有在?上k次连续可微的函数组成的空间,在其上赋予范数:

9

具适应性的人口疏散模型的整体解

uk;????u?j;?,

j?0k其中

?u?0;??supu ,

? ?u?j;??这里??(?1,?2,??D?u?j0;?

,?n)是多重指标,?i?0(i?1,2,n,n),

????i,

i?1 D?????x1?1?x2?2?xn?n.

对于0???1,如果u?C(?)且

?u??;???supdefu(x)?u(y)x?y???,

x,y??x?y则称u在?上具有指数为?的Holder连续性.所有这样的函数组成的空间记为

C?(?).

对于非负整数k,0???1,Ck??(?)表示C?(?)中满足

? ?u?k??;?????D?u????kdef?;???

的函数组成的线性空间, 在其上定义范数:

uk??;??uk;???u?k??;?.

现在记区间I?(0,T),QT表示Rn?1中的柱体??I. 我们引入空间Ck??,(k??)2(QT). 对于u(x,t), 我们引入如下半模:

10

具适应性的人口疏散模型的整体解

?u?k??;Q?u?k??;Q在Ck??,(k??)2(QT)中, 我们依次以下方式引入半模:

txT?sup?u(?,t)?k??;?,

tT?sup?u(x,?)?k??;I.

x?u??;Q当k为偶数时:

Tu(X)?u(Y), ?sup?(X,Y)?X,Y?QTX?Y?u?k??;Q当k为奇数:

T?r?2s?k?sr?Dt?Dxu???;QT,

?u?k??;QT?r?2s?k?sr??DtDxu???;QT?r?2s?k?1?sr??DtDxu??(1??)2;QT.

t空间Ck??,(k??)2(QT)的范数可写成

?u?k??;Q

T?0?r?2s?k?rDtsDxu0;QT??u?k??;Q.

T2.4 LP(?),LP(QT),Wp2(?)与Wp2,1???(0,T)?空间(P?1)

记QT:???(0,T),

为一致起见,我们将用下列的注记:

Lp(?):?u(x)|?u(x)dx??,

??p?Lp(QT):?u(x,t)|??T0??u(x,t)dxdt??,

p?2Wp2???:??u|u,Dxu,Dxu?Lp(?)?, 2Wp2,1?QT?:??u|u,Dxu,Dxu,Dtu?Lp(QT)?.

上述空间的范数定义如下:

u?Lp(?)???udxp?1p

uLp(QT)????uT0?pdxdt?1p,

11

具适应性的人口疏散模型的整体解

u u2Wp??????u?uLp?Dxu(?)pL?(p2?Dxu)Lp(?),

2,1Wp?L(QT?Dxu)LQ(Tp2?Dux)Lp(QT)?DtuLpQT(. )

12

具适应性的人口疏散模型的整体解

3. 局部解的存在性

本文中我们考虑一维情形

?u??u???u?m?u?v???u?m?u?v?txxxx?? ?vt??vxx?v?m?u?v????u??u??m?u?v?x?x?0,1??vxx?0,1?0??xx??0,1?,t?0

(3.1)

初始条件:u(x,0)=u0?x?,v?x,0??v0?x? 模型中相关变量参数定义: m表示固有人口增长率。

u(x,t)、v(x,t)表示种群的密度,而随机扩散系数是?、?。

?用来衡量种群向适应性梯度移动的倾向。

我们假设?是正常数,?是非负常数。在本文中我们假设m∈C2??,??,

?????0,1?,且m在Ω上可取正。u(x,0)、v(x,0)是连续的,非负的 ,不衡等零的。

我们先给出问题(3.1)的一个局部解存在性结论。 定理 3.1

假设m(x),u0(x),v0(x)?C2?????,???0,1?则存在某个Tmax??0,???,使得问题

(3.1)存在唯一的解(u,v)满足

?u?x,t?,v?x,t???C2??,?2???2????0,Tmax??

进一步,如果Tmax?? 则有

u??,t?L???????,当t?Tmax

证明: 该局部存在性结果是经典结论,证明参见参考文献[1][2]

13

具适应性的人口疏散模型的整体解

4.整体解的存在性

我们试图证明(3.1)的古典解在整个时间?0,??上存在,根据定理(3.1),只要

证明(3.1)存在某个常数C>0,使得对任何T>0,都有

u??,t?L?????C,对?t??0,T?

(4.1)

而(4.1)的证明是建立在一些引理的基础上的。

引理4.1 假设(u,v)是(3.1)的在时间区间?0,T?上的一个古典解,则

0?v??,t??m,?t??0,T?

u??,t?L1????maxm,u0?

(4.2) (4.3)

?L1????,?t??0,T?,

其中m:?maxm?x?

证明:首先由假设u0?x??0,v0?x??0以及抛物方程的最大值原理知:

u?x,t??0,?t??0,T?

(4.4) (4.5)

0?v?x,t??m,?t??0,T?

再在(3.1)中的第一个方程两边关于x在(0,1)上积分得

ddt?10udx??u?m?u?v?dx

01 ??u?m?u?dx

01

?m?udx??u2dx

0011 (4.6)

另一方面,由Holder不等式得

14

具适应性的人口疏散模型的整体解

???1?21212?0udx????01dx??0udx

??10u2dx

将上式代入(4.6)得

ddt?10udx?m?10udx?????10udx?2?? 令 y?t???10u?x,t?dx 则(4.7)可写为

y??t??my?t??y2?t?

? ????1???y?t?????m?1y?t??1 再令 z?t??1y?t? 推知

z?t???m?z?t??1

? ?emt?z?t????emt

?

emt?z?t??z?0??1?emtm?1? ?

emt?z?t??1memt?z?0??1m

? z?t??1???z?0??1?m??e?mtm? ?

y?t??11

???1?y?0??1?m??e?mtm? max?u0L1???,m?

为叙述方便起见,一下我们不妨设

??????1 15

(4.7)

#

(4.8)

具适应性的人口疏散模型的整体解

注意到v满足如下方程

?vt?vxx?v?v?m?1?u?v?,x??0,1?,t?0,?? ?vxx?0,1?0,t?0?2????v?x,0??v0?x??C?0,1? (4.9)

其中,由(4.2)和(4.3)有

g?x,t??v?m?1?u?v??L1???

(4.10)

从而,我们可以应用[20,lemmal],得到一下引理

引理 4.2

假设(u,v)是(3.1)的在时间区间?0,T?上的一个古典解,则对任何1?q???,

存在某个常数C(q),使得

引理 4.3

假设(u,v)是(3.1)的在时间区间?0,T?上的一个古典解,则对任何

vx??,t?Lq?C?q?,?t??0,T?

??? (4.11)

2?p???,存在某个常数C(p),使得

u??,t?Lp?C?P?,?t??0,T?

??? (4.12)

证明 :由(3.1)中的u一方程得

ddt?10updx?p?up?1utdx

01

?p?up?1?uxx??u?m?u?v?x?x?u?m?u?v??

102dx ??p?p?1??up?2ux01

?p?p?1??up?2ux?u?m?u?v?xdx

01?p?up?m?u?v?dx

01012dx ??p?p?1??up?2ux 16

具适应性的人口疏散模型的整体解

?p?p?1??up?1mx?uxdx

01

2?p?p?1??up?1uxdx

01?p?p?1??up?1ux?vxdx

01?p?mupdx?p?up?1dx?p?upvdx

0001112 ??p?p?1??up?1uxdx

01

?p?p?1??up?1mxuxdx

01?p?p?1??up?1vxuxdx

01?p?m?updx

01?p?up?1dx

02114?p?1?1?p2?u?dx?p?up?1dx ????0?0p?x

?p?mupdx

01?p?p?1??up?1mxuxdx

01?p?p?1??up?1vxuxdx

02114?p?1?1?p2?p?1udx?pudx ??????00p??x

?I1?I2?I3

所以

ddt14?p?1?1?p2?pp?1udx??udx?pudx?I1?I2?I3 (4.13) ???0??00p??x12先看I1,由Young’s不等式知

17

I1?pm?updx

01 (4.14)

??p?up?1dx?C1???

01 具适应性的人口疏散模型的整体解

再看I2

I2?p?p?1??up?1mxuxdx

01?C2?up?1uxdx01

p?1?2?C2??uux0??1p ?2??u??1p?p?1?1p?22?uuxdx?C3?updx?004

?

p?1p?01p?2?1?u?dx?C3?updx??0??x2

再由(4.14)得到

I2?p?1p?01p?1?1?u?dx??p?up?1dx?C4??? ??0??x2像估计I2那样再估计I3

I3?p?p?1??up?1vx?uxdx

0pp?1?2??2?????p?p?1???uux???uvx??dx0????1p?p?1?1p?222p?uudx?Cuvx5?xdx?00411

p?1?p?0?1p?2?1?u?dx?C5?up?vx2dx??0??xp22

p?11??u??0p??11?dx??p?up?1dx?C6????vx?00?x22?p?1?dx由此并结合(4.11)得

p?11??uI3???0p?p2?1?dx??p?up?1dx?C7??? ?0?x2 (4.16)

另外注意到:

?10updx??p?up?1dx?C8???

01

18

(4.17)

具适应性的人口疏散模型的整体解

综合(4.13-4.17)得

p1114?p?1?1?2?d1ppp?1p?1??udx?udx??udx?pudx??pudx?C1??? ???????00000dtp??x2

?p?11??u??0p?p?11??u??0p?

p2?1?dx +?p?up?1dx?C4??? ?0?x?1?dx +?p?up?1dx?C7??? ?0?x

p2222

?

p2

+?p?up?1dx?C8???

01 ??2?p?1?1??u??0p??1?dx??1?4??p?up?1dx?C9??? ?0?x取定0???

ddt11,上式推得 410?updx??updx?C10

01 (4.18)

由此推得

?0updx?C11

即(4.12)得证

引理 4.4

假设(u,v)是(3.1)的在时间区间?0,T?上的一个古典解,则存在某个常数

C>0,使得

证明:由引理4.3及著名的Moser-Alikakos迭代技巧(参见文献[21,

u??,t?L??C,?t??0,T?

??? (4.19)

Lemma4.1])得到(4.19)

现在,我们得到本文的主要结论:

19

具适应性的人口疏散模型的整体解

定理 4.5:在与引理3.1相同的假设下,问题(3.1)在整个时间区间?0,??上存在唯一的古典解

证明:由定理4.1和引理4.4知:定理3.1 Tmax必满足

Tmax???

从而得到定理4.5

20

#

具适应性的人口疏散模型的整体解

5.小结

首先,通过之前的论述,我们知道了生物种群有着空间分布,不同的疏散过

程会导致不同的空间分布模式。生物为了更好的扩散演化进化出了具有适应性的扩散方式。将人口增长和扩散的相互作用、拥挤避免包含进一个系统,我们得到了单物种模型。为了证明这个策略在进化上式稳定的,我们考察另一种物种就入侵而言演化的稳定性。

为此我们将原来的单物种模型发展到两物种模型。最终我们计划研究:演化

稳定的理想自由扩散与其他扩散策略的比较。通过上述的证明,我们得到了定理4.5.即证明了问题(3.1)在整个时间区间上存在唯一古典解。

需要说明的是,本文所得出的整体存在的结果对于模型的各个方面都有着许

多限制(例如一维条件,初始条件的形式等)。虽然按照各种扩散机理可以对所研究的模型进行分类,但是我们将来一个重要的目标是把具适应性的人口疏散模型的结果延伸到更多普遍的情况中去。

由于适应性行为时一个极为复杂的过程,伴随着各种各样不同因素对运动反

应过程的作用。

所以,具有各种不同因素的模型都将会给抛物型偏微分方程系统带来一个广

阔的研究拓展领域。对于无论是会导致整体存在还是不会导致整体存在的模型类别的了解都会有助于提高对各种不同因素相关重要性的理解。

21

具适应性的人口疏散模型的整体解

参考文献

[1] H. Amann, Dynamic theory of quasilinear parabolic equations, II: Reaction–diffusion systems, Differential Integral Equations 3 (1990) 13–75.

[2] H. Amann, Dynamic theory of quasilinear parabolic systems, III: Global existence, Math. Z. 202 (1989) 219–250.

[3] P.R. Armsworth, J.E. Roughgarden, The impact of directed versus random movement on population dynamics and biodiversity patterns, Am. Nat. 165 (2005) 449–465.

[4] P.R. Armsworth, J.E. Roughgarden, Disturbance induces the contrasting evolution of reinforcement and dispersiveness in

directed and random movers, Evolution 59 (2005) 2083–2096.

[5] F. Belgacem, Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue

and Applications, Pitman Res. Notes Math. Ser., vol. 368, Longman Sci., 1997. [6] F. Belgacem, C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment, Can. Appl. Math. Q. 3 (1995) 379–397.

[7] J.S. Brew, Competition and niche dynamics from steady-state dispersal equations, Theor. Pop. Biol. 32 (1987) 240–261.

[8] K.J. Brown, S.S. Lin, On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function, J. Math. Anal. Appl. 75 (1980) 112–120.

[9] R.S. Cantrell, C. Cosner, Spatial Ecology via Reaction–Diffusion Equations, Ser. Math. Comput. Biol., John Wiley and Sons, Chichester, UK, 2003.

22

具适应性的人口疏散模型的整体解

[10] R.S. Cantrell, C. Cosner, D.L. DeAngelis, V. Padrón, The ideal free distribution as an evolutionarily stable strategy, J. Biol. Dyn. 1 (2007) 249–271.

[11] R.S. Cantrell, C. Cosner, Y. Lou, Movement towards better environments and the evolution of rapid diffusion, Math. Biosci. 204 (2006) 199–214.

[12] R.S. Cantrell, C. Cosner, Y. Lou, Advection mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007) 497–518.

[13] X.F. Chen, Y. Lou, Principal eigenvalue and eigenfunction of elliptic operator with large convection and its application to

a competition model, Indiana Univ. Math. J. 57 (2008) 627–658.

[14] C. Cosner, A dynamic model for the ideal-free distribution as a partial differential equation, Theor. Pop. Biol. 67 (2005) 101–108.

[15] C. Cosner, Y. Lou, Does movement toward better environments always benefit a population?, J. Math. Anal. Appl. 277 (2003) 489–503.

[16] J. Dockery, V. Hutson, K. Mischaikow, M. Pernarowski, The evolution of slow dispersal rates: A reaction–diffusion model, J. Math. Biol. 37 (1998) 61–83.

[17] S.D. Fretwell, H.L. Lucas, On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development, Acta Biotheor. 19 (1970) 16–36.

[18] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equation of Second Order, second ed., Springer-Verlag, Berlin, 1983.

[19] P. Grindrod, Models of individual aggregation or clustering in single and multi-species communities, J. Math. Biol. 26 (1988) 651–660.

23

具适应性的人口疏散模型的整体解

[20]R.Kowalc2yk,Z.Szymansfa,On the global txistence of solutions to an aggregation madol,T.Math.Anal.Appl.343(2008)379-398

[21]Y.Tao and M.Winkler,Broundness in a quasitinear parabolic-parabolic Keller-Segel System with subcnticat sensitivity,J.Differential Equations ,252 (2012)692-715

[22] M.A. McPeek, R.D. Holt, The evolution of dispersal in spatially and temporally varying environments, Am. Nat. 140 (1992) 1010–1027.

[23] M. Kshatriya, C. Cosner, A continuum formulation of the ideal free distribution and its applications for population dynamics, Theor. Pop. Biol. 61 (2002) 277–284.

[24] S. Kirkland, C.-K. Li, S.J. Schreiber, On the evolution of dispersal in patchy environments, SIAM J. Appl. Math. 66 (2006) 1366–1382.

[25] V. Hutson, K. Mischaikow, P. Poláˇcik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol. 43 (2001) 501–533.

24

具适应性的人口疏散模型的整体解

致谢

经过几个月的忙碌和工作,本次毕业论文已经临近尾声。作为一个本科生,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有导师的督促指导,同学的支持鼓励,想要独自完成这个论文是相当困难的.

在这里,我要感谢我的导师陶有山老师.老师平日里工作繁忙,但在我做毕业论文的每个阶段,从论文开题到查阅资料,中期检查,后期撰写与修改等整个过程中都给予了我悉心的指导.一丝不苟的工作作风,求真务实的态度,踏实的钻研精神,不仅授我以文,而且教我做人,虽仅历时数月,却给我受益无穷.

在此表达对陶老师的衷心感谢!

最后感谢东华大学四年来对我的栽培,同时我也快乐地度过了本科四年的学习生活.

25

具适应性的人口疏散模型的整体解

原文及译文

Random dispersal versus fitness-dependent dispersal

Robert Stephen Cantrell

Chris Cosner Yuan Lou Chao Xie

This work extends previous work (Cantrell et al., 2008 [9]) on fitness-dependent dispersal for a single species to a two-species competition model. Both species have the same population dynamics, but one species adopts a combination of random and fitnessdependent dispersal and the other adopts random dispersal. Global existence of smooth solutions to the time-dependent quasilinear parabolic system is studied. When a single species has a strong tendency to move up its fitness gradient, it results in a stable equilibrium that can approximate the spatial distribution predicted by the ideal free distribution (Cantrell et al., 2008 [9]). For the twospecies competition model, if one species has strong tendency to move up its fitness gradient, such approximately ideal free dispersal is advantageous relative to random dispersal. Bifurcation analysis shows that two competing species can coexist when one species has only an intermediate tendency to move up its fitness gradient and the other species has a smaller random dispersal rate.

1. Introduction

This work extends our previous work [9] on fitness-dependent dispersal for a single species to a two-species competition model, with one species adopting a combination of random and fitnessdependent dispersal and the other adopting random dispersal.

26

具适应性的人口疏散模型的整体解

The model we considered in [9] has the form

?ut??????u??u?f?x,u???uf?x,u? ???????u??u?fx,u?n?0?Where R???0,??, and

(1.1)

f?x,u??m?x??u

(1.2)

The function u(x, t) represents the density of a single species with random diffusion coefficient μ, and α measures the tendency of the species to move upward along the gradient of the fitness of the species, measured by f (x, u). We assume that μ is a positive constant and α is a non-negative constant. Ω is a bounded region in RN with boundary ?Ω, and n denotes the outward unit normal vector on ?Ω. Throughout this paper we assume that m ∈ C2,γ (Ω) for some γ ∈ (0, 1) and m is positive somewhere in Ω, and u(x, 0) is continuous, non-negative and not identically zero in Ω. We briefly summarize some of the main results in [9] as follows:

? (Global existence in time) Suppose that μ > 0 and α _ 0. Then (1.1) has a unique solution u ∈ C2,1(Ω ×(0,∞)) ∩ C(Ω × [0,∞)).

? (Existence of positive steady state) If u = 0 is linearly unstable, then (1.1) has at least one positive steady state. Note that if _Ω m > 0, u = 0 is linearly unstable for any μ > 0 and α _ 0.

? (Global attractor) If m > 0 in Ω, then for large α/μ, (1.1) has a unique positive steady state which is also globally asymptotically stable.

To study the evolution of dispersal, a common approach, initiated by Hastings [24] for reaction– diffusion models, is to consider models of two populations that are ecologically identical but use different dispersal strategies. In general, using such a modeling approach would lead to a system of the form

?ut??????u??uf?x,u?v???uf?x,u?v????v??v?g(x,u,v)??vf(x,u?v) ?vt???????u??u?f?x,u?v???n????u??u?g?x,u,v???n?0? (1.3)

where f is as in (1.2), and g represents part of an alternate dispersal strategy. For example, g = 0

27

具适应性的人口疏散模型的整体解

would correspond to unconditional dispersal of organisms by simple diffusion, g = m would correspond to advection up resource gradient without consideration of crowding, while g = ?(u + v) would correspond to avoidance of crowding without reference to resource distribution. We refer to

[3–5,7–11,13,14,17,23,27,30–32,42,38,46] for recent progress in this direction for reaction–diffusion models.

In this paper we will focus on system (1.3) with g = 0, i.e.,

?ut??????u??uf?x,u?v???uf?x,u?v?? ?vt???v?vf(x,u?v)????u??u?f?x,u?v???n??v?n?0? (1.4)

where the initial conditions u(x, 0) and v(x, 0) are non-negative and not identically zero in Ω, and μ, ν, α are all positive constants.

We consider reaction–diffusion–advection models for spatially distributed

populations that have a tendency to disperse up the gradient of fitness, where fitness is defined as a logistic local population growth rate. We show that in temporally constant but spatially varying environments such populations have equilibrium distributions that can approximate those that would be predicted by a version of the ideal free distribution incorporating population dynamics. The modeling approach shows that a dispersal mechanism based on local information about the environment and population density can approximate the ideal free distribution. The analysis suggests that such a dispersal mechanism may sometimes be advantageous because it allows populations to approximately track resource availability. The models are quasilinear parabolic equations with nonlinear boundary conditions.

Our analysis is partially motivated by an interest in understanding the evolution of dispersal in spatially varying but temporally constant environments. In that context it is useful to follow McPeek and Holt [28] and distinguish between unconditional and conditional dispersal. Unconditional dispersal refers to dispersal without regard to the environment or the presence of other organisms. Pure diffusion and diffusion with

28

具适应性的人口疏散模型的整体解

physical advection (e.g. due to winds or currents) are examples of unconditional dispersal. Conditional dispersal refers to dispersal that is influenced by the environment or the presence of other organisms. It has been shown that in the framework of spatially explicit population models on spatially varying but temporally constant environments with only unconditional dispersal that evolution favors slow dispersal [16,21,28]. A reason why unconditional dispersal is not favored is that it leads to a mismatch between the distribution of population and the distribution of resources. However, for certain types of conditional dispersal, evolution can sometimes favor faster dispersal if that allows the population to track resources more efficiently [11,12,28]. These conclusions were obtained by considering models for two competitors that use different dispersal strategies but otherwise are ecologically identical, and examining the evolutionary stability of the strategies in terms of invasibility. (A strategy is considered evolutionarily stable if a population using that strategy cannot be invaded by a small population using a different strategy.) We plan to consider ideal free dispersal from that viewpoint in future work. To do that, we need to understand well the behavior of a single species using ideal free dispersal; developing that understanding is the goal of this paper. Further it is worth noting that dispersal processes that result in patterns embodying certain features of the ideal free distribution have been shown to be evolutionarily stable in discrete diffusion models; see [10,26]. However, it should also be noted that in models with temporal variation in the coefficients or complex dynamics, faster unconditional dispersal may sometimes be favored; see [23,24,28]. Some of these phenomena and other aspects of the ecological effects of directed versus random movement and the evolution of dispersal are studied in the context of two-patch models in [3,4].

A key idea underlying the ideal free distribution is that individuals will locate themselves in such a way as to optimize their fitness. Thus, at equilibrium, all organisms in the occupied part of the habitat will have equal fitness and there will be no net movement of individuals if the population is constant. A continuum model that captures those features was introduced in [25]. Suppose that a population has an

29

具适应性的人口疏散模型的整体解

intrinsic per capita growth rate m(x) that varies in space but experiences increased mortality and/or decreased reproductive success due to crowding uniformly throughout its environment. If the population density is scaled appropriately the local reproductive fitness of an individual at location x in the presence of conspecifics at density u(x) is given by

f(x,u)=m(x)-u(x)

Let F denote the fitness of organisms in the occupied part of the habitat Ω. For a fixed total population U the distribution of the population will be given by

u = ? _m(x)? F if m(x) > F ;

0 otherwise, where F is made as large as possible subject to the conditions

???u(x)dx?U;

?x??:u(x)?0?x??:u(x)?0??F?)dx?U ?m(x?The first of these conditions simply requires the total population to be conserved. The second condition is obtained by integrating the previous formula for the density u(x). It can be used to determine F and the region where u(x) > 0 by viewing it as a constraint and maximizing F subject to that constraint. In simple cases it is possible to find explicit formulas for F and the region where u(x) > 0 in terms of U; see [25]. A dynamic model which supports equilibrium solutions corresponding to this formulation was introduced in [14]. That model has the form

ut??????u?f?x,u?? on???0,??,

with the no-flux boundary condition

u?f?x,u??0 on????0,??, ?nwhere the habitat Ω is a bounded domain in RN with smooth boundary ?Ω, n is the outward unit normal vector on ?Ω, and α is a positive constant that measures the strength of dispersal up the fitness gradient.

In the present paper we will consider a variation on the model of [14] that incorporates population growth and diffusion along with directed motion up the

30

具适应性的人口疏散模型的整体解

fitness gradient. It is natural to ask how population growth interacts with dispersal. It is reasonable to assume that the process of assessing the fitness gradient, imperfect tracking of that gradient, and responses to other aspects of the environment could lead to some amount of random movement. Also, by incorporating diffusion and population dynamics into the model, we can put it into a framework that allows us to compare it with other models that have been studied in the context of the evolution of dispersal [11–13,16,24]. In the presence of population dynamics, pure ideal free dispersal would be expected to result in an equilibrium distribution of the population in which the fitness of each individual will be zero, so that there will be no further population growth. That would correspond to a population density u(x) = m+(x), where m+(x) denotes the positive part of m(x). If m(x) is interpreted as describing the distribution of resources, having u =m+(x) would mean that the population perfectly matches the resource density. We will see that as the tendency of the organisms to move upward along fitness gradients becomes large such a distribution is approximated by the equilibria of the corresponding model with diffusion. This is in contrast with the behavior of models that incorporate movement up the gradient of m(x) but no response to crowding. In those models the distribution of organisms tends to become concentrated near local maxima of m(x) as the rate of movement up the gradient becomes large; see [12,13]. The model we will consider has the form

ut??????u??u?f(x,u)??uf(x,u)

With on-flux boundary conditions

in???0,??.

(1.1)

?Where

?u?f(x,u)??u?0 ?n?n

on????0,??

(1.2)

f(x,u)?m(x)?u (1.3)

Throughout this paper we assume that m ∈ C2,τ (Ω) for some τ ∈ (0, 1) and m is positive somewhere in Ω. The dispersal terms in (1.1) can be written in two different forms, corresponding to two distinct ways of thinking about their interpretation in the

31

具适应性的人口疏散模型的整体解

model, namely

??2u????u?(m(x)?u)

And

?(?u?2?u22)????u?m(x)

In the first form, the first term represents ordinary diffusion while the second term represents directed movement up the gradient of fitness. In the second form, the first term represents a version of nonlinear diffusion where organisms avoid crowding by diffusing more rapidly in the presence of conspecifics, and the second term represents movement up the gradient of underlying environmental quality without reference to the presence of conspecifics or their influence on fitness. Models with nonlinear diffusion terms similar to those occurring in the second form have been used to describe the distribution of populations that avoid crowding; see [20,30]. Models with ordinary diffusion but incorporating a tendency to move up the gradient of underlying environmental quality were considered in [6,11–13,15]. Some related models were considered in [7,19] but the methods and results in those papers are quite different from ours.

Ultimately we plan to study the evolutionary stability of ideal free dispersal relative to other dispersal strategies. To do that, we would consider models of two populations that are ecologically identical but use different dispersal strategies. Such an approach has been used in [11,12,16,24]. Using this modeling approach in the context of ideal free dispersal would lead to a system of the form of

ut??????u??u?f(x,u?v)??uf(x,u?v) in???0,??.

vt??????v??v?g(x,u?v)??vf(x,u?v)

in???0,??.

(1.4)

With no-flux boundary conditions

??u?f(x,u?v)?v?g(x,u?v)??u????v?0 on????0,??, (1.5) ?n?n?n?nwhere f is as in (1.3), and g represents part of an alternate dispersal strategy. For example, g = 0 would correspond to unconditional dispersal by simple diffusion, g =

32

具适应性的人口疏散模型的整体解

m would correspond to advection up resource gradient without consideration of crowding, while g =?(u + v) would correspond to avoidance of crowding without reference to resource distribution. To analyze such a model from the view point of evolutionary stability, one needs to study the stability of semi-trivial equilibria of (1.4)–(1.5). To do that requires a detailed knowledge of those equilibria. Understanding the semi-trivial equilibrium ( ?u, 0) where ?u satisfies (1.1)–(1.2) is essential to this process and it is the subject of this paper.

In the analysis of (1.1)–(1.2) we will use a number of changes of variables. It is not immediately clear that (1.1)–(1.2) or its equilibrium equation will satisfy a comparison principle. We will want to use comparison principles, sub- and super-solutions, and related ideas in our analysis. To that end we will introduce the new variable

W?ue?(?)(m?u)?

In other contexts we will also use ln(w) as a new variable. For purposes of deriving a priori estimates we will use the change of variables

u2?z??u

2?If we set μ = 0 in (1.1) and (1.2), we obtain

ut??????u?f(x,u)??uf(x,u)

with no-flux boundary conditions

u?f(x,u)?0 on????0,?? ?nin???0,??

(1.6)

(1.7)

Eqs. (1.6), (1.7) can be viewed as the model for the ideal free distribution in [14] with an additional term describing population dynamics, or as a limiting case of (1.1), (1.2) as μ→0. The model (1.1), (1.2) can thus be viewed as an approximation of dispersal according to the ideal free distribution in the presence of population dynamics.

33

具适应性的人口疏散模型的整体解

自由扩散与适应性依赖扩散

这项工作扩展了前人在适应性依赖扩散对单一物种和两物种竞争模型的工作(Jerr等人,2008【9】)。两物种都有相同的人口动态,但是一种采用结合随机、适应性依赖的扩散,另一种采用随机扩散。我们研究整体光滑解在时间依赖的拟线性抛物系统中的存在性。当一个单一物种有很强的趋势,向它的适应性梯度移动时,导致一个稳定的平衡,这个平衡能接近被理想自由分布预测的空间分布。对两个物种竞争模型,如果一个有很强的倾向向适应性梯度移动,这种近似理想自由扩散相对于随机自由扩散是有利的。分岔分析表明两个竞争物种能共存,当一个物种只有一个中间级的趋势提高它的适应性梯度而另一个物种有一个小的随机扩散率。

1 引言

这项工作扩展了我们先前的工作,关于适应性依赖扩散对单一种群模型和双竞争种群模型,一种一个种群采用随机和适应性梯度结合的扩散,另一种采用随机扩散,这个模型有如下形式

?ut??[??u??u?f(x,u)]?uf(x,u) ??[??u??u?f(x,u)]?n?0f(x,u)?m(x)?u.

in??R?on???R? (1.1)

其中

(1.2)

方程中u(x,t)表示单一种群的密度,而随机扩散系数是?。?用来衡量种群

向适应性梯度移动的倾向,用f(x,u)表示。我们假设?是正常数,?是非负常数。Ω是一个R上的有界域,边界是?Ω,n表示其上的外向单位法向量。在本文中我们假设m∈C,??,???0,1?,且m在Ω上可取正。u(x,0)是连续的,非负的 ,不衡等零的。我们简要总结了一些结论:

? (在时间上的整体存在性)假设?>0和??0。则(1.1)有一个唯一解

2N?? 34

具适应性的人口疏散模型的整体解

u?C2,1(???0,??)????0,??.

? (正稳定状态的存在性)如果u=0是线性不稳定的,则(1.1)至少有一个正稳定状态。请注意如果?m?0,u?0,是线性不稳定的对任何??0,??0。

???? (全局吸引子)当m?0,in?,则对大?全局渐进稳定的。

?,(1.1)有一个唯一正稳定状态也是

为了研究扩散的演变,一种常用的方法,通过Hastings反应分布模型,考虑

两物种模型。它们生态相同但使用不用扩散策略。在一般情况下,用这个建模方法可得如下形式:

?ut??????u??uf?x,u?v???uf?x,u?v????v??v?g(x,u,v)??vf(x,u?v) ?vt???????u??u?f?x,u?v???n????u??u?g?x,u,v???n?0? (1.3)

其中f同(1.2),g表示另一种传播策略的一部分。例如,g=0将对应通过简单扩散的生物无条件扩散。g=m对应参考资源分布不考虑拥挤。G=-(u+v)对应考虑拥挤不考虑资源分布。我们指【3-5,7-11,13,14,17,23,27,30-32,42,38,46】为反应孔三模型在这个方向上的最新进展。

本文中我们将集中考虑g=0的情况 `

?ut??????u??uf?x,u?v???uf?x,u?v?? ?vt???v?vf(x,u?v)????u??u?f?x,u?v???n??v?n?0? (1.4)

初始条件u(x,0),v(x,0)都是非负且不恒为零的在?上,?,?,?都是正常数

我们认为—反应移动流分布空间分布人群的模型有一种倾向:扩散提升梯度的适应性;适应性定义是一个逻辑的地方种群增长率。我们表明在一个时间不变空间变化的环境中,这样的种群平衡分布可以接近那些能够通过一个版本的理想自由分布包含种群动态被预测。该建模方法表明,扩散机制基于关于环境和种群密度的地方信息可以接近理想自由分布。这个分析表明:这种分散机制可能有时是有利的,因为它允许种群接近追踪资源的可用性。这个模型是拟线性抛物型具有非线性边界条件的方程。

35

具适应性的人口疏散模型的整体解

我们的分析的部分动机是一种对理解在空间变化但时间不变的环境下演变

的扩散的兴趣。在那种情况下他遵循McPeek和Holt [28]和区分非条件、有条件扩散之间的区别是有用的。无条件扩散是指扩散而不考虑环境或其他生物的存在。纯扩散和与物质的移流相关的扩散(例如由于转动和流动)都是无条件扩散。有条件扩散是指扩散是受环境或其他生物的存在影响的。它已经表明,在这个空间框架下明确的种群模型在空间变化但时间不变的环境下,只有无条件的扩散演化偏向缓慢的扩散【16,21,28】。为什么无条件扩散是不利的是因为它导致了种群的分布和资源的分布的不匹配。但是,对于某些有条件的扩散类型,演化有时能够有利于更快的扩散如果他允许种群沿着资源更有效的方向扩散【11,12,28】。这些结论,考虑两个竞争对手的模型,它们采用不用的扩散策略,但其他生态相同,并且考察就入侵而言演化的稳定性。(一个策略被认为是进化上稳定的,如果这个种群用那种策略不能被一个使用不同策略的小种群入侵)。我们计划在今后的工作中从这个观点考虑理想自由分布。要做到这一点,我们需要理解一个单一种群使用理想自由扩散的行为;发展这个理解是本文的目标;进一步的值得注意的是,导致了模式包含某些理想自由分布的特征的扩散过程已经被证明在离散扩散模型中是进化稳定的;见【10,26】。然而,同样应该被注意的是,在时间变化的模型中的系数或复杂的动态,更快的无条件扩散有时可能会更有利,见【23,24,28】。其中的一些现象和其他的生态的部分,定向对抗随机移动和演化的扩散的影响,在两个种群的模型【3,4】中被研究。

一个理解理想自由分布的关键想法是,个体们用这样一个方式--为了优化它

们的适应性将自己定位。因此,在平衡水平上,在栖息地被占领的部分,所有生物将有相同的适应性并且这里将没有个体的净运动如果种群是恒定的。一个连续捕获这些特点的模型在【25】中被引进。假设一个种群有一个固有的人均增长率,m(x),该m在空间上不同但是经历增加的死亡率和/或减少的繁殖成功率由于拥挤在整个环境一致得变化。如果种群密度被适当的缩放,个体的本地生殖适应性在x处,在同一密度u(x)的个体面前,是由 给出的。

f(x,u)=m(x)-u(x)

让F表示生物在占用栖息地Ω的部分的适应性。对一个固定总人口数U,种群的分布将由

36

具适应性的人口疏散模型的整体解

u = ? _m(x)? F if m(x) > F ;

0 otherwise, 给出。其中F是尽可能符合条件的大。

?u(x)dx?U;

???x??:u(x)?0??F??x??:u(x)?0)dx?U ?m(x?这些条件的第一只要总人口是守恒的。第二条件是通过,结合以前的密度公式u(x).他能够被用于定义F并且在u(x)>0的部分,通过观察它作为一个约束和最大F约束。在简单情况下,他可能找到F的显示的公式和u(x)>0的部分的U;见【25】。一个动态模型,支持平衡解,与这个在【14】中被引入的构想一致。这个模型有如下形式

ut??????u?f?x,u?? on???0,??,

与无通量边界条件

?f?x,u?u?0 on????0,??,

?n定义域?是R中的有界域,有光滑边界?Ω,n是在?Ω上的外向单位法向量,α是正

N常数,用以衡量扩散强度的适应性梯度。

在本文中,我们将考虑对模型【14】的变化,包括人口的增长和沿着定向的

适应性梯度运动的扩散。自然要问,人口增长和扩散怎样相互作用。这是合理的假设:评定适应性梯度的过程,有瑕疵的梯度的跟踪,和对其他环境方面的反应可能造成一定量的随机运动。同时,通过将分布和人口动态包含进模型,我们能够把它放进一个框架,允许我们将它与其他已经在扩散演化【11-13,16,24】背景下研究过的模型相比较。在人口动态面前,纯理想自由扩散将预计导致一个平衡的人口分布,该分布中每个个体的适应性是0,因此,将没有进一步的人口增长。这相当于人口密度u(x)=m+(x),这里m+(x)表示m(x)的正向部分。如果m(x)被解释为描述资源的分布,那么有u=m+(x)意味着人口完全符合资源密度。我们将看到,随着生物向适应性梯度移动的趋势变大,这样的分布近似于对应的扩散模型的平衡。这将与包含运动梯度m(x)但不反应拥挤的模型的行为相对比。在这些模型中,生物的分布随着向梯度的移动速率变大,而趋向于变得集中在m(x)的局部最大值附近,见【12,13】

37

具适应性的人口疏散模型的整体解

这个模型有如下形式

ut??????u??u?f(x,u)??uf(x,u)

in???0,??.

(1.1)

无通量边界条件

?u?f(x,u)???u?0

?n?n这里

f(x,u)?m(x)?u

on????0,??

(1.2)

(1.3)

在本文中,我们假设m?C2,?(?)这里???0,1?,m在Ω中是正的。扩散项(1.1)可以写成两种不同的形式,对应两种不用的关于它们在模型中解释的思考方式,即 和

?(?u?2

??2u????u?(m(x)?u)

?u22)????u?m(x)

在第一个形式中,第一项代表普通扩散,第二项代表定向运动适应性变化率。在第二个形式中,第一项代表一个非线性的扩散的变化,这里生物通过扩散更快来避免拥挤,同样的,第二项代表:运动向着潜在的环境质量变化而不参考同种的存在或他们对适应性的影响,见【20,30】。普通扩散模型,但包括趋向向潜在环境质量的变化移动,在【6,11-13,15】中考虑了。一些相关模型在【7,19】中考虑,但是这些模型的方法和结果与我们完全不同。

最终我们计划研究,演化稳定的理想自由扩散与其他扩散策略的比较。要做

到这一点,我们会考虑双物种模型,它们生态相同但是采用不用的扩散策略。这种方法已经被用在【11,12,16,24】中。使用这种建模方法,在理想自由扩散背景下,会导致一个系统形式

ut??????u??u?f(x,u?v)??uf(x,u?v) in???0,??. vt??????v??v?g(x,u?v)??vf(x,u?v)

in???0,??.

(1.4)

无通量边界条件

?u?f(x,u?v)?v?g(x,u?v)???u????v?0 on????0,??, (1.5)

?n?n?n?n这里f同(1.3),g代表替换的扩散策略的一部分。例如,g=0,对应于通过简单扩

38

具适应性的人口疏散模型的整体解

散的无条件扩散。g=m,对应于不考虑拥挤的向资源的移流,而g=-(u+v)对应不参考资源分布的避免拥挤的扩散。要从进化稳定的观点来分析这样一个模型,我们需要研究半平凡平衡(1.4)-(1.5)的稳定性。要做到这点,需要关于平衡的详细知

~满足(1.1)(1.2)是必须的并且是本文的主题 ~,0?,这里u识。理解半平凡平衡?u在分析(1.1)(1.2)是我们将用一些变化的变量。它不是立即明晰(1.1)(1.2)或他的平衡方程将满足比较原理。我们会想使用比较原理,子和超解决方案,并联系我们在分析中的想法。为此我们将引入新的变量

W?ue?(?)(m?u)?

在其他地方我们也将使用ln(w)作为一个新的变量。为了得到一个先验估计的目的,我们将用变量的变化。

u2??u z?2?如果我们设??0在(1.1)(1.2)中,则 ut??????u?f(x,u)??uf(x,u)

in???0,??

(1.6)

无通量边界条件

?f(x,u)?0 on????0,?? (1.7) u?n方程(1.6)(1.7)可以看做这个理想自由分布模型在【14】中添加描述人口动态项,或者作为一个限制情况下(1.1)(1.2)??0。模型(1.1)(1.2)可以被看做一个根据在人口动态条件下的理想自由扩散的近似。

39

本文来源:https://www.bwwdw.com/article/dkcp.html

Top